|  | 
 | /* | 
 |  * Copyright 2012 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "SkBitmapProcState.h" | 
 | #include "SkBitmapProcState_filter.h" | 
 | #include "SkColorPriv.h" | 
 | #include "SkFilterProc.h" | 
 | #include "SkPaint.h" | 
 | #include "SkShader.h"   // for tilemodes | 
 | #include "SkUtilsArm.h" | 
 |  | 
 | // Required to ensure the table is part of the final binary. | 
 | extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; | 
 | extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[]; | 
 |  | 
 | #define   NAME_WRAP(x)  x ## _neon | 
 | #include "SkBitmapProcState_filter_neon.h" | 
 | #include "SkBitmapProcState_procs.h" | 
 |  | 
 | const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { | 
 |     S32_opaque_D32_nofilter_DXDY_neon, | 
 |     S32_alpha_D32_nofilter_DXDY_neon, | 
 |     S32_opaque_D32_nofilter_DX_neon, | 
 |     S32_alpha_D32_nofilter_DX_neon, | 
 |     S32_opaque_D32_filter_DXDY_neon, | 
 |     S32_alpha_D32_filter_DXDY_neon, | 
 |     S32_opaque_D32_filter_DX_neon, | 
 |     S32_alpha_D32_filter_DX_neon, | 
 |  | 
 |     S16_opaque_D32_nofilter_DXDY_neon, | 
 |     S16_alpha_D32_nofilter_DXDY_neon, | 
 |     S16_opaque_D32_nofilter_DX_neon, | 
 |     S16_alpha_D32_nofilter_DX_neon, | 
 |     S16_opaque_D32_filter_DXDY_neon, | 
 |     S16_alpha_D32_filter_DXDY_neon, | 
 |     S16_opaque_D32_filter_DX_neon, | 
 |     S16_alpha_D32_filter_DX_neon, | 
 |  | 
 |     SI8_opaque_D32_nofilter_DXDY_neon, | 
 |     SI8_alpha_D32_nofilter_DXDY_neon, | 
 |     SI8_opaque_D32_nofilter_DX_neon, | 
 |     SI8_alpha_D32_nofilter_DX_neon, | 
 |     SI8_opaque_D32_filter_DXDY_neon, | 
 |     SI8_alpha_D32_filter_DXDY_neon, | 
 |     SI8_opaque_D32_filter_DX_neon, | 
 |     SI8_alpha_D32_filter_DX_neon, | 
 |  | 
 |     S4444_opaque_D32_nofilter_DXDY_neon, | 
 |     S4444_alpha_D32_nofilter_DXDY_neon, | 
 |     S4444_opaque_D32_nofilter_DX_neon, | 
 |     S4444_alpha_D32_nofilter_DX_neon, | 
 |     S4444_opaque_D32_filter_DXDY_neon, | 
 |     S4444_alpha_D32_filter_DXDY_neon, | 
 |     S4444_opaque_D32_filter_DX_neon, | 
 |     S4444_alpha_D32_filter_DX_neon, | 
 |  | 
 |     // A8 treats alpha/opauqe the same (equally efficient) | 
 |     SA8_alpha_D32_nofilter_DXDY_neon, | 
 |     SA8_alpha_D32_nofilter_DXDY_neon, | 
 |     SA8_alpha_D32_nofilter_DX_neon, | 
 |     SA8_alpha_D32_nofilter_DX_neon, | 
 |     SA8_alpha_D32_filter_DXDY_neon, | 
 |     SA8_alpha_D32_filter_DXDY_neon, | 
 |     SA8_alpha_D32_filter_DX_neon, | 
 |     SA8_alpha_D32_filter_DX_neon | 
 | }; | 
 |  | 
 | const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { | 
 |     S32_D16_nofilter_DXDY_neon, | 
 |     S32_D16_nofilter_DX_neon, | 
 |     S32_D16_filter_DXDY_neon, | 
 |     S32_D16_filter_DX_neon, | 
 |  | 
 |     S16_D16_nofilter_DXDY_neon, | 
 |     S16_D16_nofilter_DX_neon, | 
 |     S16_D16_filter_DXDY_neon, | 
 |     S16_D16_filter_DX_neon, | 
 |  | 
 |     SI8_D16_nofilter_DXDY_neon, | 
 |     SI8_D16_nofilter_DX_neon, | 
 |     SI8_D16_filter_DXDY_neon, | 
 |     SI8_D16_filter_DX_neon, | 
 |  | 
 |     // Don't support 4444 -> 565 | 
 |     NULL, NULL, NULL, NULL, | 
 |     // Don't support A8 -> 565 | 
 |     NULL, NULL, NULL, NULL | 
 | }; | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #include <arm_neon.h> | 
 | #include "SkConvolver.h" | 
 |  | 
 | // Convolves horizontally along a single row. The row data is given in | 
 | // |srcData| and continues for the numValues() of the filter. | 
 | void convolveHorizontally_neon(const unsigned char* srcData, | 
 |                                const SkConvolutionFilter1D& filter, | 
 |                                unsigned char* outRow, | 
 |                                bool hasAlpha) { | 
 |     // Loop over each pixel on this row in the output image. | 
 |     int numValues = filter.numValues(); | 
 |     for (int outX = 0; outX < numValues; outX++) { | 
 |         uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); | 
 |         uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); | 
 |         uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); | 
 |         uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); | 
 |         // Get the filter that determines the current output pixel. | 
 |         int filterOffset, filterLength; | 
 |         const SkConvolutionFilter1D::ConvolutionFixed* filterValues = | 
 |             filter.FilterForValue(outX, &filterOffset, &filterLength); | 
 |  | 
 |         // Compute the first pixel in this row that the filter affects. It will | 
 |         // touch |filterLength| pixels (4 bytes each) after this. | 
 |         const unsigned char* rowToFilter = &srcData[filterOffset * 4]; | 
 |  | 
 |         // Apply the filter to the row to get the destination pixel in |accum|. | 
 |         int32x4_t accum = vdupq_n_s32(0); | 
 |         for (int filterX = 0; filterX < filterLength >> 2; filterX++) { | 
 |             // Load 4 coefficients | 
 |             int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; | 
 |             coeffs = vld1_s16(filterValues); | 
 |             coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); | 
 |             coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); | 
 |             coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); | 
 |             coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); | 
 |  | 
 |             // Load pixels and calc | 
 |             uint8x16_t pixels = vld1q_u8(rowToFilter); | 
 |             int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); | 
 |             int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); | 
 |  | 
 |             int16x4_t p0_src = vget_low_s16(p01_16); | 
 |             int16x4_t p1_src = vget_high_s16(p01_16); | 
 |             int16x4_t p2_src = vget_low_s16(p23_16); | 
 |             int16x4_t p3_src = vget_high_s16(p23_16); | 
 |  | 
 |             int32x4_t p0 = vmull_s16(p0_src, coeff0); | 
 |             int32x4_t p1 = vmull_s16(p1_src, coeff1); | 
 |             int32x4_t p2 = vmull_s16(p2_src, coeff2); | 
 |             int32x4_t p3 = vmull_s16(p3_src, coeff3); | 
 |  | 
 |             accum += p0; | 
 |             accum += p1; | 
 |             accum += p2; | 
 |             accum += p3; | 
 |  | 
 |             // Advance the pointers | 
 |             rowToFilter += 16; | 
 |             filterValues += 4; | 
 |         } | 
 |         int r = filterLength & 3; | 
 |         if (r) { | 
 |             const uint16_t mask[4][4] = { | 
 |                 {0, 0, 0, 0}, | 
 |                 {0xFFFF, 0, 0, 0}, | 
 |                 {0xFFFF, 0xFFFF, 0, 0}, | 
 |                 {0xFFFF, 0xFFFF, 0xFFFF, 0} | 
 |             }; | 
 |             uint16x4_t coeffs; | 
 |             int16x4_t coeff0, coeff1, coeff2; | 
 |             coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); | 
 |             coeffs &= vld1_u16(&mask[r][0]); | 
 |             coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); | 
 |             coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); | 
 |             coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); | 
 |  | 
 |             // Load pixels and calc | 
 |             uint8x16_t pixels = vld1q_u8(rowToFilter); | 
 |             int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); | 
 |             int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); | 
 |             int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); | 
 |             int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); | 
 |             int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); | 
 |  | 
 |             accum += p0; | 
 |             accum += p1; | 
 |             accum += p2; | 
 |         } | 
 |  | 
 |         // Bring this value back in range. All of the filter scaling factors | 
 |         // are in fixed point with kShiftBits bits of fractional part. | 
 |         accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); | 
 |  | 
 |         // Pack and store the new pixel. | 
 |         int16x4_t accum16 = vqmovn_s32(accum); | 
 |         uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); | 
 |         vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); | 
 |         outRow += 4; | 
 |     } | 
 | } | 
 |  | 
 | // Does vertical convolution to produce one output row. The filter values and | 
 | // length are given in the first two parameters. These are applied to each | 
 | // of the rows pointed to in the |sourceDataRows| array, with each row | 
 | // being |pixelWidth| wide. | 
 | // | 
 | // The output must have room for |pixelWidth * 4| bytes. | 
 | template<bool hasAlpha> | 
 | void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, | 
 |                              int filterLength, | 
 |                              unsigned char* const* sourceDataRows, | 
 |                              int pixelWidth, | 
 |                              unsigned char* outRow) { | 
 |     int width = pixelWidth & ~3; | 
 |  | 
 |     int32x4_t accum0, accum1, accum2, accum3; | 
 |     int16x4_t coeff16; | 
 |  | 
 |     // Output four pixels per iteration (16 bytes). | 
 |     for (int outX = 0; outX < width; outX += 4) { | 
 |  | 
 |         // Accumulated result for each pixel. 32 bits per RGBA channel. | 
 |         accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); | 
 |  | 
 |         // Convolve with one filter coefficient per iteration. | 
 |         for (int filterY = 0; filterY < filterLength; filterY++) { | 
 |  | 
 |             // Duplicate the filter coefficient 4 times. | 
 |             // [16] cj cj cj cj | 
 |             coeff16 = vdup_n_s16(filterValues[filterY]); | 
 |  | 
 |             // Load four pixels (16 bytes) together. | 
 |             // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | 
 |             uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); | 
 |  | 
 |             int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); | 
 |             int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); | 
 |             int16x4_t src16_0 = vget_low_s16(src16_01); | 
 |             int16x4_t src16_1 = vget_high_s16(src16_01); | 
 |             int16x4_t src16_2 = vget_low_s16(src16_23); | 
 |             int16x4_t src16_3 = vget_high_s16(src16_23); | 
 |  | 
 |             accum0 += vmull_s16(src16_0, coeff16); | 
 |             accum1 += vmull_s16(src16_1, coeff16); | 
 |             accum2 += vmull_s16(src16_2, coeff16); | 
 |             accum3 += vmull_s16(src16_3, coeff16); | 
 |         } | 
 |  | 
 |         // Shift right for fixed point implementation. | 
 |         accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); | 
 |         accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); | 
 |         accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); | 
 |         accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); | 
 |  | 
 |         // Packing 32 bits |accum| to 16 bits per channel (signed saturation). | 
 |         // [16] a1 b1 g1 r1 a0 b0 g0 r0 | 
 |         int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); | 
 |         // [16] a3 b3 g3 r3 a2 b2 g2 r2 | 
 |         int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); | 
 |  | 
 |         // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). | 
 |         // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | 
 |         uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); | 
 |  | 
 |         if (hasAlpha) { | 
 |             // Compute the max(ri, gi, bi) for each pixel. | 
 |             // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | 
 |             uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); | 
 |             // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | 
 |             uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g | 
 |             // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | 
 |             a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); | 
 |             // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | 
 |             b = vmaxq_u8(a, b); // Max of r and g and b. | 
 |             // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | 
 |             b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); | 
 |  | 
 |             // Make sure the value of alpha channel is always larger than maximum | 
 |             // value of color channels. | 
 |             accum8 = vmaxq_u8(b, accum8); | 
 |         } else { | 
 |             // Set value of alpha channels to 0xFF. | 
 |             accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); | 
 |         } | 
 |  | 
 |         // Store the convolution result (16 bytes) and advance the pixel pointers. | 
 |         vst1q_u8(outRow, accum8); | 
 |         outRow += 16; | 
 |     } | 
 |  | 
 |     // Process the leftovers when the width of the output is not divisible | 
 |     // by 4, that is at most 3 pixels. | 
 |     int r = pixelWidth & 3; | 
 |     if (r) { | 
 |  | 
 |         accum0 = accum1 = accum2 = vdupq_n_s32(0); | 
 |  | 
 |         for (int filterY = 0; filterY < filterLength; ++filterY) { | 
 |             coeff16 = vdup_n_s16(filterValues[filterY]); | 
 |  | 
 |             // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 | 
 |             uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); | 
 |  | 
 |             int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); | 
 |             int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); | 
 |             int16x4_t src16_0 = vget_low_s16(src16_01); | 
 |             int16x4_t src16_1 = vget_high_s16(src16_01); | 
 |             int16x4_t src16_2 = vget_low_s16(src16_23); | 
 |  | 
 |             accum0 += vmull_s16(src16_0, coeff16); | 
 |             accum1 += vmull_s16(src16_1, coeff16); | 
 |             accum2 += vmull_s16(src16_2, coeff16); | 
 |         } | 
 |  | 
 |         accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); | 
 |         accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); | 
 |         accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); | 
 |  | 
 |         int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); | 
 |         int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); | 
 |  | 
 |         uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); | 
 |  | 
 |         if (hasAlpha) { | 
 |             // Compute the max(ri, gi, bi) for each pixel. | 
 |             // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 | 
 |             uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); | 
 |             // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | 
 |             uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g | 
 |             // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 | 
 |             a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); | 
 |             // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 | 
 |             b = vmaxq_u8(a, b); // Max of r and g and b. | 
 |             // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 | 
 |             b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); | 
 |  | 
 |             // Make sure the value of alpha channel is always larger than maximum | 
 |             // value of color channels. | 
 |             accum8 = vmaxq_u8(b, accum8); | 
 |         } else { | 
 |             // Set value of alpha channels to 0xFF. | 
 |             accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); | 
 |         } | 
 |  | 
 |         switch(r) { | 
 |         case 1: | 
 |             vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); | 
 |             break; | 
 |         case 2: | 
 |             vst1_u32(reinterpret_cast<uint32_t*>(outRow), | 
 |                      vreinterpret_u32_u8(vget_low_u8(accum8))); | 
 |             break; | 
 |         case 3: | 
 |             vst1_u32(reinterpret_cast<uint32_t*>(outRow), | 
 |                      vreinterpret_u32_u8(vget_low_u8(accum8))); | 
 |             vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); | 
 |             break; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, | 
 |                              int filterLength, | 
 |                              unsigned char* const* sourceDataRows, | 
 |                              int pixelWidth, | 
 |                              unsigned char* outRow, | 
 |                              bool sourceHasAlpha) { | 
 |     if (sourceHasAlpha) { | 
 |         convolveVertically_neon<true>(filterValues, filterLength, | 
 |                                       sourceDataRows, pixelWidth, | 
 |                                       outRow); | 
 |     } else { | 
 |         convolveVertically_neon<false>(filterValues, filterLength, | 
 |                                        sourceDataRows, pixelWidth, | 
 |                                        outRow); | 
 |     } | 
 | } | 
 |  | 
 | // Convolves horizontally along four rows. The row data is given in | 
 | // |src_data| and continues for the num_values() of the filter. | 
 | // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please | 
 | // refer to that function for detailed comments. | 
 | void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], | 
 |                                     const SkConvolutionFilter1D& filter, | 
 |                                     unsigned char* outRow[4]) { | 
 |  | 
 |     uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); | 
 |     uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); | 
 |     uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); | 
 |     uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); | 
 |     int num_values = filter.numValues(); | 
 |  | 
 |     int filterOffset, filterLength; | 
 |     // |mask| will be used to decimate all extra filter coefficients that are | 
 |     // loaded by SIMD when |filter_length| is not divisible by 4. | 
 |     // mask[0] is not used in following algorithm. | 
 |     const uint16_t mask[4][4] = { | 
 |         {0, 0, 0, 0}, | 
 |         {0xFFFF, 0, 0, 0}, | 
 |         {0xFFFF, 0xFFFF, 0, 0}, | 
 |         {0xFFFF, 0xFFFF, 0xFFFF, 0} | 
 |     }; | 
 |  | 
 |     // Output one pixel each iteration, calculating all channels (RGBA) together. | 
 |     for (int outX = 0; outX < num_values; outX++) { | 
 |  | 
 |         const SkConvolutionFilter1D::ConvolutionFixed* filterValues = | 
 |         filter.FilterForValue(outX, &filterOffset, &filterLength); | 
 |  | 
 |         // four pixels in a column per iteration. | 
 |         int32x4_t accum0 = vdupq_n_s32(0); | 
 |         int32x4_t accum1 = vdupq_n_s32(0); | 
 |         int32x4_t accum2 = vdupq_n_s32(0); | 
 |         int32x4_t accum3 = vdupq_n_s32(0); | 
 |  | 
 |         int start = (filterOffset<<2); | 
 |  | 
 |         // We will load and accumulate with four coefficients per iteration. | 
 |         for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { | 
 |             int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; | 
 |  | 
 |             coeffs = vld1_s16(filterValues); | 
 |             coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); | 
 |             coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); | 
 |             coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); | 
 |             coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); | 
 |  | 
 |             uint8x16_t pixels; | 
 |             int16x8_t p01_16, p23_16; | 
 |             int32x4_t p0, p1, p2, p3; | 
 |  | 
 |  | 
 | #define ITERATION(src, accum)                                       \ | 
 |     pixels = vld1q_u8(src);                                         \ | 
 |     p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));  \ | 
 |     p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ | 
 |     p0 = vmull_s16(vget_low_s16(p01_16), coeff0);                   \ | 
 |     p1 = vmull_s16(vget_high_s16(p01_16), coeff1);                  \ | 
 |     p2 = vmull_s16(vget_low_s16(p23_16), coeff2);                   \ | 
 |     p3 = vmull_s16(vget_high_s16(p23_16), coeff3);                  \ | 
 |     accum += p0;                                                    \ | 
 |     accum += p1;                                                    \ | 
 |     accum += p2;                                                    \ | 
 |     accum += p3 | 
 |  | 
 |             ITERATION(srcData[0] + start, accum0); | 
 |             ITERATION(srcData[1] + start, accum1); | 
 |             ITERATION(srcData[2] + start, accum2); | 
 |             ITERATION(srcData[3] + start, accum3); | 
 |  | 
 |             start += 16; | 
 |             filterValues += 4; | 
 |         } | 
 |  | 
 |         int r = filterLength & 3; | 
 |         if (r) { | 
 |             int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; | 
 |             coeffs = vld1_s16(filterValues); | 
 |             coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); | 
 |             coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); | 
 |             coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); | 
 |             coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); | 
 |             coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); | 
 |  | 
 |             uint8x16_t pixels; | 
 |             int16x8_t p01_16, p23_16; | 
 |             int32x4_t p0, p1, p2, p3; | 
 |  | 
 |             ITERATION(srcData[0] + start, accum0); | 
 |             ITERATION(srcData[1] + start, accum1); | 
 |             ITERATION(srcData[2] + start, accum2); | 
 |             ITERATION(srcData[3] + start, accum3); | 
 |         } | 
 |  | 
 |         int16x4_t accum16; | 
 |         uint8x8_t res0, res1, res2, res3; | 
 |  | 
 | #define PACK_RESULT(accum, res)                                         \ | 
 |         accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);  \ | 
 |         accum16 = vqmovn_s32(accum);                                    \ | 
 |         res = vqmovun_s16(vcombine_s16(accum16, accum16)); | 
 |  | 
 |         PACK_RESULT(accum0, res0); | 
 |         PACK_RESULT(accum1, res1); | 
 |         PACK_RESULT(accum2, res2); | 
 |         PACK_RESULT(accum3, res3); | 
 |  | 
 |         vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); | 
 |         vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); | 
 |         vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); | 
 |         vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); | 
 |         outRow[0] += 4; | 
 |         outRow[1] += 4; | 
 |         outRow[2] += 4; | 
 |         outRow[3] += 4; | 
 |     } | 
 | } | 
 |  | 
 | void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { | 
 |     // Padding |paddingCount| of more dummy coefficients after the coefficients | 
 |     // of last filter to prevent SIMD instructions which load 8 or 16 bytes | 
 |     // together to access invalid memory areas. We are not trying to align the | 
 |     // coefficients right now due to the opaqueness of <vector> implementation. | 
 |     // This has to be done after all |AddFilter| calls. | 
 |     for (int i = 0; i < 8; ++i) { | 
 |         filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); | 
 |     } | 
 | } | 
 |  | 
 | void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { | 
 |     procs->fExtraHorizontalReads = 3; | 
 |     procs->fConvolveVertically = &convolveVertically_neon; | 
 |     procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; | 
 |     procs->fConvolveHorizontally = &convolveHorizontally_neon; | 
 |     procs->fApplySIMDPadding = &applySIMDPadding_neon; | 
 | } |