| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkStream.h" |
| #include "include/core/SkString.h" |
| #include "include/private/SkChecksum.h" |
| #include "include/private/SkHalf.h" |
| #include "include/private/SkSpinlock.h" |
| #include "include/private/SkTFitsIn.h" |
| #include "include/private/SkThreadID.h" |
| #include "include/private/SkVx.h" |
| #include "src/core/SkColorSpacePriv.h" |
| #include "src/core/SkColorSpaceXformSteps.h" |
| #include "src/core/SkCpu.h" |
| #include "src/core/SkEnumerate.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkVM.h" |
| #include <algorithm> |
| #include <atomic> |
| #include <queue> |
| |
| #if defined(SKVM_LLVM) |
| #include <future> |
| #include <llvm/Bitcode/BitcodeWriter.h> |
| #include <llvm/ExecutionEngine/ExecutionEngine.h> |
| #include <llvm/IR/IRBuilder.h> |
| #include <llvm/IR/Verifier.h> |
| #include <llvm/Support/TargetSelect.h> |
| |
| // Platform-specific intrinsics got their own files in LLVM 10. |
| #if __has_include(<llvm/IR/IntrinsicsX86.h>) |
| #include <llvm/IR/IntrinsicsX86.h> |
| #endif |
| #endif |
| |
| bool gSkVMAllowJIT{false}; |
| bool gSkVMJITViaDylib{false}; |
| |
| #if defined(SKVM_JIT) |
| #if defined(SK_BUILD_FOR_WIN) |
| #include "src/core/SkLeanWindows.h" |
| #include <memoryapi.h> |
| |
| static void* alloc_jit_buffer(size_t* len) { |
| return VirtualAlloc(NULL, *len, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); |
| } |
| static void unmap_jit_buffer(void* ptr, size_t len) { |
| VirtualFree(ptr, 0, MEM_RELEASE); |
| } |
| static void remap_as_executable(void* ptr, size_t len) { |
| DWORD old; |
| VirtualProtect(ptr, len, PAGE_EXECUTE_READ, &old); |
| SkASSERT(old == PAGE_READWRITE); |
| } |
| static void close_dylib(void* dylib) { |
| SkASSERT(false); // TODO? For now just assert we never make one. |
| } |
| #else |
| #include <dlfcn.h> |
| #include <sys/mman.h> |
| |
| static void* alloc_jit_buffer(size_t* len) { |
| // While mprotect and VirtualAlloc both work at page granularity, |
| // mprotect doesn't round up for you, and instead requires *len is at page granularity. |
| const size_t page = sysconf(_SC_PAGESIZE); |
| *len = ((*len + page - 1) / page) * page; |
| return mmap(nullptr,*len, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1,0); |
| } |
| static void unmap_jit_buffer(void* ptr, size_t len) { |
| munmap(ptr, len); |
| } |
| static void remap_as_executable(void* ptr, size_t len) { |
| mprotect(ptr, len, PROT_READ|PROT_EXEC); |
| __builtin___clear_cache((char*)ptr, |
| (char*)ptr + len); |
| } |
| static void close_dylib(void* dylib) { |
| dlclose(dylib); |
| } |
| #endif |
| |
| #if defined(SKVM_JIT_VTUNE) |
| #include <jitprofiling.h> |
| static void notify_vtune(const char* name, void* addr, size_t len) { |
| if (iJIT_IsProfilingActive() == iJIT_SAMPLING_ON) { |
| iJIT_Method_Load event; |
| memset(&event, 0, sizeof(event)); |
| event.method_id = iJIT_GetNewMethodID(); |
| event.method_name = const_cast<char*>(name); |
| event.method_load_address = addr; |
| event.method_size = len; |
| iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED, &event); |
| } |
| } |
| #else |
| static void notify_vtune(const char* name, void* addr, size_t len) {} |
| #endif |
| #endif |
| |
| // JIT code isn't MSAN-instrumented, so we won't see when it uses |
| // uninitialized memory, and we'll not see the writes it makes as properly |
| // initializing memory. Instead force the interpreter, which should let |
| // MSAN see everything our programs do properly. |
| // |
| // Similarly, we can't get ASAN's checks unless we let it instrument our interpreter. |
| #if defined(__has_feature) |
| #if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer) |
| #define SKVM_JIT_BUT_IGNORE_IT |
| #endif |
| #endif |
| |
| #if defined(SKSL_STANDALONE) |
| // skslc needs to link against this module (for the VM code generator). This module pulls in |
| // color-space code, but attempting to add those transitive dependencies to skslc gets out of |
| // hand. So we terminate the chain here with stub functions. Note that skslc's usage of SkVM |
| // never cares about color management. |
| skvm::F32 sk_program_transfer_fn( |
| skvm::F32 v, TFKind tf_kind, |
| skvm::F32 G, skvm::F32 A, skvm::F32 B, skvm::F32 C, skvm::F32 D, skvm::F32 E, skvm::F32 F) { |
| return v; |
| } |
| |
| const skcms_TransferFunction* skcms_sRGB_TransferFunction() { return nullptr; } |
| const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() { return nullptr; } |
| #endif |
| |
| namespace skvm { |
| |
| static Features detect_features() { |
| static const bool fma = |
| #if defined(SK_CPU_X86) |
| SkCpu::Supports(SkCpu::HSW); |
| #elif defined(SK_CPU_ARM64) |
| true; |
| #else |
| false; |
| #endif |
| |
| static const bool fp16 = false; // TODO |
| |
| return { fma, fp16 }; |
| } |
| |
| Builder::Builder() : fFeatures(detect_features()) {} |
| Builder::Builder(Features features) : fFeatures(features ) {} |
| |
| |
| struct Program::Impl { |
| std::vector<InterpreterInstruction> instructions; |
| int regs = 0; |
| int loop = 0; |
| std::vector<int> strides; |
| |
| std::atomic<void*> jit_entry{nullptr}; // TODO: minimal std::memory_orders |
| size_t jit_size = 0; |
| void* dylib = nullptr; |
| |
| #if defined(SKVM_LLVM) |
| std::unique_ptr<llvm::LLVMContext> llvm_ctx; |
| std::unique_ptr<llvm::ExecutionEngine> llvm_ee; |
| std::future<void> llvm_compiling; |
| #endif |
| }; |
| |
| // Debugging tools, mostly for printing various data structures out to a stream. |
| |
| namespace { |
| class SkDebugfStream final : public SkWStream { |
| size_t fBytesWritten = 0; |
| |
| bool write(const void* buffer, size_t size) override { |
| SkDebugf("%.*s", (int)size, (const char*)buffer); |
| fBytesWritten += size; |
| return true; |
| } |
| |
| size_t bytesWritten() const override { |
| return fBytesWritten; |
| } |
| }; |
| |
| struct V { Val id; }; |
| struct R { Reg id; }; |
| struct Shift { int bits; }; |
| struct Splat { int bits; }; |
| struct Hex { int bits; }; |
| |
| static void write(SkWStream* o, const char* s) { |
| o->writeText(s); |
| } |
| |
| static const char* name(Op op) { |
| switch (op) { |
| #define M(x) case Op::x: return #x; |
| SKVM_OPS(M) |
| #undef M |
| } |
| return "unknown op"; |
| } |
| |
| static void write(SkWStream* o, Op op) { |
| o->writeText(name(op)); |
| } |
| static void write(SkWStream* o, Ptr p) { |
| write(o, "ptr"); |
| o->writeDecAsText(p.ix); |
| } |
| static void write(SkWStream* o, V v) { |
| write(o, "v"); |
| o->writeDecAsText(v.id); |
| } |
| static void write(SkWStream* o, R r) { |
| write(o, "r"); |
| o->writeDecAsText(r.id); |
| } |
| static void write(SkWStream* o, Shift s) { |
| o->writeDecAsText(s.bits); |
| } |
| static void write(SkWStream* o, Splat s) { |
| float f; |
| memcpy(&f, &s.bits, 4); |
| o->writeHexAsText(s.bits); |
| write(o, " ("); |
| o->writeScalarAsText(f); |
| write(o, ")"); |
| } |
| static void write(SkWStream* o, Hex h) { |
| o->writeHexAsText(h.bits); |
| } |
| |
| template <typename T, typename... Ts> |
| static void write(SkWStream* o, T first, Ts... rest) { |
| write(o, first); |
| write(o, " "); |
| write(o, rest...); |
| } |
| } // namespace |
| |
| static void write_one_instruction(Val id, const OptimizedInstruction& inst, SkWStream* o) { |
| Op op = inst.op; |
| Val x = inst.x, |
| y = inst.y, |
| z = inst.z, |
| w = inst.w; |
| int immA = inst.immA, |
| immB = inst.immB, |
| immC = inst.immC; |
| switch (op) { |
| case Op::assert_true: write(o, op, V{x}, V{y}); break; |
| |
| case Op::store8: write(o, op, Ptr{immA}, V{x} ); break; |
| case Op::store16: write(o, op, Ptr{immA}, V{x} ); break; |
| case Op::store32: write(o, op, Ptr{immA}, V{x} ); break; |
| case Op::store64: write(o, op, Ptr{immA}, V{x},V{y} ); break; |
| case Op::store128: write(o, op, Ptr{immA}, V{x},V{y},V{z},V{w}); break; |
| |
| case Op::index: write(o, V{id}, "=", op); break; |
| |
| case Op::load8: write(o, V{id}, "=", op, Ptr{immA}); break; |
| case Op::load16: write(o, V{id}, "=", op, Ptr{immA}); break; |
| case Op::load32: write(o, V{id}, "=", op, Ptr{immA}); break; |
| case Op::load64: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::load128: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; |
| |
| case Op::gather8: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; |
| case Op::gather16: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; |
| case Op::gather32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, V{x}); break; |
| |
| case Op::uniform32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::array32: write(o, V{id}, "=", op, Ptr{immA}, Hex{immB}, Hex{immC}); break; |
| |
| case Op::splat: write(o, V{id}, "=", op, Splat{immA}); break; |
| |
| case Op:: add_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: sub_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: mul_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: div_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: min_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: max_f32: write(o, V{id}, "=", op, V{x}, V{y} ); break; |
| case Op:: fma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| case Op:: fms_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| case Op::fnma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| |
| |
| case Op::sqrt_f32: write(o, V{id}, "=", op, V{x}); break; |
| |
| case Op:: eq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::neq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op:: gt_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::gte_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| |
| case Op::add_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::sub_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::mul_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| case Op::shl_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; |
| case Op::shr_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; |
| case Op::sra_i32: write(o, V{id}, "=", op, V{x}, Shift{immA}); break; |
| |
| case Op::eq_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::gt_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| |
| case Op::bit_and : write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::bit_or : write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::bit_xor : write(o, V{id}, "=", op, V{x}, V{y}); break; |
| case Op::bit_clear: write(o, V{id}, "=", op, V{x}, V{y}); break; |
| |
| case Op::select: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; |
| |
| case Op::ceil: write(o, V{id}, "=", op, V{x}); break; |
| case Op::floor: write(o, V{id}, "=", op, V{x}); break; |
| case Op::to_f32: write(o, V{id}, "=", op, V{x}); break; |
| case Op::to_fp16: write(o, V{id}, "=", op, V{x}); break; |
| case Op::from_fp16: write(o, V{id}, "=", op, V{x}); break; |
| case Op::trunc: write(o, V{id}, "=", op, V{x}); break; |
| case Op::round: write(o, V{id}, "=", op, V{x}); break; |
| } |
| |
| write(o, "\n"); |
| } |
| |
| void Builder::dump(SkWStream* o) const { |
| SkDebugfStream debug; |
| if (!o) { o = &debug; } |
| |
| std::vector<OptimizedInstruction> optimized = this->optimize(); |
| o->writeDecAsText(optimized.size()); |
| o->writeText(" values (originally "); |
| o->writeDecAsText(fProgram.size()); |
| o->writeText("):\n"); |
| for (Val id = 0; id < (Val)optimized.size(); id++) { |
| const OptimizedInstruction& inst = optimized[id]; |
| write(o, inst.can_hoist ? "↑ " : " "); |
| write_one_instruction(id, inst, o); |
| } |
| } |
| |
| void Program::dump(SkWStream* o) const { |
| SkDebugfStream debug; |
| if (!o) { o = &debug; } |
| |
| o->writeDecAsText(fImpl->regs); |
| o->writeText(" registers, "); |
| o->writeDecAsText(fImpl->instructions.size()); |
| o->writeText(" instructions:\n"); |
| for (Val i = 0; i < (Val)fImpl->instructions.size(); i++) { |
| if (i == fImpl->loop) { write(o, "loop:\n"); } |
| o->writeDecAsText(i); |
| o->writeText("\t"); |
| if (i >= fImpl->loop) { write(o, " "); } |
| const InterpreterInstruction& inst = fImpl->instructions[i]; |
| Op op = inst.op; |
| Reg d = inst.d, |
| x = inst.x, |
| y = inst.y, |
| z = inst.z, |
| w = inst.w; |
| int immA = inst.immA, |
| immB = inst.immB, |
| immC = inst.immC; |
| switch (op) { |
| case Op::assert_true: write(o, op, R{x}, R{y}); break; |
| |
| case Op::store8: write(o, op, Ptr{immA}, R{x} ); break; |
| case Op::store16: write(o, op, Ptr{immA}, R{x} ); break; |
| case Op::store32: write(o, op, Ptr{immA}, R{x} ); break; |
| case Op::store64: write(o, op, Ptr{immA}, R{x}, R{y} ); break; |
| case Op::store128: write(o, op, Ptr{immA}, R{x}, R{y}, R{z}, R{w}); break; |
| |
| case Op::index: write(o, R{d}, "=", op); break; |
| |
| case Op::load8: write(o, R{d}, "=", op, Ptr{immA}); break; |
| case Op::load16: write(o, R{d}, "=", op, Ptr{immA}); break; |
| case Op::load32: write(o, R{d}, "=", op, Ptr{immA}); break; |
| case Op::load64: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::load128: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; |
| |
| case Op::gather8: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; |
| case Op::gather16: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; |
| case Op::gather32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, R{x}); break; |
| |
| case Op::uniform32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}); break; |
| case Op::array32: write(o, R{d}, "=", op, Ptr{immA}, Hex{immB}, Hex{immC}); break; |
| |
| case Op::splat: write(o, R{d}, "=", op, Splat{immA}); break; |
| |
| case Op::add_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::sub_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::mul_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::div_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::min_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::max_f32: write(o, R{d}, "=", op, R{x}, R{y} ); break; |
| case Op::fma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| case Op::fms_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| case Op::fnma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| |
| case Op::sqrt_f32: write(o, R{d}, "=", op, R{x}); break; |
| |
| case Op:: eq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::neq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op:: gt_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::gte_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| |
| case Op::add_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::sub_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::mul_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| case Op::shl_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; |
| case Op::shr_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; |
| case Op::sra_i32: write(o, R{d}, "=", op, R{x}, Shift{immA}); break; |
| |
| case Op::eq_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::gt_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| case Op::bit_and : write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::bit_or : write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::bit_xor : write(o, R{d}, "=", op, R{x}, R{y}); break; |
| case Op::bit_clear: write(o, R{d}, "=", op, R{x}, R{y}); break; |
| |
| case Op::select: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; |
| |
| case Op::ceil: write(o, R{d}, "=", op, R{x}); break; |
| case Op::floor: write(o, R{d}, "=", op, R{x}); break; |
| case Op::to_f32: write(o, R{d}, "=", op, R{x}); break; |
| case Op::to_fp16: write(o, R{d}, "=", op, R{x}); break; |
| case Op::from_fp16: write(o, R{d}, "=", op, R{x}); break; |
| case Op::trunc: write(o, R{d}, "=", op, R{x}); break; |
| case Op::round: write(o, R{d}, "=", op, R{x}); break; |
| } |
| write(o, "\n"); |
| } |
| } |
| |
| std::vector<Instruction> eliminate_dead_code(std::vector<Instruction> program) { |
| // Determine which Instructions are live by working back from side effects. |
| std::vector<bool> live(program.size(), false); |
| for (Val id = program.size(); id--;) { |
| if (live[id] || has_side_effect(program[id].op)) { |
| live[id] = true; |
| const Instruction& inst = program[id]; |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| if (arg != NA) { live[arg] = true; } |
| } |
| } |
| } |
| |
| // Rewrite the program with only live Instructions: |
| // - remap IDs in live Instructions to what they'll be once dead Instructions are removed; |
| // - then actually remove the dead Instructions. |
| std::vector<Val> new_id(program.size(), NA); |
| for (Val id = 0, next = 0; id < (Val)program.size(); id++) { |
| if (live[id]) { |
| Instruction& inst = program[id]; |
| for (Val* arg : {&inst.x, &inst.y, &inst.z, &inst.w}) { |
| if (*arg != NA) { |
| *arg = new_id[*arg]; |
| SkASSERT(*arg != NA); |
| } |
| } |
| new_id[id] = next++; |
| } |
| } |
| auto it = std::remove_if(program.begin(), program.end(), [&](const Instruction& inst) { |
| Val id = (Val)(&inst - program.data()); |
| return !live[id]; |
| }); |
| program.erase(it, program.end()); |
| |
| return program; |
| } |
| |
| std::vector<OptimizedInstruction> finalize(const std::vector<Instruction> program) { |
| std::vector<OptimizedInstruction> optimized(program.size()); |
| for (Val id = 0; id < (Val)program.size(); id++) { |
| Instruction inst = program[id]; |
| optimized[id] = {inst.op, inst.x,inst.y,inst.z,inst.w, |
| inst.immA,inst.immB,inst.immC, |
| /*death=*/id, /*can_hoist=*/true}; |
| } |
| |
| // Each Instruction's inputs need to live at least until that Instruction issues. |
| for (Val id = 0; id < (Val)optimized.size(); id++) { |
| OptimizedInstruction& inst = optimized[id]; |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| // (We're walking in order, so this is the same as max()ing with the existing Val.) |
| if (arg != NA) { optimized[arg].death = id; } |
| } |
| } |
| |
| // Mark which values don't depend on the loop and can be hoisted. |
| for (OptimizedInstruction& inst : optimized) { |
| // Varying loads (and gathers) and stores cannot be hoisted out of the loop. |
| if (is_always_varying(inst.op)) { |
| inst.can_hoist = false; |
| } |
| |
| // If any of an instruction's inputs can't be hoisted, it can't be hoisted itself. |
| if (inst.can_hoist) { |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| if (arg != NA) { inst.can_hoist &= optimized[arg].can_hoist; } |
| } |
| } |
| } |
| |
| // Extend the lifetime of any hoisted value that's used in the loop to infinity. |
| for (OptimizedInstruction& inst : optimized) { |
| if (!inst.can_hoist /*i.e. we're in the loop, so the arguments are used-in-loop*/) { |
| for (Val arg : {inst.x, inst.y, inst.z, inst.w}) { |
| if (arg != NA && optimized[arg].can_hoist) { |
| optimized[arg].death = (Val)program.size(); |
| } |
| } |
| } |
| } |
| |
| return optimized; |
| } |
| |
| std::vector<OptimizedInstruction> Builder::optimize() const { |
| std::vector<Instruction> program = this->program(); |
| program = eliminate_dead_code(std::move(program)); |
| return finalize (std::move(program)); |
| } |
| |
| Program Builder::done(const char* debug_name, bool allow_jit) const { |
| char buf[64] = "skvm-jit-"; |
| if (!debug_name) { |
| *SkStrAppendU32(buf+9, this->hash()) = '\0'; |
| debug_name = buf; |
| } |
| |
| return {this->optimize(), fStrides, debug_name, allow_jit}; |
| } |
| |
| uint64_t Builder::hash() const { |
| uint32_t lo = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 0), |
| hi = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 1); |
| return (uint64_t)lo | (uint64_t)hi << 32; |
| } |
| |
| bool operator!=(Ptr a, Ptr b) { return a.ix != b.ix; } |
| |
| bool operator==(const Instruction& a, const Instruction& b) { |
| return a.op == b.op |
| && a.x == b.x |
| && a.y == b.y |
| && a.z == b.z |
| && a.w == b.w |
| && a.immA == b.immA |
| && a.immB == b.immB |
| && a.immC == b.immC; |
| } |
| |
| uint32_t InstructionHash::operator()(const Instruction& inst, uint32_t seed) const { |
| return SkOpts::hash(&inst, sizeof(inst), seed); |
| } |
| |
| |
| // Most instructions produce a value and return it by ID, |
| // the value-producing instruction's own index in the program vector. |
| Val Builder::push(Instruction inst) { |
| // Basic common subexpression elimination: |
| // if we've already seen this exact Instruction, use it instead of creating a new one. |
| // |
| // But we never dedup loads or stores: an intervening store could change that memory. |
| // Uniforms and gathers touch only uniform memory, so they're fine to dedup, |
| // and index is varying but doesn't touch memory, so it's fine to dedup too. |
| if (!touches_varying_memory(inst.op)) { |
| if (Val* id = fIndex.find(inst)) { |
| return *id; |
| } |
| } |
| Val id = static_cast<Val>(fProgram.size()); |
| fProgram.push_back(inst); |
| fIndex.set(inst, id); |
| return id; |
| } |
| |
| Ptr Builder::arg(int stride) { |
| int ix = (int)fStrides.size(); |
| fStrides.push_back(stride); |
| return {ix}; |
| } |
| |
| void Builder::assert_true(I32 cond, I32 debug) { |
| #ifdef SK_DEBUG |
| int imm; |
| if (this->allImm(cond.id,&imm)) { SkASSERT(imm); return; } |
| (void)push(Op::assert_true, cond.id, debug.id); |
| #endif |
| } |
| |
| void Builder::store8 (Ptr ptr, I32 val) { (void)push(Op::store8 , val.id,NA,NA,NA, ptr.ix); } |
| void Builder::store16(Ptr ptr, I32 val) { (void)push(Op::store16, val.id,NA,NA,NA, ptr.ix); } |
| void Builder::store32(Ptr ptr, I32 val) { (void)push(Op::store32, val.id,NA,NA,NA, ptr.ix); } |
| void Builder::store64(Ptr ptr, I32 lo, I32 hi) { |
| (void)push(Op::store64, lo.id,hi.id,NA,NA, ptr.ix); |
| } |
| void Builder::store128(Ptr ptr, I32 x, I32 y, I32 z, I32 w) { |
| (void)push(Op::store128, x.id,y.id,z.id,w.id, ptr.ix); |
| } |
| |
| I32 Builder::index() { return {this, push(Op::index)}; } |
| |
| I32 Builder::load8 (Ptr ptr) { return {this, push(Op::load8 , NA,NA,NA,NA, ptr.ix) }; } |
| I32 Builder::load16(Ptr ptr) { return {this, push(Op::load16, NA,NA,NA,NA, ptr.ix) }; } |
| I32 Builder::load32(Ptr ptr) { return {this, push(Op::load32, NA,NA,NA,NA, ptr.ix) }; } |
| I32 Builder::load64(Ptr ptr, int lane) { |
| return {this, push(Op::load64 , NA,NA,NA,NA, ptr.ix,lane) }; |
| } |
| I32 Builder::load128(Ptr ptr, int lane) { |
| return {this, push(Op::load128, NA,NA,NA,NA, ptr.ix,lane) }; |
| } |
| |
| I32 Builder::gather8 (UPtr ptr, int offset, I32 index) { |
| return {this, push(Op::gather8 , index.id,NA,NA,NA, ptr.ix,offset)}; |
| } |
| I32 Builder::gather16(UPtr ptr, int offset, I32 index) { |
| return {this, push(Op::gather16, index.id,NA,NA,NA, ptr.ix,offset)}; |
| } |
| I32 Builder::gather32(UPtr ptr, int offset, I32 index) { |
| return {this, push(Op::gather32, index.id,NA,NA,NA, ptr.ix,offset)}; |
| } |
| |
| I32 Builder::uniform32(UPtr ptr, int offset) { |
| return {this, push(Op::uniform32, NA,NA,NA,NA, ptr.ix, offset)}; |
| } |
| |
| // Note: this converts the array index into a byte offset for the op. |
| I32 Builder::array32 (UPtr ptr, int offset, int index) { |
| return {this, push(Op::array32, NA,NA,NA,NA, ptr.ix, offset, index * sizeof(int))}; |
| } |
| |
| I32 Builder::splat(int n) { return {this, push(Op::splat, NA,NA,NA,NA, n) }; } |
| |
| // Be careful peepholing float math! Transformations you might expect to |
| // be legal can fail in the face of NaN/Inf, e.g. 0*x is not always 0. |
| // Float peepholes must pass this equivalence test for all ~4B floats: |
| // |
| // bool equiv(float x, float y) { return (x == y) || (isnanf(x) && isnanf(y)); } |
| // |
| // unsigned bits = 0; |
| // do { |
| // float f; |
| // memcpy(&f, &bits, 4); |
| // if (!equiv(f, ...)) { |
| // abort(); |
| // } |
| // } while (++bits != 0); |
| |
| F32 Builder::add(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } |
| if (this->isImm(y.id, 0.0f)) { return x; } // x+0 == x |
| if (this->isImm(x.id, 0.0f)) { return y; } // 0+y == y |
| |
| if (fFeatures.fma) { |
| if (fProgram[x.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fma_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; |
| } |
| if (fProgram[y.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; |
| } |
| } |
| return {this, this->push(Op::add_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::sub(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } |
| if (this->isImm(y.id, 0.0f)) { return x; } // x-0 == x |
| if (fFeatures.fma) { |
| if (fProgram[x.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fms_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; |
| } |
| if (fProgram[y.id].op == Op::mul_f32) { |
| return {this, this->push(Op::fnma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; |
| } |
| } |
| return {this, this->push(Op::sub_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::mul(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } |
| if (this->isImm(y.id, 1.0f)) { return x; } // x*1 == x |
| if (this->isImm(x.id, 1.0f)) { return y; } // 1*y == y |
| return {this, this->push(Op::mul_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::fast_mul(F32 x, F32 y) { |
| if (this->isImm(x.id, 0.0f) || this->isImm(y.id, 0.0f)) { return splat(0.0f); } |
| return mul(x,y); |
| } |
| |
| F32 Builder::div(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(sk_ieee_float_divide(X,Y)); } |
| if (this->isImm(y.id, 1.0f)) { return x; } // x/1 == x |
| return {this, this->push(Op::div_f32, x.id, y.id)}; |
| } |
| |
| F32 Builder::sqrt(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat(std::sqrt(X)); } |
| return {this, this->push(Op::sqrt_f32, x.id)}; |
| } |
| |
| // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html. |
| F32 Builder::approx_log2(F32 x) { |
| // e - 127 is a fair approximation of log2(x) in its own right... |
| F32 e = mul(to_F32(pun_to_I32(x)), splat(1.0f / (1<<23))); |
| |
| // ... but using the mantissa to refine its error is _much_ better. |
| F32 m = pun_to_F32(bit_or(bit_and(pun_to_I32(x), 0x007fffff), |
| 0x3f000000)); |
| F32 approx = sub(e, 124.225514990f); |
| approx = sub(approx, mul(1.498030302f, m)); |
| approx = sub(approx, div(1.725879990f, add(0.3520887068f, m))); |
| |
| return approx; |
| } |
| |
| F32 Builder::approx_pow2(F32 x) { |
| F32 f = fract(x); |
| F32 approx = add(x, 121.274057500f); |
| approx = sub(approx, mul( 1.490129070f, f)); |
| approx = add(approx, div(27.728023300f, sub(4.84252568f, f))); |
| |
| return pun_to_F32(round(mul(1.0f * (1<<23), approx))); |
| } |
| |
| F32 Builder::approx_powf(F32 x, F32 y) { |
| // TODO: assert this instead? Sometimes x is very slightly negative. See skia:10210. |
| x = max(0.0f, x); |
| |
| auto is_x = bit_or(eq(x, 0.0f), |
| eq(x, 1.0f)); |
| return select(is_x, x, approx_pow2(mul(approx_log2(x), y))); |
| } |
| |
| // Bhaskara I's sine approximation |
| // 16x(pi - x) / (5*pi^2 - 4x(pi - x) |
| // ... divide by 4 |
| // 4x(pi - x) / 5*pi^2/4 - x(pi - x) |
| // |
| // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get |
| // radians into that range first. |
| // |
| F32 Builder::approx_sin(F32 radians) { |
| constexpr float Pi = SK_ScalarPI; |
| // x = radians mod 2pi |
| F32 x = fract(radians * (0.5f/Pi)) * (2*Pi); |
| I32 neg = x > Pi; // are we pi < x < 2pi --> need to negate result |
| x = select(neg, x - Pi, x); |
| |
| F32 pair = x * (Pi - x); |
| x = 4.0f * pair / ((5*Pi*Pi/4) - pair); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" |
| https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf |
| |
| approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 |
| |
| Some simplifications: |
| 1. tan(x) is periodic, -PI/2 < x < PI/2 |
| 2. tan(x) is odd, so tan(-x) = -tan(x) |
| 3. Our polynomial approximation is best near zero, so we use the following identity |
| tan(x) + tan(y) |
| tan(x + y) = ----------------- |
| 1 - tan(x)*tan(y) |
| tan(PI/4) = 1 |
| |
| So for x > PI/8, we do the following refactor: |
| x' = x - PI/4 |
| |
| 1 + tan(x') |
| tan(x) = ------------ |
| 1 - tan(x') |
| */ |
| F32 Builder::approx_tan(F32 x) { |
| constexpr float Pi = SK_ScalarPI; |
| // periodic between -pi/2 ... pi/2 |
| // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back |
| x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); |
| |
| I32 neg = (x < 0.0f); |
| x = select(neg, -x, x); |
| |
| // minimize total error by shifting if x > pi/8 |
| I32 use_quotient = (x > (Pi/8)); |
| x = select(use_quotient, x - (Pi/4), x); |
| |
| // 9th order poly = 4th order(x^2) * x |
| x = poly(x*x, 62/2835.0f, 17/315.0f, 2/15.0f, 1/3.0f, 1.0f) * x; |
| x = select(use_quotient, (1+x)/(1-x), x); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| // http://mathforum.org/library/drmath/view/54137.html |
| // referencing Handbook of Mathematical Functions, |
| // by Milton Abramowitz and Irene Stegun |
| F32 Builder::approx_asin(F32 x) { |
| I32 neg = (x < 0.0f); |
| x = select(neg, -x, x); |
| x = SK_ScalarPI/2 - sqrt(1-x) * poly(x, -0.0187293f, 0.0742610f, -0.2121144f, 1.5707288f); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ |
| * with 129 values of x,atan(x) for x:[0...1] |
| * This only works for 0 <= x <= 1 |
| */ |
| static F32 approx_atan_unit(F32 x) { |
| // for now we might be given NaN... let that through |
| x->assert_true((x != x) | ((x >= 0) & (x <= 1))); |
| return poly(x, 0.14130025741326729f, |
| -0.34312835980675116f, |
| -0.016172900528248768f, |
| 1.0037696976200385f, |
| -0.00014758242182738969f); |
| } |
| |
| /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| */ |
| F32 Builder::approx_atan(F32 x) { |
| I32 neg = (x < 0.0f); |
| x = select(neg, -x, x); |
| I32 flip = (x > 1.0f); |
| x = select(flip, 1/x, x); |
| x = approx_atan_unit(x); |
| x = select(flip, SK_ScalarPI/2 - x, x); |
| x = select(neg, -x, x); |
| return x; |
| } |
| |
| /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| * By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() |
| * which avoids a 2nd divide instruction if we had instead called atan(). |
| */ |
| F32 Builder::approx_atan2(F32 y0, F32 x0) { |
| |
| I32 flip = (abs(y0) > abs(x0)); |
| F32 y = select(flip, x0, y0); |
| F32 x = select(flip, y0, x0); |
| F32 arg = y/x; |
| |
| I32 neg = (arg < 0.0f); |
| arg = select(neg, -arg, arg); |
| |
| F32 r = approx_atan_unit(arg); |
| r = select(flip, SK_ScalarPI/2 - r, r); |
| r = select(neg, -r, r); |
| |
| // handle quadrant distinctions |
| r = select((y0 >= 0) & (x0 < 0), r + SK_ScalarPI, r); |
| r = select((y0 < 0) & (x0 <= 0), r - SK_ScalarPI, r); |
| // Note: we don't try to handle 0,0 or infinities (yet) |
| return r; |
| } |
| |
| F32 Builder::min(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::min(X,Y)); } |
| return {this, this->push(Op::min_f32, x.id, y.id)}; |
| } |
| F32 Builder::max(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::max(X,Y)); } |
| return {this, this->push(Op::max_f32, x.id, y.id)}; |
| } |
| |
| SK_ATTRIBUTE(no_sanitize("signed-integer-overflow")) |
| I32 Builder::add(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } |
| if (this->isImm(x.id, 0)) { return y; } |
| if (this->isImm(y.id, 0)) { return x; } |
| return {this, this->push(Op::add_i32, x.id, y.id)}; |
| } |
| SK_ATTRIBUTE(no_sanitize("signed-integer-overflow")) |
| I32 Builder::sub(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } |
| if (this->isImm(y.id, 0)) { return x; } |
| return {this, this->push(Op::sub_i32, x.id, y.id)}; |
| } |
| SK_ATTRIBUTE(no_sanitize("signed-integer-overflow")) |
| I32 Builder::mul(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } |
| if (this->isImm(x.id, 0)) { return splat(0); } |
| if (this->isImm(y.id, 0)) { return splat(0); } |
| if (this->isImm(x.id, 1)) { return y; } |
| if (this->isImm(y.id, 1)) { return x; } |
| return {this, this->push(Op::mul_i32, x.id, y.id)}; |
| } |
| |
| SK_ATTRIBUTE(no_sanitize("shift")) |
| I32 Builder::shl(I32 x, int bits) { |
| if (bits == 0) { return x; } |
| if (int X; this->allImm(x.id,&X)) { return splat(X << bits); } |
| return {this, this->push(Op::shl_i32, x.id,NA,NA,NA, bits)}; |
| } |
| I32 Builder::shr(I32 x, int bits) { |
| if (bits == 0) { return x; } |
| if (int X; this->allImm(x.id,&X)) { return splat(unsigned(X) >> bits); } |
| return {this, this->push(Op::shr_i32, x.id,NA,NA,NA, bits)}; |
| } |
| I32 Builder::sra(I32 x, int bits) { |
| if (bits == 0) { return x; } |
| if (int X; this->allImm(x.id,&X)) { return splat(X >> bits); } |
| return {this, this->push(Op::sra_i32, x.id,NA,NA,NA, bits)}; |
| } |
| |
| I32 Builder:: eq(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } |
| return {this, this->push(Op::eq_f32, x.id, y.id)}; |
| } |
| I32 Builder::neq(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } |
| return {this, this->push(Op::neq_f32, x.id, y.id)}; |
| } |
| I32 Builder::lt(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y> X ? ~0 : 0); } |
| return {this, this->push(Op::gt_f32, y.id, x.id)}; |
| } |
| I32 Builder::lte(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y>=X ? ~0 : 0); } |
| return {this, this->push(Op::gte_f32, y.id, x.id)}; |
| } |
| I32 Builder::gt(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } |
| return {this, this->push(Op::gt_f32, x.id, y.id)}; |
| } |
| I32 Builder::gte(F32 x, F32 y) { |
| if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } |
| return {this, this->push(Op::gte_f32, x.id, y.id)}; |
| } |
| |
| I32 Builder:: eq(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(~0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } |
| return {this, this->push(Op:: eq_i32, x.id, y.id)}; |
| } |
| I32 Builder::neq(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } |
| return ~(x == y); |
| } |
| I32 Builder:: gt(I32 x, I32 y) { |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } |
| return {this, this->push(Op:: gt_i32, x.id, y.id)}; |
| } |
| I32 Builder::gte(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(~0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } |
| return ~(x < y); |
| } |
| I32 Builder:: lt(I32 x, I32 y) { return y>x; } |
| I32 Builder::lte(I32 x, I32 y) { return y>=x; } |
| |
| I32 Builder::bit_and(I32 x, I32 y) { |
| if (x.id == y.id) { return x; } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&Y); } |
| if (this->isImm(y.id, 0)) { return splat(0); } // (x & false) == false |
| if (this->isImm(x.id, 0)) { return splat(0); } // (false & y) == false |
| if (this->isImm(y.id,~0)) { return x; } // (x & true) == x |
| if (this->isImm(x.id,~0)) { return y; } // (true & y) == y |
| return {this, this->push(Op::bit_and, x.id, y.id)}; |
| } |
| I32 Builder::bit_or(I32 x, I32 y) { |
| if (x.id == y.id) { return x; } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|Y); } |
| if (this->isImm(y.id, 0)) { return x; } // (x | false) == x |
| if (this->isImm(x.id, 0)) { return y; } // (false | y) == y |
| if (this->isImm(y.id,~0)) { return splat(~0); } // (x | true) == true |
| if (this->isImm(x.id,~0)) { return splat(~0); } // (true | y) == true |
| return {this, this->push(Op::bit_or, x.id, y.id)}; |
| } |
| I32 Builder::bit_xor(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X^Y); } |
| if (this->isImm(y.id, 0)) { return x; } // (x ^ false) == x |
| if (this->isImm(x.id, 0)) { return y; } // (false ^ y) == y |
| return {this, this->push(Op::bit_xor, x.id, y.id)}; |
| } |
| |
| I32 Builder::bit_clear(I32 x, I32 y) { |
| if (x.id == y.id) { return splat(0); } |
| if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&~Y); } |
| if (this->isImm(y.id, 0)) { return x; } // (x & ~false) == x |
| if (this->isImm(y.id,~0)) { return splat(0); } // (x & ~true) == false |
| if (this->isImm(x.id, 0)) { return splat(0); } // (false & ~y) == false |
| return {this, this->push(Op::bit_clear, x.id, y.id)}; |
| } |
| |
| I32 Builder::select(I32 x, I32 y, I32 z) { |
| if (y.id == z.id) { return y; } |
| if (int X,Y,Z; this->allImm(x.id,&X, y.id,&Y, z.id,&Z)) { return splat(X?Y:Z); } |
| if (this->isImm(x.id,~0)) { return y; } // true ? y : z == y |
| if (this->isImm(x.id, 0)) { return z; } // false ? y : z == z |
| if (this->isImm(y.id, 0)) { return bit_clear(z,x); } // x ? 0 : z == ~x&z |
| if (this->isImm(z.id, 0)) { return bit_and (y,x); } // x ? y : 0 == x&y |
| return {this, this->push(Op::select, x.id, y.id, z.id)}; |
| } |
| |
| I32 Builder::extract(I32 x, int bits, I32 z) { |
| if (unsigned Z; this->allImm(z.id,&Z) && (~0u>>bits) == Z) { return shr(x, bits); } |
| return bit_and(z, shr(x, bits)); |
| } |
| |
| I32 Builder::pack(I32 x, I32 y, int bits) { |
| return bit_or(x, shl(y, bits)); |
| } |
| |
| F32 Builder::ceil(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat(ceilf(X)); } |
| return {this, this->push(Op::ceil, x.id)}; |
| } |
| F32 Builder::floor(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat(floorf(X)); } |
| return {this, this->push(Op::floor, x.id)}; |
| } |
| F32 Builder::to_F32(I32 x) { |
| if (int X; this->allImm(x.id,&X)) { return splat((float)X); } |
| return {this, this->push(Op::to_f32, x.id)}; |
| } |
| I32 Builder::trunc(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat((int)X); } |
| return {this, this->push(Op::trunc, x.id)}; |
| } |
| I32 Builder::round(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat((int)lrintf(X)); } |
| return {this, this->push(Op::round, x.id)}; |
| } |
| |
| I32 Builder::to_fp16(F32 x) { |
| if (float X; this->allImm(x.id,&X)) { return splat((int)SkFloatToHalf(X)); } |
| return {this, this->push(Op::to_fp16, x.id)}; |
| } |
| F32 Builder::from_fp16(I32 x) { |
| if (int X; this->allImm(x.id,&X)) { return splat(SkHalfToFloat(X)); } |
| return {this, this->push(Op::from_fp16, x.id)}; |
| } |
| |
| F32 Builder::from_unorm(int bits, I32 x) { |
| F32 limit = splat(1 / ((1<<bits)-1.0f)); |
| return mul(to_F32(x), limit); |
| } |
| I32 Builder::to_unorm(int bits, F32 x) { |
| F32 limit = splat((1<<bits)-1.0f); |
| return round(mul(x, limit)); |
| } |
| |
| PixelFormat SkColorType_to_PixelFormat(SkColorType ct) { |
| auto UNORM = PixelFormat::UNORM, |
| SRGB = PixelFormat::SRGB, |
| FLOAT = PixelFormat::FLOAT; |
| switch (ct) { |
| case kUnknown_SkColorType: break; |
| |
| case kRGBA_F32_SkColorType: return {FLOAT,32,32,32,32, 0,32,64,96}; |
| |
| case kRGBA_F16Norm_SkColorType: return {FLOAT,16,16,16,16, 0,16,32,48}; |
| case kRGBA_F16_SkColorType: return {FLOAT,16,16,16,16, 0,16,32,48}; |
| case kR16G16B16A16_unorm_SkColorType: return {UNORM,16,16,16,16, 0,16,32,48}; |
| |
| case kA16_float_SkColorType: return {FLOAT, 0, 0,0,16, 0, 0,0,0}; |
| case kR16G16_float_SkColorType: return {FLOAT, 16,16,0, 0, 0,16,0,0}; |
| |
| case kAlpha_8_SkColorType: return {UNORM, 0,0,0,8, 0,0,0,0}; |
| case kGray_8_SkColorType: return {UNORM, 8,8,8,0, 0,0,0,0}; // Subtle. |
| |
| case kRGB_565_SkColorType: return {UNORM, 5,6,5,0, 11,5,0,0}; // (BGR) |
| case kARGB_4444_SkColorType: return {UNORM, 4,4,4,4, 12,8,4,0}; // (ABGR) |
| |
| case kRGBA_8888_SkColorType: return {UNORM, 8,8,8,8, 0,8,16,24}; |
| case kRGB_888x_SkColorType: return {UNORM, 8,8,8,0, 0,8,16,32}; // 32-bit |
| case kBGRA_8888_SkColorType: return {UNORM, 8,8,8,8, 16,8, 0,24}; |
| case kSRGBA_8888_SkColorType: return { SRGB, 8,8,8,8, 0,8,16,24}; |
| |
| case kRGBA_1010102_SkColorType: return {UNORM, 10,10,10,2, 0,10,20,30}; |
| case kBGRA_1010102_SkColorType: return {UNORM, 10,10,10,2, 20,10, 0,30}; |
| case kRGB_101010x_SkColorType: return {UNORM, 10,10,10,0, 0,10,20, 0}; |
| case kBGR_101010x_SkColorType: return {UNORM, 10,10,10,0, 20,10, 0, 0}; |
| |
| case kR8G8_unorm_SkColorType: return {UNORM, 8, 8,0, 0, 0, 8,0,0}; |
| case kR16G16_unorm_SkColorType: return {UNORM, 16,16,0, 0, 0,16,0,0}; |
| case kA16_unorm_SkColorType: return {UNORM, 0, 0,0,16, 0, 0,0,0}; |
| } |
| SkASSERT(false); |
| return {UNORM, 0,0,0,0, 0,0,0,0}; |
| } |
| |
| static int byte_size(PixelFormat f) { |
| // What's the highest bit we read? |
| int bits = std::max(f.r_bits + f.r_shift, |
| std::max(f.g_bits + f.g_shift, |
| std::max(f.b_bits + f.b_shift, |
| f.a_bits + f.a_shift))); |
| // Round up to bytes. |
| return (bits + 7) / 8; |
| } |
| |
| static Color unpack(PixelFormat f, I32 x) { |
| SkASSERT(byte_size(f) <= 4); |
| |
| auto from_srgb = [](int bits, I32 channel) -> F32 { |
| const skcms_TransferFunction* tf = skcms_sRGB_TransferFunction(); |
| F32 v = from_unorm(bits, channel); |
| return sk_program_transfer_fn(v, sRGBish_TF, |
| v->splat(tf->g), |
| v->splat(tf->a), |
| v->splat(tf->b), |
| v->splat(tf->c), |
| v->splat(tf->d), |
| v->splat(tf->e), |
| v->splat(tf->f)); |
| }; |
| |
| auto unpack_rgb = [=](int bits, int shift) -> F32 { |
| I32 channel = extract(x, shift, (1<<bits)-1); |
| switch (f.encoding) { |
| case PixelFormat::UNORM: return from_unorm(bits, channel); |
| case PixelFormat:: SRGB: return from_srgb (bits, channel); |
| case PixelFormat::FLOAT: return from_fp16 ( channel); |
| } |
| SkUNREACHABLE; |
| }; |
| auto unpack_alpha = [=](int bits, int shift) -> F32 { |
| I32 channel = extract(x, shift, (1<<bits)-1); |
| switch (f.encoding) { |
| case PixelFormat::UNORM: |
| case PixelFormat:: SRGB: return from_unorm(bits, channel); |
| case PixelFormat::FLOAT: return from_fp16 ( channel); |
| } |
| SkUNREACHABLE; |
| }; |
| return { |
| f.r_bits ? unpack_rgb (f.r_bits, f.r_shift) : x->splat(0.0f), |
| f.g_bits ? unpack_rgb (f.g_bits, f.g_shift) : x->splat(0.0f), |
| f.b_bits ? unpack_rgb (f.b_bits, f.b_shift) : x->splat(0.0f), |
| f.a_bits ? unpack_alpha(f.a_bits, f.a_shift) : x->splat(1.0f), |
| }; |
| } |
| |
| static void split_disjoint_8byte_format(PixelFormat f, PixelFormat* lo, PixelFormat* hi) { |
| SkASSERT(byte_size(f) == 8); |
| // We assume some of the channels are in the low 32 bits, some in the high 32 bits. |
| // The assert on byte_size(lo) will trigger if this assumption is violated. |
| *lo = f; |
| if (f.r_shift >= 32) { lo->r_bits = 0; lo->r_shift = 32; } |
| if (f.g_shift >= 32) { lo->g_bits = 0; lo->g_shift = 32; } |
| if (f.b_shift >= 32) { lo->b_bits = 0; lo->b_shift = 32; } |
| if (f.a_shift >= 32) { lo->a_bits = 0; lo->a_shift = 32; } |
| SkASSERT(byte_size(*lo) == 4); |
| |
| *hi = f; |
| if (f.r_shift < 32) { hi->r_bits = 0; hi->r_shift = 32; } else { hi->r_shift -= 32; } |
| if (f.g_shift < 32) { hi->g_bits = 0; hi->g_shift = 32; } else { hi->g_shift -= 32; } |
| if (f.b_shift < 32) { hi->b_bits = 0; hi->b_shift = 32; } else { hi->b_shift -= 32; } |
| if (f.a_shift < 32) { hi->a_bits = 0; hi->a_shift = 32; } else { hi->a_shift -= 32; } |
| SkASSERT(byte_size(*hi) == 4); |
| } |
| |
| // The only 16-byte format we support today is RGBA F32, |
| // though, TODO, we could generalize that to any swizzle, and to allow UNORM too. |
| static void assert_16byte_is_rgba_f32(PixelFormat f) { |
| #if defined(SK_DEBUG) |
| SkASSERT(byte_size(f) == 16); |
| PixelFormat rgba_f32 = SkColorType_to_PixelFormat(kRGBA_F32_SkColorType); |
| |
| SkASSERT(f.encoding == rgba_f32.encoding); |
| |
| SkASSERT(f.r_bits == rgba_f32.r_bits); |
| SkASSERT(f.g_bits == rgba_f32.g_bits); |
| SkASSERT(f.b_bits == rgba_f32.b_bits); |
| SkASSERT(f.a_bits == rgba_f32.a_bits); |
| |
| SkASSERT(f.r_shift == rgba_f32.r_shift); |
| SkASSERT(f.g_shift == rgba_f32.g_shift); |
| SkASSERT(f.b_shift == rgba_f32.b_shift); |
| SkASSERT(f.a_shift == rgba_f32.a_shift); |
| #endif |
| } |
| |
| Color Builder::load(PixelFormat f, Ptr ptr) { |
| switch (byte_size(f)) { |
| case 1: return unpack(f, load8 (ptr)); |
| case 2: return unpack(f, load16(ptr)); |
| case 4: return unpack(f, load32(ptr)); |
| case 8: { |
| PixelFormat lo,hi; |
| split_disjoint_8byte_format(f, &lo,&hi); |
| Color l = unpack(lo, load64(ptr, 0)), |
| h = unpack(hi, load64(ptr, 1)); |
| return { |
| lo.r_bits ? l.r : h.r, |
| lo.g_bits ? l.g : h.g, |
| lo.b_bits ? l.b : h.b, |
| lo.a_bits ? l.a : h.a, |
| }; |
| } |
| case 16: { |
| assert_16byte_is_rgba_f32(f); |
| return { |
| pun_to_F32(load128(ptr, 0)), |
| pun_to_F32(load128(ptr, 1)), |
| pun_to_F32(load128(ptr, 2)), |
| pun_to_F32(load128(ptr, 3)), |
| }; |
| } |
| default: SkUNREACHABLE; |
| } |
| return {}; |
| } |
| |
| Color Builder::gather(PixelFormat f, UPtr ptr, int offset, I32 index) { |
| switch (byte_size(f)) { |
| case 1: return unpack(f, gather8 (ptr, offset, index)); |
| case 2: return unpack(f, gather16(ptr, offset, index)); |
| case 4: return unpack(f, gather32(ptr, offset, index)); |
| case 8: { |
| PixelFormat lo,hi; |
| split_disjoint_8byte_format(f, &lo,&hi); |
| Color l = unpack(lo, gather32(ptr, offset, (index<<1)+0)), |
| h = unpack(hi, gather32(ptr, offset, (index<<1)+1)); |
| return { |
| lo.r_bits ? l.r : h.r, |
| lo.g_bits ? l.g : h.g, |
| lo.b_bits ? l.b : h.b, |
| lo.a_bits ? l.a : h.a, |
| }; |
| } |
| case 16: { |
| assert_16byte_is_rgba_f32(f); |
| return { |
| gatherF(ptr, offset, (index<<2)+0), |
| gatherF(ptr, offset, (index<<2)+1), |
| gatherF(ptr, offset, (index<<2)+2), |
| gatherF(ptr, offset, (index<<2)+3), |
| }; |
| } |
| default: SkUNREACHABLE; |
| } |
| return {}; |
| } |
| |
| static I32 pack32(PixelFormat f, Color c) { |
| SkASSERT(byte_size(f) <= 4); |
| |
| auto to_srgb = [](int bits, F32 v) { |
| const skcms_TransferFunction* tf = skcms_sRGB_Inverse_TransferFunction(); |
| return to_unorm(bits, sk_program_transfer_fn(v, sRGBish_TF, |
| v->splat(tf->g), |
| v->splat(tf->a), |
| v->splat(tf->b), |
| v->splat(tf->c), |
| v->splat(tf->d), |
| v->splat(tf->e), |
| v->splat(tf->f))); |
| }; |
| |
| I32 packed = c->splat(0); |
| auto pack_rgb = [&](F32 channel, int bits, int shift) { |
| I32 encoded; |
| switch (f.encoding) { |
| case PixelFormat::UNORM: encoded = to_unorm(bits, channel); break; |
| case PixelFormat:: SRGB: encoded = to_srgb (bits, channel); break; |
| case PixelFormat::FLOAT: encoded = to_fp16 ( channel); break; |
| } |
| packed = pack(packed, encoded, shift); |
| }; |
| auto pack_alpha = [&](F32 channel, int bits, int shift) { |
| I32 encoded; |
| switch (f.encoding) { |
| case PixelFormat::UNORM: |
| case PixelFormat:: SRGB: encoded = to_unorm(bits, channel); break; |
| case PixelFormat::FLOAT: encoded = to_fp16 ( channel); break; |
| } |
| packed = pack(packed, encoded, shift); |
| }; |
| if (f.r_bits) { pack_rgb (c.r, f.r_bits, f.r_shift); } |
| if (f.g_bits) { pack_rgb (c.g, f.g_bits, f.g_shift); } |
| if (f.b_bits) { pack_rgb (c.b, f.b_bits, f.b_shift); } |
| if (f.a_bits) { pack_alpha(c.a, f.a_bits, f.a_shift); } |
| return packed; |
| } |
| |
| void Builder::store(PixelFormat f, Ptr ptr, Color c) { |
| // Detect a grayscale PixelFormat: r,g,b bit counts and shifts all equal. |
| if (f.r_bits == f.g_bits && f.g_bits == f.b_bits && |
| f.r_shift == f.g_shift && f.g_shift == f.b_shift) { |
| |
| // TODO: pull these coefficients from an SkColorSpace? This is sRGB luma/luminance. |
| c.r = c.r * 0.2126f |
| + c.g * 0.7152f |
| + c.b * 0.0722f; |
| f.g_bits = f.b_bits = 0; |
| } |
| |
| switch (byte_size(f)) { |
| case 1: store8 (ptr, pack32(f,c)); break; |
| case 2: store16(ptr, pack32(f,c)); break; |
| case 4: store32(ptr, pack32(f,c)); break; |
| case 8: { |
| PixelFormat lo,hi; |
| split_disjoint_8byte_format(f, &lo,&hi); |
| store64(ptr, pack32(lo,c) |
| , pack32(hi,c)); |
| break; |
| } |
| case 16: { |
| assert_16byte_is_rgba_f32(f); |
| store128(ptr, pun_to_I32(c.r), pun_to_I32(c.g), pun_to_I32(c.b), pun_to_I32(c.a)); |
| break; |
| } |
| default: SkUNREACHABLE; |
| } |
| } |
| |
| void Builder::unpremul(F32* r, F32* g, F32* b, F32 a) { |
| skvm::F32 invA = 1.0f / a, |
| inf = pun_to_F32(splat(0x7f800000)); |
| // If a is 0, so are *r,*g,*b, so set invA to 0 to avoid 0*inf=NaN (instead 0*0 = 0). |
| invA = select(invA < inf, invA |
| , 0.0f); |
| *r *= invA; |
| *g *= invA; |
| *b *= invA; |
| } |
| |
| void Builder::premul(F32* r, F32* g, F32* b, F32 a) { |
| *r *= a; |
| *g *= a; |
| *b *= a; |
| } |
| |
| Color Builder::uniformColor(SkColor4f color, Uniforms* uniforms) { |
| auto [r,g,b,a] = color; |
| return { |
| uniformF(uniforms->pushF(r)), |
| uniformF(uniforms->pushF(g)), |
| uniformF(uniforms->pushF(b)), |
| uniformF(uniforms->pushF(a)), |
| }; |
| } |
| |
| F32 Builder::lerp(F32 lo, F32 hi, F32 t) { |
| if (this->isImm(t.id, 0.0f)) { return lo; } |
| if (this->isImm(t.id, 1.0f)) { return hi; } |
| return mad(sub(hi, lo), t, lo); |
| } |
| |
| Color Builder::lerp(Color lo, Color hi, F32 t) { |
| return { |
| lerp(lo.r, hi.r, t), |
| lerp(lo.g, hi.g, t), |
| lerp(lo.b, hi.b, t), |
| lerp(lo.a, hi.a, t), |
| }; |
| } |
| |
| HSLA Builder::to_hsla(Color c) { |
| F32 mx = max(max(c.r,c.g),c.b), |
| mn = min(min(c.r,c.g),c.b), |
| d = mx - mn, |
| invd = 1.0f / d, |
| g_lt_b = select(c.g < c.b, splat(6.0f) |
| , splat(0.0f)); |
| |
| F32 h = (1/6.0f) * select(mx == mn, 0.0f, |
| select(mx == c.r, invd * (c.g - c.b) + g_lt_b, |
| select(mx == c.g, invd * (c.b - c.r) + 2.0f |
| , invd * (c.r - c.g) + 4.0f))); |
| |
| F32 sum = mx + mn, |
| l = sum * 0.5f, |
| s = select(mx == mn, 0.0f |
| , d / select(l > 0.5f, 2.0f - sum |
| , sum)); |
| return {h, s, l, c.a}; |
| } |
| |
| Color Builder::to_rgba(HSLA c) { |
| // See GrRGBToHSLFilterEffect.fp |
| |
| auto [h,s,l,a] = c; |
| F32 x = s * (1.0f - abs(l + l - 1.0f)); |
| |
| auto hue_to_rgb = [&,l=l](auto hue) { |
| auto q = abs(6.0f * fract(hue) - 3.0f) - 1.0f; |
| return x * (clamp01(q) - 0.5f) + l; |
| }; |
| |
| return { |
| hue_to_rgb(h + 0/3.0f), |
| hue_to_rgb(h + 2/3.0f), |
| hue_to_rgb(h + 1/3.0f), |
| c.a, |
| }; |
| } |
| |
| // We're basing our implementation of non-separable blend modes on |
| // https://www.w3.org/TR/compositing-1/#blendingnonseparable. |
| // and |
| // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf |
| // They're equivalent, but ES' math has been better simplified. |
| // |
| // Anything extra we add beyond that is to make the math work with premul inputs. |
| |
| static skvm::F32 saturation(skvm::F32 r, skvm::F32 g, skvm::F32 b) { |
| return max(r, max(g, b)) |
| - min(r, min(g, b)); |
| } |
| |
| static skvm::F32 luminance(skvm::F32 r, skvm::F32 g, skvm::F32 b) { |
| return r*0.30f + g*0.59f + b*0.11f; |
| } |
| |
| static void set_sat(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 s) { |
| F32 mn = min(*r, min(*g, *b)), |
| mx = max(*r, max(*g, *b)), |
| sat = mx - mn; |
| |
| // Map min channel to 0, max channel to s, and scale the middle proportionally. |
| auto scale = [&](skvm::F32 c) { |
| auto scaled = ((c - mn) * s) / sat; |
| return select(is_finite(scaled), scaled, 0.0f); |
| }; |
| *r = scale(*r); |
| *g = scale(*g); |
| *b = scale(*b); |
| } |
| |
| static void set_lum(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 lu) { |
| auto diff = lu - luminance(*r, *g, *b); |
| *r += diff; |
| *g += diff; |
| *b += diff; |
| } |
| |
| static void clip_color(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 a) { |
| F32 mn = min(*r, min(*g, *b)), |
| mx = max(*r, max(*g, *b)), |
| lu = luminance(*r, *g, *b); |
| |
| auto clip = [&](auto c) { |
| c = select(mn >= 0, c |
| , lu + ((c-lu)*( lu)) / (lu-mn)); |
| c = select(mx > a, lu + ((c-lu)*(a-lu)) / (mx-lu) |
| , c); |
| return clamp01(c); // May be a little negative, or worse, NaN. |
| }; |
| *r = clip(*r); |
| *g = clip(*g); |
| *b = clip(*b); |
| } |
| |
| Color Builder::blend(SkBlendMode mode, Color src, Color dst) { |
| auto mma = [](skvm::F32 x, skvm::F32 y, skvm::F32 z, skvm::F32 w) { |
| return x*y + z*w; |
| }; |
| |
| auto two = [](skvm::F32 x) { return x+x; }; |
| |
| auto apply_rgba = [&](auto fn) { |
| return Color { |
| fn(src.r, dst.r), |
| fn(src.g, dst.g), |
| fn(src.b, dst.b), |
| fn(src.a, dst.a), |
| }; |
| }; |
| |
| auto apply_rgb_srcover_a = [&](auto fn) { |
| return Color { |
| fn(src.r, dst.r), |
| fn(src.g, dst.g), |
| fn(src.b, dst.b), |
| mad(dst.a, 1-src.a, src.a), // srcover for alpha |
| }; |
| }; |
| |
| auto non_sep = [&](auto R, auto G, auto B) { |
| return Color{ |
| R + mma(src.r, 1-dst.a, dst.r, 1-src.a), |
| G + mma(src.g, 1-dst.a, dst.g, 1-src.a), |
| B + mma(src.b, 1-dst.a, dst.b, 1-src.a), |
| mad(dst.a, 1-src.a, src.a), // srcover for alpha |
| }; |
| }; |
| |
| switch (mode) { |
| default: |
| SkASSERT(false); |
| [[fallthrough]]; /*but also, for safety, fallthrough*/ |
| |
| case SkBlendMode::kClear: return { splat(0.0f), splat(0.0f), splat(0.0f), splat(0.0f) }; |
| |
| case SkBlendMode::kSrc: return src; |
| case SkBlendMode::kDst: return dst; |
| |
| case SkBlendMode::kDstOver: std::swap(src, dst); [[fallthrough]]; |
| case SkBlendMode::kSrcOver: |
| return apply_rgba([&](auto s, auto d) { |
| return mad(d,1-src.a, s); |
| }); |
| |
| case SkBlendMode::kDstIn: std::swap(src, dst); [[fallthrough]]; |
| case SkBlendMode::kSrcIn: |
| return apply_rgba([&](auto s, auto d) { |
| return s * dst.a; |
| }); |
| |
| case SkBlendMode::kDstOut: std::swap(src, dst); [[fallthrough]]; |
| |
| case SkBlendMode::kSrcOut: |
| return apply_rgba([&](auto s, auto d) { |
| return s * (1-dst.a); |
| }); |
| |
| case SkBlendMode::kDstATop: std::swap(src, dst); [[fallthrough]]; |
| case SkBlendMode::kSrcATop: |
| return apply_rgba([&](auto s, auto d) { |
| return mma(s, dst.a, d, 1-src.a); |
| }); |
| |
| case SkBlendMode::kXor: |
| return apply_rgba([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a); |
| }); |
| |
| case SkBlendMode::kPlus: |
| return apply_rgba([&](auto s, auto d) { |
| return min(s+d, 1.0f); |
| }); |
| |
| case SkBlendMode::kModulate: |
| return apply_rgba([&](auto s, auto d) { |
| return s * d; |
| }); |
| |
| case SkBlendMode::kScreen: |
| // (s+d)-(s*d) gave us trouble with our "r,g,b <= after blending" asserts. |
| // It's kind of plausible that s + (d - sd) keeps more precision? |
| return apply_rgba([&](auto s, auto d) { |
| return s + (d - s*d); |
| }); |
| |
| case SkBlendMode::kDarken: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - max(s * dst.a, |
| d * src.a)); |
| }); |
| |
| case SkBlendMode::kLighten: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - min(s * dst.a, |
| d * src.a)); |
| }); |
| |
| case SkBlendMode::kDifference: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - two(min(s * dst.a, |
| d * src.a))); |
| }); |
| |
| case SkBlendMode::kExclusion: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return s + (d - two(s * d)); |
| }); |
| |
| case SkBlendMode::kColorBurn: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| auto mn = min(dst.a, |
| src.a * (dst.a - d) / s), |
| burn = src.a * (dst.a - mn) + mma(s, 1-dst.a, d, 1-src.a); |
| return select(d == dst.a , s * (1-dst.a) + d, |
| select(is_finite(burn), burn |
| , d * (1-src.a) + s)); |
| }); |
| |
| case SkBlendMode::kColorDodge: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| auto dodge = src.a * min(dst.a, |
| d * src.a / (src.a - s)) |
| + mma(s, 1-dst.a, d, 1-src.a); |
| return select(d == 0.0f , s * (1-dst.a) + d, |
| select(is_finite(dodge), dodge |
| , d * (1-src.a) + s)); |
| }); |
| |
| case SkBlendMode::kHardLight: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a) + |
| select(two(s) <= src.a, |
| two(s * d), |
| src.a * dst.a - two((dst.a - d) * (src.a - s))); |
| }); |
| |
| case SkBlendMode::kOverlay: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a) + |
| select(two(d) <= dst.a, |
| two(s * d), |
| src.a * dst.a - two((dst.a - d) * (src.a - s))); |
| }); |
| |
| case SkBlendMode::kMultiply: |
| return apply_rgba([&](auto s, auto d) { |
| return mma(s, 1-dst.a, d, 1-src.a) + s * d; |
| }); |
| |
| case SkBlendMode::kSoftLight: |
| return apply_rgb_srcover_a([&](auto s, auto d) { |
| auto m = select(dst.a > 0.0f, d / dst.a |
| , 0.0f), |
| s2 = two(s), |
| m4 = 4*m; |
| |
| // The logic forks three ways: |
| // 1. dark src? |
| // 2. light src, dark dst? |
| // 3. light src, light dst? |
| |
| // Used in case 1 |
| auto darkSrc = d * ((s2-src.a) * (1-m) + src.a), |
| // Used in case 2 |
| darkDst = (m4 * m4 + m4) * (m-1) + 7*m, |
| // Used in case 3. |
| liteDst = sqrt(m) - m, |
| // Used in 2 or 3? |
| liteSrc = dst.a * (s2 - src.a) * select(4*d <= dst.a, darkDst |
| , liteDst) |
| + d * src.a; |
| return s * (1-dst.a) + d * (1-src.a) + select(s2 <= src.a, darkSrc |
| , liteSrc); |
| }); |
| |
| case SkBlendMode::kHue: { |
| skvm::F32 R = src.r * src.a, |
| G = src.g * src.a, |
| B = src.b * src.a; |
| |
| set_sat (&R, &G, &B, src.a * saturation(dst.r, dst.g, dst.b)); |
| set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); |
| clip_color(&R, &G, &B, src.a * dst.a); |
| |
| return non_sep(R, G, B); |
| } |
| |
| case SkBlendMode::kSaturation: { |
| skvm::F32 R = dst.r * src.a, |
| G = dst.g * src.a, |
| B = dst.b * src.a; |
| |
| set_sat (&R, &G, &B, dst.a * saturation(src.r, src.g, src.b)); |
| set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); |
| clip_color(&R, &G, &B, src.a * dst.a); |
| |
| return non_sep(R, G, B); |
| } |
| |
| case SkBlendMode::kColor: { |
| skvm::F32 R = src.r * dst.a, |
| G = src.g * dst.a, |
| B = src.b * dst.a; |
| |
| set_lum (&R, &G, &B, src.a * luminance(dst.r, dst.g, dst.b)); |
| clip_color(&R, &G, &B, src.a * dst.a); |
| |
| return non_sep(R, G, B); |
| } |
| |
| case SkBlendMode::kLuminosity: { |
| skvm::F32 R = dst.r * src.a, |
| G = dst.g * src.a, |
| B = dst.b * src.a; |
| |
| set_lum (&R, &G, &B, dst.a * luminance(src.r, src.g, src.b)); |
| clip_color(&R, &G, &B, dst.a * src.a); |
| |
| return non_sep(R, G, B); |
| } |
| } |
| } |
| |
| // ~~~~ Program::eval() and co. ~~~~ // |
| |
| // Handy references for x86-64 instruction encoding: |
| // https://wiki.osdev.org/X86-64_Instruction_Encoding |
| // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm |
| // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x86.htm |
| // http://ref.x86asm.net/coder64.html |
| |
| // Used for ModRM / immediate instruction encoding. |
| static uint8_t _233(int a, int b, int c) { |
| return (a & 3) << 6 |
| | (b & 7) << 3 |
| | (c & 7) << 0; |
| } |
| |
| // ModRM byte encodes the arguments of an opcode. |
| enum class Mod { Indirect, OneByteImm, FourByteImm, Direct }; |
| static uint8_t mod_rm(Mod mod, int reg, int rm) { |
| return _233((int)mod, reg, rm); |
| } |
| |
| static Mod mod(int imm) { |
| if (imm == 0) { return Mod::Indirect; } |
| if (SkTFitsIn<int8_t>(imm)) { return Mod::OneByteImm; } |
| return Mod::FourByteImm; |
| } |
| |
| static int imm_bytes(Mod mod) { |
| switch (mod) { |
| case Mod::Indirect: return 0; |
| case Mod::OneByteImm: return 1; |
| case Mod::FourByteImm: return 4; |
| case Mod::Direct: SkUNREACHABLE; |
| } |
| SkUNREACHABLE; |
| } |
| |
| // SIB byte encodes a memory address, base + (index * scale). |
| static uint8_t sib(Assembler::Scale scale, int index, int base) { |
| return _233((int)scale, index, base); |
| } |
| |
| // The REX prefix is used to extend most old 32-bit instructions to 64-bit. |
| static uint8_t rex(bool W, // If set, operation is 64-bit, otherwise default, usually 32-bit. |
| bool R, // Extra top bit to select ModRM reg, registers 8-15. |
| bool X, // Extra top bit for SIB index register. |
| bool B) { // Extra top bit for SIB base or ModRM rm register. |
| return 0b01000000 // Fixed 0100 for top four bits. |
| | (W << 3) |
| | (R << 2) |
| | (X << 1) |
| | (B << 0); |
| } |
| |
| |
| // The VEX prefix extends SSE operations to AVX. Used generally, even with XMM. |
| struct VEX { |
| int len; |
| uint8_t bytes[3]; |
| }; |
| |
| static VEX vex(bool WE, // Like REX W for int operations, or opcode extension for float? |
| bool R, // Same as REX R. Pass high bit of dst register, dst>>3. |
| bool X, // Same as REX X. |
| bool B, // Same as REX B. Pass y>>3 for 3-arg ops, x>>3 for 2-arg. |
| int map, // SSE opcode map selector: 0x0f, 0x380f, 0x3a0f. |
| int vvvv, // 4-bit second operand register. Pass our x for 3-arg ops. |
| bool L, // Set for 256-bit ymm operations, off for 128-bit xmm. |
| int pp) { // SSE mandatory prefix: 0x66, 0xf3, 0xf2, else none. |
| |
| // Pack x86 opcode map selector to 5-bit VEX encoding. |
| map = [map]{ |
| switch (map) { |
| case 0x0f: return 0b00001; |
| case 0x380f: return 0b00010; |
| case 0x3a0f: return 0b00011; |
| // Several more cases only used by XOP / TBM. |
| } |
| SkUNREACHABLE; |
| }(); |
| |
| // Pack mandatory SSE opcode prefix byte to 2-bit VEX encoding. |
| pp = [pp]{ |
| switch (pp) { |
| case 0x66: return 0b01; |
| case 0xf3: return 0b10; |
| case 0xf2: return 0b11; |
| } |
| return 0b00; |
| }(); |
| |
| VEX vex = {0, {0,0,0}}; |
| if (X == 0 && B == 0 && WE == 0 && map == 0b00001) { |
| // With these conditions met, we can optionally compress VEX to 2-byte. |
| vex.len = 2; |
| vex.bytes[0] = 0xc5; |
| vex.bytes[1] = (pp & 3) << 0 |
| | (L & 1) << 2 |
| | (~vvvv & 15) << 3 |
| | (~(int)R & 1) << 7; |
| } else { |
| // We could use this 3-byte VEX prefix all the time if we like. |
| vex.len = 3; |
| vex.bytes[0] = 0xc4; |
| vex.bytes[1] = (map & 31) << 0 |
| | (~(int)B & 1) << 5 |
| | (~(int)X & 1) << 6 |
| | (~(int)R & 1) << 7; |
| vex.bytes[2] = (pp & 3) << 0 |
| | (L & 1) << 2 |
| | (~vvvv & 15) << 3 |
| | (WE & 1) << 7; |
| } |
| return vex; |
| } |
| |
| Assembler::Assembler(void* buf) : fCode((uint8_t*)buf), fSize(0) {} |
| |
| size_t Assembler::size() const { return fSize; } |
| |
| void Assembler::bytes(const void* p, int n) { |
| if (fCode) { |
| memcpy(fCode+fSize, p, n); |
| } |
| fSize += n; |
| } |
| |
| void Assembler::byte(uint8_t b) { this->bytes(&b, 1); } |
| void Assembler::word(uint32_t w) { this->bytes(&w, 4); } |
| |
| void Assembler::align(int mod) { |
| while (this->size() % mod) { |
| this->byte(0x00); |
| } |
| } |
| |
| void Assembler::int3() { |
| this->byte(0xcc); |
| } |
| |
| void Assembler::vzeroupper() { |
| this->byte(0xc5); |
| this->byte(0xf8); |
| this->byte(0x77); |
| } |
| void Assembler::ret() { this->byte(0xc3); } |
| |
| void Assembler::op(int opcode, Operand dst, GP64 x) { |
| if (dst.kind == Operand::REG) { |
| this->byte(rex(W1,x>>3,0,dst.reg>>3)); |
| this->bytes(&opcode, SkTFitsIn<uint8_t>(opcode) ? 1 : 2); |
| this->byte(mod_rm(Mod::Direct, x, dst.reg&7)); |
| } else { |
| SkASSERT(dst.kind == Operand::MEM); |
| const Mem& m = dst.mem; |
| const bool need_SIB = (m.base&7) == rsp |
| || m.index != rsp; |
| |
| this->byte(rex(W1,x>>3,m.index>>3,m.base>>3)); |
| this->bytes(&opcode, SkTFitsIn<uint8_t>(opcode) ? 1 : 2); |
| this->byte(mod_rm(mod(m.disp), x&7, (need_SIB ? rsp : m.base)&7)); |
| if (need_SIB) { |
| this->byte(sib(m.scale, m.index&7, m.base&7)); |
| } |
| this->bytes(&m.disp, imm_bytes(mod(m.disp))); |
| } |
| } |
| |
| void Assembler::op(int opcode, int opcode_ext, Operand dst, int imm) { |
| opcode |= 0b1000'0000; // top bit set for instructions with any immediate |
| |
| int imm_bytes = 4; |
| if (SkTFitsIn<int8_t>(imm)) { |
| imm_bytes = 1; |
| opcode |= 0b0000'0010; // second bit set for 8-bit immediate, else 32-bit. |
| } |
| |
| this->op(opcode, dst, (GP64)opcode_ext); |
| this->bytes(&imm, imm_bytes); |
| } |
| |
| void Assembler::add(Operand dst, int imm) { this->op(0x01,0b000, dst,imm); } |
| void Assembler::sub(Operand dst, int imm) { this->op(0x01,0b101, dst,imm); } |
| void Assembler::cmp(Operand dst, int imm) { this->op(0x01,0b111, dst,imm); } |
| |
| // These don't work quite like the other instructions with immediates: |
| // these immediates are always fixed size at 4 bytes or 1 byte. |
| void Assembler::mov(Operand dst, int imm) { |
| this->op(0xC7,dst,(GP64)0b000); |
| this->word(imm); |
| } |
| void Assembler::movb(Operand dst, int imm) { |
| this->op(0xC6,dst,(GP64)0b000); |
| this->byte(imm); |
| } |
| |
| void Assembler::add (Operand dst, GP64 x) { this->op(0x01, dst,x); } |
| void Assembler::sub (Operand dst, GP64 x) { this->op(0x29, dst,x); } |
| void Assembler::cmp (Operand dst, GP64 x) { this->op(0x39, dst,x); } |
| void Assembler::mov (Operand dst, GP64 x) { this->op(0x89, dst,x); } |
| void Assembler::movb(Operand dst, GP64 x) { this->op(0x88, dst,x); } |
| |
| void Assembler::add (GP64 dst, Operand x) { this->op(0x03, x,dst); } |
| void Assembler::sub (GP64 dst, Operand x) { this->op(0x2B, x,dst); } |
| void Assembler::cmp (GP64 dst, Operand x) { this->op(0x3B, x,dst); } |
| void Assembler::mov (GP64 dst, Operand x) { this->op(0x8B, x,dst); } |
| void Assembler::movb(GP64 dst, Operand x) { this->op(0x8A, x,dst); } |
| |
| void Assembler::movzbq(GP64 dst, Operand x) { this->op(0xB60F, x,dst); } |
| void Assembler::movzwq(GP64 dst, Operand x) { this->op(0xB70F, x,dst); } |
| |
| void Assembler::vpaddd (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfe, dst,x,y); } |
| void Assembler::vpsubd (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfa, dst,x,y); } |
| void Assembler::vpmulld(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x40, dst,x,y); } |
| |
| void Assembler::vpaddw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xfd, dst,x,y); } |
| void Assembler::vpsubw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xf9, dst,x,y); } |
| void Assembler::vpmullw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xd5, dst,x,y); } |
| void Assembler::vpavgw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xe3, dst,x,y); } |
| void Assembler::vpmulhrsw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x0b, dst,x,y); } |
| void Assembler::vpminsw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xea, dst,x,y); } |
| void Assembler::vpmaxsw (Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0xee, dst,x,y); } |
| void Assembler::vpminuw (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x3a, dst,x,y); } |
| void Assembler::vpmaxuw (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x3e, dst,x,y); } |
| |
| void Assembler::vpabsw(Ymm dst, Operand x) { this->op(0x66,0x380f,0x1d, dst,x); } |
| |
| |
| void Assembler::vpand (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xdb, dst,x,y); } |
| void Assembler::vpor (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xeb, dst,x,y); } |
| void Assembler::vpxor (Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xef, dst,x,y); } |
| void Assembler::vpandn(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0xdf, dst,x,y); } |
| |
| void Assembler::vaddps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x58, dst,x,y); } |
| void Assembler::vsubps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5c, dst,x,y); } |
| void Assembler::vmulps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x59, dst,x,y); } |
| void Assembler::vdivps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5e, dst,x,y); } |
| void Assembler::vminps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5d, dst,x,y); } |
| void Assembler::vmaxps(Ymm dst, Ymm x, Operand y) { this->op(0,0x0f,0x5f, dst,x,y); } |
| |
| void Assembler::vfmadd132ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x98, dst,x,y); } |
| void Assembler::vfmadd213ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xa8, dst,x,y); } |
| void Assembler::vfmadd231ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xb8, dst,x,y); } |
| |
| void Assembler::vfmsub132ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x9a, dst,x,y); } |
| void Assembler::vfmsub213ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xaa, dst,x,y); } |
| void Assembler::vfmsub231ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xba, dst,x,y); } |
| |
| void Assembler::vfnmadd132ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x9c, dst,x,y); } |
| void Assembler::vfnmadd213ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xac, dst,x,y); } |
| void Assembler::vfnmadd231ps(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0xbc, dst,x,y); } |
| |
| void Assembler::vpackusdw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x2b, dst,x,y); } |
| void Assembler::vpackuswb(Ymm dst, Ymm x, Operand y) { this->op(0x66, 0x0f,0x67, dst,x,y); } |
| |
| void Assembler::vpunpckldq(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x62, dst,x,y); } |
| void Assembler::vpunpckhdq(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x6a, dst,x,y); } |
| |
| void Assembler::vpcmpeqd(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x76, dst,x,y); } |
| void Assembler::vpcmpeqw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x75, dst,x,y); } |
| void Assembler::vpcmpgtd(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x66, dst,x,y); } |
| void Assembler::vpcmpgtw(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x0f,0x65, dst,x,y); } |
| |
| |
| void Assembler::imm_byte_after_operand(const Operand& operand, int imm) { |
| // When we've embedded a label displacement in the middle of an instruction, |
| // we need to tweak it a little so that the resolved displacement starts |
| // from the end of the instruction and not the end of the displacement. |
| if (operand.kind == Operand::LABEL && fCode) { |
| int disp; |
| memcpy(&disp, fCode+fSize-4, 4); |
| disp--; |
| memcpy(fCode+fSize-4, &disp, 4); |
| } |
| this->byte(imm); |
| } |
| |
| void Assembler::vcmpps(Ymm dst, Ymm x, Operand y, int imm) { |
| this->op(0,0x0f,0xc2, dst,x,y); |
| this->imm_byte_after_operand(y, imm); |
| } |
| |
| void Assembler::vpblendvb(Ymm dst, Ymm x, Operand y, Ymm z) { |
| this->op(0x66,0x3a0f,0x4c, dst,x,y); |
| this->imm_byte_after_operand(y, z << 4); |
| } |
| |
| // Shift instructions encode their opcode extension as "dst", dst as x, and x as y. |
| void Assembler::vpslld(Ymm dst, Ymm x, int imm) { |
| this->op(0x66,0x0f,0x72,(Ymm)6, dst,x); |
| this->byte(imm); |
| } |
| void Assembler::vpsrld(Ymm dst, Ymm x, int imm) { |
| this->op(0x66,0x0f,0x72,(Ymm)2, dst,x); |
| this->byte(imm); |
| } |
| void Assembler::vpsrad(Ymm dst, Ymm x, int imm) { |
| this->op(0x66,0x0f,0x72,(Ymm)4, dst,x); |
| this->byte(imm); |
| } |
| void Assembler::vpsllw(Ymm dst, Ymm x, int imm) { |
| this->op(0x66,0x0f,0x71,(Ymm)6, dst,x); |
| this->byte(imm); |
| } |
| void Assembler::vpsrlw(Ymm dst, Ymm x, int imm) { |
| this->op(0x66,0x0f,0x71,(Ymm)2, dst,x); |
| this->byte(imm); |
| } |
| void Assembler::vpsraw(Ymm dst, Ymm x, int imm) { |
| this->op(0x66,0x0f,0x71,(Ymm)4, dst,x); |
| this->byte(imm); |
| } |
| |
| void Assembler::vpermq(Ymm dst, Operand x, int imm) { |
| // A bit unusual among the instructions we use, this is 64-bit operation, so we set W. |
| this->op(0x66,0x3a0f,0x00, dst,x,W1); |
| this->imm_byte_after_operand(x, imm); |
| } |
| |
| void Assembler::vperm2f128(Ymm dst, Ymm x, Operand y, int imm) { |
| this->op(0x66,0x3a0f,0x06, dst,x,y); |
| this->imm_byte_after_operand(y, imm); |
| } |
| |
| void Assembler::vpermps(Ymm dst, Ymm ix, Operand src) { |
| this->op(0x66,0x380f,0x16, dst,ix,src); |
| } |
| |
| void Assembler::vroundps(Ymm dst, Operand x, Rounding imm) { |
| this->op(0x66,0x3a0f,0x08, dst,x); |
| this->imm_byte_after_operand(x, imm); |
| } |
| |
| void Assembler::vmovdqa(Ymm dst, Operand src) { this->op(0x66,0x0f,0x6f, dst,src); } |
| void Assembler::vmovups(Ymm dst, Operand src) { this->op( 0,0x0f,0x10, dst,src); } |
| void Assembler::vmovups(Xmm dst, Operand src) { this->op( 0,0x0f,0x10, dst,src); } |
| void Assembler::vmovups(Operand dst, Ymm src) { this->op( 0,0x0f,0x11, src,dst); } |
| void Assembler::vmovups(Operand dst, Xmm src) { this->op( 0,0x0f,0x11, src,dst); } |
| |
| void Assembler::vcvtdq2ps (Ymm dst, Operand x) { this->op( 0,0x0f,0x5b, dst,x); } |
| void Assembler::vcvttps2dq(Ymm dst, Operand x) { this->op(0xf3,0x0f,0x5b, dst,x); } |
| void Assembler::vcvtps2dq (Ymm dst, Operand x) { this->op(0x66,0x0f,0x5b, dst,x); } |
| void Assembler::vsqrtps (Ymm dst, Operand x) { this->op( 0,0x0f,0x51, dst,x); } |
| |
| void Assembler::vcvtps2ph(Operand dst, Ymm x, Rounding imm) { |
| this->op(0x66,0x3a0f,0x1d, x,dst); |
| this->imm_byte_after_operand(dst, imm); |
| } |
| void Assembler::vcvtph2ps(Ymm dst, Operand x) { |
| this->op(0x66,0x380f,0x13, dst,x); |
| } |
| |
| int Assembler::disp19(Label* l) { |
| SkASSERT(l->kind == Label::NotYetSet || |
| l->kind == Label::ARMDisp19); |
| int here = (int)this->size(); |
| l->kind = Label::ARMDisp19; |
| l->references.push_back(here); |
| // ARM 19-bit instruction count, from the beginning of this instruction. |
| return (l->offset - here) / 4; |
| } |
| |
| int Assembler::disp32(Label* l) { |
| SkASSERT(l->kind == Label::NotYetSet || |
| l->kind == Label::X86Disp32); |
| int here = (int)this->size(); |
| l->kind = Label::X86Disp32; |
| l->references.push_back(here); |
| // x86 32-bit byte count, from the end of this instruction. |
| return l->offset - (here + 4); |
| } |
| |
| void Assembler::op(int prefix, int map, int opcode, int dst, int x, Operand y, W w, L l) { |
| switch (y.kind) { |
| case Operand::REG: { |
| VEX v = vex(w, dst>>3, 0, y.reg>>3, |
| map, x, l, prefix); |
| this->bytes(v.bytes, v.len); |
| this->byte(opcode); |
| this->byte(mod_rm(Mod::Direct, dst&7, y.reg&7)); |
| } return; |
| |
| case Operand::MEM: { |
| // Passing rsp as the rm argument to mod_rm() signals an SIB byte follows; |
| // without an SIB byte, that's where the base register would usually go. |
| // This means we have to use an SIB byte if we want to use rsp as a base register. |
| const Mem& m = y.mem; |
| const bool need_SIB = m.base == rsp |
| || m.index != rsp; |
| |
| VEX v = vex(w, dst>>3, m.index>>3, m.base>>3, |
| map, x, l, prefix); |
| this->bytes(v.bytes, v.len); |
| this->byte(opcode); |
| this->byte(mod_rm(mod(m.disp), dst&7, (need_SIB ? rsp : m.base)&7)); |
| if (need_SIB) { |
| this->byte(sib(m.scale, m.index&7, m.base&7)); |
| } |
| this->bytes(&m.disp, imm_bytes(mod(m.disp))); |
| } return; |
| |
| case Operand::LABEL: { |
| // IP-relative addressing uses Mod::Indirect with the R/M encoded as-if rbp or r13. |
| const int rip = rbp; |
| |
| VEX v = vex(w, dst>>3, 0, rip>>3, |
| map, x, l, prefix); |
| this->bytes(v.bytes, v.len); |
| this->byte(opcode); |
| this->byte(mod_rm(Mod::Indirect, dst&7, rip&7)); |
| this->word(this->disp32(y.label)); |
| } return; |
| } |
| } |
| |
| void Assembler::vpshufb(Ymm dst, Ymm x, Operand y) { this->op(0x66,0x380f,0x00, dst,x,y); } |
| |
| void Assembler::vptest(Ymm x, Operand y) { this->op(0x66, 0x380f, 0x17, x,y); } |
| |
| void Assembler::vbroadcastss(Ymm dst, Operand y) { this->op(0x66,0x380f,0x18, dst,y); } |
| |
| void Assembler::jump(uint8_t condition, Label* l) { |
| // These conditional jumps can be either 2 bytes (short) or 6 bytes (near): |
| // 7? one-byte-disp |
| // 0F 8? four-byte-disp |
| // We always use the near displacement to make updating labels simpler (no resizing). |
| this->byte(0x0f); |
| this->byte(condition); |
| this->word(this->disp32(l)); |
| } |
| void Assembler::je (Label* l) { this->jump(0x84, l); } |
| void Assembler::jne(Label* l) { this->jump(0x85, l); } |
| void Assembler::jl (Label* l) { this->jump(0x8c, l); } |
| void Assembler::jc (Label* l) { this->jump(0x82, l); } |
| |
| void Assembler::jmp(Label* l) { |
| // Like above in jump(), we could use 8-bit displacement here, but always use 32-bit. |
| this->byte(0xe9); |
| this->word(this->disp32(l)); |
| } |
| |
| void Assembler::vpmovzxwd(Ymm dst, Operand src) { this->op(0x66,0x380f,0x33, dst,src); } |
| void Assembler::vpmovzxbd(Ymm dst, Operand src) { this->op(0x66,0x380f,0x31, dst,src); } |
| |
| void Assembler::vmovq(Operand dst, Xmm src) { this->op(0x66,0x0f,0xd6, src,dst); } |
| |
| void Assembler::vmovd(Operand dst, Xmm src) { this->op(0x66,0x0f,0x7e, src,dst); } |
| void Assembler::vmovd(Xmm dst, Operand src) { this->op(0x66,0x0f,0x6e, dst,src); } |
| |
| void Assembler::vpinsrd(Xmm dst, Xmm src, Operand y, int imm) { |
| this->op(0x66,0x3a0f,0x22, dst,src,y); |
| this->imm_byte_after_operand(y, imm); |
| } |
| void Assembler::vpinsrw(Xmm dst, Xmm src, Operand y, int imm) { |
| this->op(0x66,0x0f,0xc4, dst,src,y); |
| this->imm_byte_after_operand(y, imm); |
| } |
| void Assembler::vpinsrb(Xmm dst, Xmm src, Operand y, int imm) { |
| this->op(0x66,0x3a0f,0x20, dst,src,y); |
| this->imm_byte_after_operand(y, imm); |
| } |
| |
| void Assembler::vextracti128(Operand dst, Ymm src, int imm) { |
| this->op(0x66,0x3a0f,0x39, src,dst); |
| SkASSERT(dst.kind != Operand::LABEL); |
| this->byte(imm); |
| } |
| void Assembler::vpextrd(Operand dst, Xmm src, int imm) { |
| this->op(0x66,0x3a0f,0x16, src,dst); |
| SkASSERT(dst.kind != Operand::LABEL); |
| this->byte(imm); |
| } |
| void Assembler::vpextrw(Operand dst, Xmm src, int imm) { |
| this->op(0x66,0x3a0f,0x15, src,dst); |
| SkASSERT(dst.kind != Operand::LABEL); |
| this->byte(imm); |
| } |
| void Assembler::vpextrb(Operand dst, Xmm src, int imm) { |
| this->op(0x66,0x3a0f,0x14, src,dst); |
| SkASSERT(dst.kind != Operand::LABEL); |
| this->byte(imm); |
| } |
| |
| void Assembler::vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask) { |
| // Unlike most instructions, no aliasing is permitted here. |
| SkASSERT(dst != ix); |
| SkASSERT(dst != mask); |
| SkASSERT(mask != ix); |
| |
| int prefix = 0x66, |
| map = 0x380f, |
| opcode = 0x92; |
| VEX v = vex(0, dst>>3, ix>>3, base>>3, |
| map, mask, /*ymm?*/1, prefix); |
| this->bytes(v.bytes, v.len); |
| this->byte(opcode); |
| this->byte(mod_rm(Mod::Indirect, dst&7, rsp/*use SIB*/)); |
| this->byte(sib(scale, ix&7, base&7)); |
| } |
| |
| // https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf |
| |
| static int operator"" _mask(unsigned long long bits) { return (1<<(int)bits)-1; } |
| |
| void Assembler::op(uint32_t hi, V m, uint32_t lo, V n, V d) { |
| this->word( (hi & 11_mask) << 21 |
| | (m & 5_mask) << 16 |
| | (lo & 6_mask) << 10 |
| | (n & 5_mask) << 5 |
| | (d & 5_mask) << 0); |
| } |
| void Assembler::op(uint32_t op22, V n, V d, int imm) { |
| this->word( (op22 & 22_mask) << 10 |
| | imm // size and location depends on the instruction |
| | (n & 5_mask) << 5 |
| | (d & 5_mask) << 0); |
| } |
| |
| void Assembler::and16b(V d, V n, V m) { this->op(0b0'1'0'01110'00'1, m, 0b00011'1, n, d); } |
| void Assembler::orr16b(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b00011'1, n, d); } |
| void Assembler::eor16b(V d, V n, V m) { this->op(0b0'1'1'01110'00'1, m, 0b00011'1, n, d); } |
| void Assembler::bic16b(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b00011'1, n, d); } |
| void Assembler::bsl16b(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b00011'1, n, d); } |
| void Assembler::not16b(V d, V n) { this->op(0b0'1'1'01110'00'10000'00101'10, n, d); } |
| |
| void Assembler::add4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10000'1, n, d); } |
| void Assembler::sub4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10000'1, n, d); } |
| void Assembler::mul4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10011'1, n, d); } |
| |
| void Assembler::cmeq4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10001'1, n, d); } |
| void Assembler::cmgt4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b0011'0'1, n, d); } |
| |
| void Assembler::sub8h(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b10000'1, n, d); } |
| void Assembler::mul8h(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b10011'1, n, d); } |
| |
| void Assembler::fadd4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11010'1, n, d); } |
| void Assembler::fsub4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11010'1, n, d); } |
| void Assembler::fmul4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11011'1, n, d); } |
| void Assembler::fdiv4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11111'1, n, d); } |
| void Assembler::fmin4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11110'1, n, d); } |
| void Assembler::fmax4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11110'1, n, d); } |
| |
| void Assembler::fneg4s (V d, V n) { this->op(0b0'1'1'01110'1'0'10000'01111'10, n,d); } |
| void Assembler::fsqrt4s(V d, V n) { this->op(0b0'1'1'01110'1'0'10000'11111'10, n,d); } |
| |
| void Assembler::fcmeq4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b1110'0'1, n, d); } |
| void Assembler::fcmgt4s(V d, V n, V m) { this->op(0b0'1'1'01110'1'0'1, m, 0b1110'0'1, n, d); } |
| void Assembler::fcmge4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b1110'0'1, n, d); } |
| |
| void Assembler::fmla4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11001'1, n, d); } |
| void Assembler::fmls4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11001'1, n, d); } |
| |
| void Assembler::tbl(V d, V n, V m) { this->op(0b0'1'001110'00'0, m, 0b0'00'0'00, n, d); } |
| |
| void Assembler::uzp14s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'0'01'10, n, d); } |
| void Assembler::uzp24s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'1'01'10, n, d); } |
| void Assembler::zip14s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'0'11'10, n, d); } |
| void Assembler::zip24s(V d, V n, V m) { this->op(0b0'1'001110'10'0, m, 0b0'1'11'10, n, d); } |
| |
| void Assembler::sli4s(V d, V n, int imm5) { |
| this->op(0b0'1'1'011110'0100'000'01010'1, n, d, ( imm5 & 5_mask)<<16); |
| } |
| void Assembler::shl4s(V d, V n, int imm5) { |
| this->op(0b0'1'0'011110'0100'000'01010'1, n, d, ( imm5 & 5_mask)<<16); |
| } |
| void Assembler::sshr4s(V d, V n, int imm5) { |
| this->op(0b0'1'0'011110'0100'000'00'0'0'0'1, n, d, (-imm5 & 5_mask)<<16); |
| } |
| void Assembler::ushr4s(V d, V n, int imm5) { |
| this->op(0b0'1'1'011110'0100'000'00'0'0'0'1, n, d, (-imm5 & 5_mask)<<16); |
| } |
| void Assembler::ushr8h(V d, V n, int imm4) { |
| this->op(0b0'1'1'011110'0010'000'00'0'0'0'1, n, d, (-imm4 & 4_mask)<<16); |
| } |
| |
| void Assembler::scvtf4s (V d, V n) { this->op(0b0'1'0'01110'0'0'10000'11101'10, n,d); } |
| void Assembler::fcvtzs4s(V d, V n) { this->op(0b0'1'0'01110'1'0'10000'1101'1'10, n,d); } |
| void Assembler::fcvtns4s(V d, V n) { this->op(0b0'1'0'01110'0'0'10000'1101'0'10, n,d); } |
| void Assembler::frintp4s(V d, V n) { this->op(0b0'1'0'01110'1'0'10000'1100'0'10, n,d); } |
| void Assembler::frintm4s(V d, V n) { this->op(0b0'1'0'01110'0'0'10000'1100'1'10, n,d); } |
| |
| void Assembler::fcvtn(V d, V n) { this->op(0b0'0'0'01110'0'0'10000'10110'10, n,d); } |
| void Assembler::fcvtl(V d, V n) { this->op(0b0'0'0'01110'0'0'10000'10111'10, n,d); } |
| |
| void Assembler::xtns2h(V d, V n) { this->op(0b0'0'0'01110'01'10000'10010'10, n,d); } |
| void Assembler::xtnh2b(V d, V n) { this->op(0b0'0'0'01110'00'10000'10010'10, n,d); } |
| |
| void Assembler::uxtlb2h(V d, V n) { this->op(0b0'0'1'011110'0001'000'10100'1, n,d); } |
| void Assembler::uxtlh2s(V d, V n) { this->op(0b0'0'1'011110'0010'000'10100'1, n,d); } |
| |
| void Assembler::uminv4s(V d, V n) { this->op(0b0'1'1'01110'10'11000'1'1010'10, n,d); } |
| |
| void Assembler::brk(int imm16) { |
| this->op(0b11010100'001'00000000000, (imm16 & 16_mask) << 5); |
| } |
| |
| void Assembler::ret(X n) { this->op(0b1101011'0'0'10'11111'0000'0'0, n, (X)0); } |
| |
| void Assembler::add(X d, X n, int imm12) { |
| this->op(0b1'0'0'10001'00'000000000000, n,d, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::sub(X d, X n, int imm12) { |
| this->op(0b1'1'0'10001'00'000000000000, n,d, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::subs(X d, X n, int imm12) { |
| this->op(0b1'1'1'10001'00'000000000000, n,d, (imm12 & 12_mask) << 10); |
| } |
| |
| void Assembler::add(X d, X n, X m, Shift shift, int imm6) { |
| SkASSERT(shift != ROR); |
| |
| int imm = (imm6 & 6_mask) << 0 |
| | (m & 5_mask) << 6 |
| | (0 & 1_mask) << 11 |
| | (shift & 2_mask) << 12; |
| this->op(0b1'0'0'01011'00'0'00000'000000, n,d, imm << 10); |
| } |
| |
| void Assembler::b(Condition cond, Label* l) { |
| const int imm19 = this->disp19(l); |
| this->op(0b0101010'0'00000000000000, (X)0, (V)cond, (imm19 & 19_mask) << 5); |
| } |
| void Assembler::cbz(X t, Label* l) { |
| const int imm19 = this->disp19(l); |
| this->op(0b1'011010'0'00000000000000, (X)0, t, (imm19 & 19_mask) << 5); |
| } |
| void Assembler::cbnz(X t, Label* l) { |
| const int imm19 = this->disp19(l); |
| this->op(0b1'011010'1'00000000000000, (X)0, t, (imm19 & 19_mask) << 5); |
| } |
| |
| void Assembler::ldrd(X dst, X src, int imm12) { |
| this->op(0b11'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrs(X dst, X src, int imm12) { |
| this->op(0b10'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrh(X dst, X src, int imm12) { |
| this->op(0b01'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrb(X dst, X src, int imm12) { |
| this->op(0b00'111'0'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| |
| void Assembler::ldrq(V dst, X src, int imm12) { |
| this->op(0b00'111'1'01'11'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrd(V dst, X src, int imm12) { |
| this->op(0b11'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrs(V dst, X src, int imm12) { |
| this->op(0b10'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrh(V dst, X src, int imm12) { |
| this->op(0b01'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::ldrb(V dst, X src, int imm12) { |
| this->op(0b00'111'1'01'01'000000000000, src, dst, (imm12 & 12_mask) << 10); |
| } |
| |
| void Assembler::strs(X src, X dst, int imm12) { |
| this->op(0b10'111'0'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); |
| } |
| |
| void Assembler::strq(V src, X dst, int imm12) { |
| this->op(0b00'111'1'01'10'000000000000, dst, src, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::strd(V src, X dst, int imm12) { |
| this->op(0b11'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::strs(V src, X dst, int imm12) { |
| this->op(0b10'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::strh(V src, X dst, int imm12) { |
| this->op(0b01'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); |
| } |
| void Assembler::strb(V src, X dst, int imm12) { |
| this->op(0b00'111'1'01'00'000000000000, dst, src, (imm12 & 12_mask) << 10); |
| } |
| |
| void Assembler::movs(X dst, V src, int lane) { |
| int imm5 = (lane << 3) | 0b100; |
| this->op(0b0'0'0'01110000'00000'0'01'1'1'1, src, dst, (imm5 & 5_mask) << 16); |
| } |
| void Assembler::inss(V dst, X src, int lane) { |
| int imm5 = (lane << 3) | 0b100; |
| this->op(0b0'1'0'01110000'00000'0'0011'1, src, dst, (imm5 & 5_mask) << 16); |
| } |
| |
| |
| void Assembler::ldrq(V dst, Label* l) { |
| const int imm19 = this->disp19(l); |
| this->op(0b10'011'1'00'00000000000000, (V)0, dst, (imm19 & 19_mask) << 5); |
| } |
| |
| void Assembler::dup4s(V dst, X src) { |
| this->op(0b0'1'0'01110000'00100'0'0001'1, src, dst); |
| } |
| |
| void Assembler::ld1r4s(V dst, X src) { |
| this->op(0b0'1'0011010'1'0'00000'110'0'10, src, dst); |
| } |
| void Assembler::ld1r8h(V dst, X src) { |
| this->op(0b0'1'0011010'1'0'00000'110'0'01, src, dst); |
| } |
| void Assembler::ld1r16b(V dst, X src) { |
| this->op(0b0'1'0011010'1'0'00000'110'0'00, src, dst); |
| } |
| |
| void Assembler::ld24s(V dst, X src) { this->op(0b0'1'0011000'1'000000'1000'10, src, dst); } |
| void Assembler::ld44s(V dst, X src) { this->op(0b0'1'0011000'1'000000'0000'10, src, dst); } |
| void Assembler::st24s(V src, X dst) { this->op(0b0'1'0011000'0'000000'1000'10, dst, src); } |
| void Assembler::st44s(V src, X dst) { this->op(0b0'1'0011000'0'000000'0000'10, dst, src); } |
| |
| void Assembler::ld24s(V dst, X src, int lane) { |
| int Q = (lane & 2)>>1, |
| S = (lane & 1); |
| /* Q S */ |
| this->op(0b0'0'0011010'1'1'00000'100'0'00, src, dst, (Q<<30)|(S<<12)); |
| } |
| void Assembler::ld44s(V dst, X src, int lane) { |
| int Q = (lane & 2)>>1, |
| S = (lane & 1); |
| this->op(0b0'0'0011010'1'1'00000'101'0'00, src, dst, (Q<<30)|(S<<12)); |
| } |
| |
| void Assembler::label(Label* l) { |
| if (fCode) { |
| // The instructions all currently point to l->offset. |
| // We'll want to add a delta to point them to here. |
| int here = (int)this->size(); |
| int delta = here - l->offset; |
| l->offset = here; |
| |
| if (l->kind == Label::ARMDisp19) { |
| for (int ref : l->references) { |
| // ref points to a 32-bit instruction with 19-bit displacement in instructions. |
| uint32_t inst; |
| memcpy(&inst, fCode + ref, 4); |
| |
| // [ 8 bits to preserve] [ 19 bit signed displacement ] [ 5 bits to preserve ] |
| int disp = (int)(inst << 8) >> 13; |
| |
| disp += delta/4; // delta is in bytes, we want instructions. |
| |
| // Put it all back together, preserving the high 8 bits and low 5. |
| inst = ((disp << 5) & (19_mask << 5)) |
| | ((inst ) & ~(19_mask << 5)); |
| memcpy(fCode + ref, &inst, 4); |
| } |
| } |
| |
| if (l->kind == Label::X86Disp32) { |
| for (int ref : l->references) { |
| // ref points to a 32-bit displacement in bytes. |
| int disp; |
| memcpy(&disp, fCode + ref, 4); |
| |
| disp += delta; |
| |
| memcpy(fCode + ref, &disp, 4); |
| } |
| } |
| } |
| } |
| |
| void Program::eval(int n, void* args[]) const { |
| #define SKVM_JIT_STATS 0 |
| #if SKVM_JIT_STATS |
| static std::atomic<int64_t> calls{0}, jits{0}, |
| pixels{0}, fast{0}; |
| pixels += n; |
| if (0 == calls++) { |
| atexit([]{ |
| int64_t num = jits .load(), |
| den = calls.load(); |
| SkDebugf("%.3g%% of %lld eval() calls went through JIT.\n", (100.0 * num)/den, den); |
| num = fast .load(); |
| den = pixels.load(); |
| SkDebugf("%.3g%% of %lld pixels went through JIT.\n", (100.0 * num)/den, den); |
| }); |
| } |
| #endif |
| |
| #if !defined(SKVM_JIT_BUT_IGNORE_IT) |
| const void* jit_entry = fImpl->jit_entry.load(); |
| // jit_entry may be null either simply because we can't JIT, or when using LLVM |
| // if the work represented by fImpl->llvm_compiling hasn't finished yet. |
| // |
| // Ordinarily we'd never find ourselves with non-null jit_entry and !gSkVMAllowJIT, but it |
| // can happen during interactive programs like Viewer that toggle gSkVMAllowJIT on and off, |
| // due to timing or program caching. |
| if (jit_entry != nullptr && gSkVMAllowJIT) { |
| #if SKVM_JIT_STATS |
| jits++; |
| fast += n; |
| #endif |
| void** a = args; |
| switch (fImpl->strides.size()) { |
| case 0: return ((void(*)(int ))jit_entry)(n ); |
| case 1: return ((void(*)(int,void* ))jit_entry)(n,a[0] ); |
| case 2: return ((void(*)(int,void*,void* ))jit_entry)(n,a[0],a[1] ); |
| case 3: return ((void(*)(int,void*,void*,void* ))jit_entry)(n,a[0],a[1],a[2]); |
| case 4: return ((void(*)(int,void*,void*,void*,void*))jit_entry) |
| (n,a[0],a[1],a[2],a[3]); |
| case 5: return ((void(*)(int,void*,void*,void*,void*,void*))jit_entry) |
| (n,a[0],a[1],a[2],a[3],a[4]); |
| case 6: return ((void(*)(int,void*,void*,void*,void*,void*,void*))jit_entry) |
| (n,a[0],a[1],a[2],a[3],a[4],a[5]); |
| case 7: return ((void(*)(int,void*,void*,void*,void*,void*,void*,void*))jit_entry) |
| (n,a[0],a[1],a[2],a[3],a[4],a[5],a[6]); |
| default: SkASSERT(fImpl->strides.size() <= 7); |
| } |
| } |
| #endif |
| |
| // So we'll sometimes use the interpreter here even if later calls will use the JIT. |
| SkOpts::interpret_skvm(fImpl->instructions.data(), (int)fImpl->instructions.size(), |
| this->nregs(), this->loop(), fImpl->strides.data(), this->nargs(), |
| n, args); |
| } |
| |
| #if defined(SKVM_LLVM) |
| void Program::setupLLVM(const std::vector<OptimizedInstruction>& instructions, |
| const char* debug_name) { |
| auto ctx = std::make_unique<llvm::LLVMContext>(); |
| |
| auto mod = std::make_unique<llvm::Module>("", *ctx); |
| // All the scary bare pointers from here on are owned by ctx or mod, I think. |
| |
| // Everything I've tested runs faster at K=8 (using ymm) than K=16 (zmm) on SKX machines. |
| const int K = (true && SkCpu::Supports(SkCpu::HSW)) ? 8 : 4; |
| |
| llvm::Type *ptr = llvm::Type::getInt8Ty(*ctx)->getPointerTo(), |
| *i32 = llvm::Type::getInt32Ty(*ctx); |
| |
| std::vector<llvm::Type*> arg_types = { i32 }; |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| arg_types.push_back(ptr); |
| } |
| |
| llvm::FunctionType* fn_type = llvm::FunctionType::get(llvm::Type::getVoidTy(*ctx), |
| arg_types, /*vararg?=*/false); |
| llvm::Function* fn |
| = llvm::Function::Create(fn_type, llvm::GlobalValue::ExternalLinkage, debug_name, *mod); |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| fn->addParamAttr(i+1, llvm::Attribute::NoAlias); |
| } |
| |
| llvm::BasicBlock *enter = llvm::BasicBlock::Create(*ctx, "enter" , fn), |
| *hoistK = llvm::BasicBlock::Create(*ctx, "hoistK", fn), |
| *testK = llvm::BasicBlock::Create(*ctx, "testK" , fn), |
| *loopK = llvm::BasicBlock::Create(*ctx, "loopK" , fn), |
| *hoist1 = llvm::BasicBlock::Create(*ctx, "hoist1", fn), |
| *test1 = llvm::BasicBlock::Create(*ctx, "test1" , fn), |
| *loop1 = llvm::BasicBlock::Create(*ctx, "loop1" , fn), |
| *leave = llvm::BasicBlock::Create(*ctx, "leave" , fn); |
| |
| using IRBuilder = llvm::IRBuilder<>; |
| |
| llvm::PHINode* n; |
| std::vector<llvm::PHINode*> args; |
| std::vector<llvm::Value*> vals(instructions.size()); |
| |
| auto emit = [&](size_t i, bool scalar, IRBuilder* b) { |
| auto [op, x,y,z,w, immA,immB,immC, death,can_hoist] = instructions[i]; |
| |
| llvm::Type *i1 = llvm::Type::getInt1Ty (*ctx), |
| *i8 = llvm::Type::getInt8Ty (*ctx), |
| *i16 = llvm::Type::getInt16Ty(*ctx), |
| *f32 = llvm::Type::getFloatTy(*ctx), |
| *I1 = scalar ? i1 : llvm::VectorType::get(i1 , K ), |
| *I8 = scalar ? i8 : llvm::VectorType::get(i8 , K ), |
| *I16 = scalar ? i16 : llvm::VectorType::get(i16, K ), |
| *I32 = scalar ? i32 : llvm::VectorType::get(i32, K ), |
| *F32 = scalar ? f32 : llvm::VectorType::get(f32, K ); |
| |
| auto I = [&](llvm::Value* v) { return b->CreateBitCast(v, I32 ); }; |
| auto F = [&](llvm::Value* v) { return b->CreateBitCast(v, F32 ); }; |
| |
| auto S = [&](llvm::Type* dst, llvm::Value* v) { return b->CreateSExt(v, dst); }; |
| |
| switch (llvm::Type* t = nullptr; op) { |
| default: |
| SkDebugf("can't llvm %s (%d)\n", name(op), op); |
| return false; |
| |
| case Op::assert_true: /*TODO*/ break; |
| |
| case Op::index: |
| if (I32->isVectorTy()) { |
| std::vector<llvm::Constant*> iota(K); |
| for (int j = 0; j < K; j++) { |
| iota[j] = b->getInt32(j); |
| } |
| vals[i] = b->CreateSub(b->CreateVectorSplat(K, n), |
| llvm::ConstantVector::get(iota)); |
| } else { |
| vals[i] = n; |
| } break; |
| |
| case Op::load8: t = I8 ; goto load; |
| case Op::load16: t = I16; goto load; |
| case Op::load32: t = I32; goto load; |
| load: { |
| llvm::Value* ptr = b->CreateBitCast(args[immA], t->getPointerTo()); |
| vals[i] = b->CreateZExt(b->CreateAlignedLoad(ptr, 1), I32); |
| } break; |
| |
| |
| case Op::splat: vals[i] = llvm::ConstantInt::get(I32, immA); break; |
| |
| case Op::uniform32: { |
| llvm::Value* ptr = b->CreateBitCast(b->CreateConstInBoundsGEP1_32(nullptr, |
| args[immA], |
| immB), |
| i32->getPointerTo()); |
| llvm::Value* val = b->CreateZExt(b->CreateAlignedLoad(ptr, 1), i32); |
| vals[i] = I32->isVectorTy() ? b->CreateVectorSplat(K, val) |
| : val; |
| } break; |
| |
| case Op::gather8: t = i8 ; goto gather; |
| case Op::gather16: t = i16; goto gather; |
| case Op::gather32: t = i32; goto gather; |
| gather: { |
| // Our gather base pointer is immB bytes off of uniform immA. |
| llvm::Value* base = |
| b->CreateLoad(b->CreateBitCast(b->CreateConstInBoundsGEP1_32(nullptr, |
| args[immA], |
| immB), |
| t->getPointerTo()->getPointerTo())); |
| |
| llvm::Value* ptr = b->CreateInBoundsGEP(nullptr, base, vals[x]); |
| llvm::Value* gathered; |
| if (ptr->getType()->isVectorTy()) { |
| gathered = b->CreateMaskedGather(ptr, 1); |
| } else { |
| gathered = b->CreateAlignedLoad(ptr, 1); |
| } |
| vals[i] = b->CreateZExt(gathered, I32); |
| } break; |
| |
| case Op::store8: t = I8 ; goto store; |
| case Op::store16: t = I16; goto store; |
| case Op::store32: t = I32; goto store; |
| store: { |
| llvm::Value* val = b->CreateTrunc(vals[x], t); |
| llvm::Value* ptr = b->CreateBitCast(args[immA], |
| val->getType()->getPointerTo()); |
| vals[i] = b->CreateAlignedStore(val, ptr, 1); |
| } break; |
| |
| case Op::bit_and: vals[i] = b->CreateAnd(vals[x], vals[y]); break; |
| case Op::bit_or : vals[i] = b->CreateOr (vals[x], vals[y]); break; |
| case Op::bit_xor: vals[i] = b->CreateXor(vals[x], vals[y]); break; |
| case Op::bit_clear: vals[i] = b->CreateAnd(vals[x], b->CreateNot(vals[y])); break; |
| |
| case Op::select: |
| vals[i] = b->CreateSelect(b->CreateTrunc(vals[x], I1), vals[y], vals[z]); |
| break; |
| |
| case Op::add_i32: vals[i] = b->CreateAdd(vals[x], vals[y]); break; |
| case Op::sub_i32: vals[i] = b->CreateSub(vals[x], vals[y]); break; |
| case Op::mul_i32: vals[i] = b->CreateMul(vals[x], vals[y]); break; |
| |
| case Op::shl_i32: vals[i] = b->CreateShl (vals[x], immA); break; |
| case Op::sra_i32: vals[i] = b->CreateAShr(vals[x], immA); break; |
| case Op::shr_i32: vals[i] = b->CreateLShr(vals[x], immA); break; |
| |
| case Op:: eq_i32: vals[i] = S(I32, b->CreateICmpEQ (vals[x], vals[y])); break; |
| case Op:: gt_i32: vals[i] = S(I32, b->CreateICmpSGT(vals[x], vals[y])); break; |
| |
| case Op::add_f32: vals[i] = I(b->CreateFAdd(F(vals[x]), F(vals[y]))); break; |
| case Op::sub_f32: vals[i] = I(b->CreateFSub(F(vals[x]), F(vals[y]))); break; |
| case Op::mul_f32: vals[i] = I(b->CreateFMul(F(vals[x]), F(vals[y]))); break; |
| case Op::div_f32: vals[i] = I(b->CreateFDiv(F(vals[x]), F(vals[y]))); break; |
| |
| case Op:: eq_f32: vals[i] = S(I32, b->CreateFCmpOEQ(F(vals[x]), F(vals[y]))); break; |
| case Op::neq_f32: vals[i] = S(I32, b->CreateFCmpUNE(F(vals[x]), F(vals[y]))); break; |
| case Op:: gt_f32: vals[i] = S(I32, b->CreateFCmpOGT(F(vals[x]), F(vals[y]))); break; |
| case Op::gte_f32: vals[i] = S(I32, b->CreateFCmpOGE(F(vals[x]), F(vals[y]))); break; |
| |
| case Op::fma_f32: |
| vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, |
| {F(vals[x]), F(vals[y]), F(vals[z])})); |
| break; |
| |
| case Op::fms_f32: |
| vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, |
| {F(vals[x]), F(vals[y]), |
| b->CreateFNeg(F(vals[z]))})); |
| break; |
| |
| case Op::fnma_f32: |
| vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, |
| {b->CreateFNeg(F(vals[x])), F(vals[y]), |
| F(vals[z])})); |
| break; |
| |
| case Op::ceil: |
| vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::ceil, F(vals[x]))); |
| break; |
| case Op::floor: |
| vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::floor, F(vals[x]))); |
| break; |
| |
| case Op::max_f32: |
| vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[x]), F(vals[y])), |
| F(vals[y]), F(vals[x]))); |
| break; |
| case Op::min_f32: |
| vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[y]), F(vals[x])), |
| F(vals[y]), F(vals[x]))); |
| break; |
| |
| case Op::sqrt_f32: |
| vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, F(vals[x]))); |
| break; |
| |
| case Op::to_f32: vals[i] = I(b->CreateSIToFP( vals[x] , F32)); break; |
| case Op::trunc : vals[i] = b->CreateFPToSI(F(vals[x]), I32) ; break; |
| case Op::round : { |
| // Basic impl when we can't use cvtps2dq and co. |
| auto round = b->CreateUnaryIntrinsic(llvm::Intrinsic::rint, F(vals[x])); |
| vals[i] = b->CreateFPToSI(round, I32); |
| |
| #if 1 && defined(SK_CPU_X86) |
| // Using b->CreateIntrinsic(..., {}, {...}) to avoid name mangling. |
| if (scalar) { |
| // cvtss2si is float x4 -> int, ignoring input lanes 1,2,3. ¯\_(ツ)_/¯ |
| llvm::Value* v = llvm::UndefValue::get(llvm::VectorType::get(f32, 4)); |
| v = b->CreateInsertElement(v, F(vals[x]), (uint64_t)0); |
| vals[i] = b->CreateIntrinsic(llvm::Intrinsic::x86_sse_cvtss2si, {}, {v}); |
| } else { |
| SkASSERT(K == 4 || K == 8); |
| auto intr = K == 4 ? llvm::Intrinsic::x86_sse2_cvtps2dq : |
| /* K == 8 ?*/ llvm::Intrinsic::x86_avx_cvt_ps2dq_256; |
| vals[i] = b->CreateIntrinsic(intr, {}, {F(vals[x])}); |
| } |
| #endif |
| } break; |
| |
| } |
| return true; |
| }; |
| |
| { |
| IRBuilder b(enter); |
| b.CreateBr(hoistK); |
| } |
| |
| // hoistK: emit each hoistable vector instruction; goto testK; |
| // LLVM can do this sort of thing itself, but we've got the information cheap, |
| // and pointer aliasing makes it easier to manually hoist than teach LLVM it's safe. |
| { |
| IRBuilder b(hoistK); |
| |
| // Hoisted instructions will need args (think, uniforms), so set that up now. |
| // These phi nodes are degenerate... they'll always be the passed-in args from enter. |
| // Later on when we start looping the phi nodes will start looking useful. |
| llvm::Argument* arg = fn->arg_begin(); |
| (void)arg++; // Leave n as nullptr... it'd be a bug to use n in a hoisted instruction. |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| args.push_back(b.CreatePHI(arg->getType(), 1)); |
| args.back()->addIncoming(arg++, enter); |
| } |
| |
| for (size_t i = 0; i < instructions.size(); i++) { |
| if (instructions[i].can_hoist && !emit(i, false, &b)) { |
| return; |
| } |
| } |
| |
| b.CreateBr(testK); |
| } |
| |
| // testK: if (N >= K) goto loopK; else goto hoist1; |
| { |
| IRBuilder b(testK); |
| |
| // New phi nodes for `n` and each pointer argument from hoistK; later we'll add loopK. |
| // These also start as the initial function arguments; hoistK can't have changed them. |
| llvm::Argument* arg = fn->arg_begin(); |
| |
| n = b.CreatePHI(arg->getType(), 2); |
| n->addIncoming(arg++, hoistK); |
| |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| args[i] = b.CreatePHI(arg->getType(), 2); |
| args[i]->addIncoming(arg++, hoistK); |
| } |
| |
| b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(K)), loopK, hoist1); |
| } |
| |
| // loopK: ... insts on K x T vectors; N -= K, args += K*stride; goto testK; |
| { |
| IRBuilder b(loopK); |
| for (size_t i = 0; i < instructions.size(); i++) { |
| if (!instructions[i].can_hoist && !emit(i, false, &b)) { |
| return; |
| } |
| } |
| |
| // n -= K |
| llvm::Value* n_next = b.CreateSub(n, b.getInt32(K)); |
| n->addIncoming(n_next, loopK); |
| |
| // Each arg ptr += K |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| llvm::Value* arg_next |
| = b.CreateConstInBoundsGEP1_32(nullptr, args[i], K*fImpl->strides[i]); |
| args[i]->addIncoming(arg_next, loopK); |
| } |
| b.CreateBr(testK); |
| } |
| |
| // hoist1: emit each hoistable scalar instruction; goto test1; |
| { |
| IRBuilder b(hoist1); |
| for (size_t i = 0; i < instructions.size(); i++) { |
| if (instructions[i].can_hoist && !emit(i, true, &b)) { |
| return; |
| } |
| } |
| b.CreateBr(test1); |
| } |
| |
| // test1: if (N >= 1) goto loop1; else goto leave; |
| { |
| IRBuilder b(test1); |
| |
| // Set up new phi nodes for `n` and each pointer argument, now from hoist1 and loop1. |
| llvm::PHINode* n_new = b.CreatePHI(n->getType(), 2); |
| n_new->addIncoming(n, hoist1); |
| n = n_new; |
| |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| llvm::PHINode* arg_new = b.CreatePHI(args[i]->getType(), 2); |
| arg_new->addIncoming(args[i], hoist1); |
| args[i] = arg_new; |
| } |
| |
| b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(1)), loop1, leave); |
| } |
| |
| // loop1: ... insts on scalars; N -= 1, args += stride; goto test1; |
| { |
| IRBuilder b(loop1); |
| for (size_t i = 0; i < instructions.size(); i++) { |
| if (!instructions[i].can_hoist && !emit(i, true, &b)) { |
| return; |
| } |
| } |
| |
| // n -= 1 |
| llvm::Value* n_next = b.CreateSub(n, b.getInt32(1)); |
| n->addIncoming(n_next, loop1); |
| |
| // Each arg ptr += K |
| for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| llvm::Value* arg_next |
| = b.CreateConstInBoundsGEP1_32(nullptr, args[i], fImpl->strides[i]); |
| args[i]->addIncoming(arg_next, loop1); |
| } |
| b.CreateBr(test1); |
| } |
| |
| // leave: ret |
| { |
| IRBuilder b(leave); |
| b.CreateRetVoid(); |
| } |
| |
| SkASSERT(false == llvm::verifyModule(*mod, &llvm::outs())); |
| |
| if (true) { |
| SkString path = SkStringPrintf("/tmp/%s.bc", debug_name); |
| std::error_code err; |
| llvm::raw_fd_ostream os(path.c_str(), err); |
| if (err) { |
| return; |
| } |
| llvm::WriteBitcodeToFile(*mod, os); |
| } |
| |
| static SkOnce once; |
| once([]{ |
| SkAssertResult(false == llvm::InitializeNativeTarget()); |
| SkAssertResult(false == llvm::InitializeNativeTargetAsmPrinter()); |
| }); |
| |
| if (llvm::ExecutionEngine* ee = llvm::EngineBuilder(std::move(mod)) |
| .setEngineKind(llvm::EngineKind::JIT) |
| .setMCPU(llvm::sys::getHostCPUName()) |
| .create()) { |
| fImpl->llvm_ctx = std::move(ctx); |
| fImpl->llvm_ee.reset(ee); |
| |
| // We have to be careful here about what we close over and how, in case fImpl moves. |
| // fImpl itself may change, but its pointee fields won't, so close over them by value. |
| // Also, debug_name will almost certainly leave scope, so copy it. |
| fImpl->llvm_compiling = std::async(std::launch::async, [dst = &fImpl->jit_entry, |
| ee = fImpl->llvm_ee.get(), |
| name = std::string(debug_name)]{ |
| // std::atomic<void*>* dst; |
| // llvm::ExecutionEngine* ee; |
| // std::string name; |
| dst->store( (void*)ee->getFunctionAddress(name.c_str()) ); |
| }); |
| } |
| } |
| #endif |
| |
| void Program::waitForLLVM() const { |
| #if defined(SKVM_LLVM) |
| if (fImpl->llvm_compiling.valid()) { |
| fImpl->llvm_compiling.wait(); |
| } |
| #endif |
| } |
| |
| bool Program::hasJIT() const { |
| // Program::hasJIT() is really just a debugging / test aid, |
| // so we don't mind adding a sync point here to wait for compilation. |
| this->waitForLLVM(); |
| |
| return fImpl->jit_entry.load() != nullptr; |
| } |
| |
| void Program::dropJIT() { |
| #if defined(SKVM_LLVM) |
| this->waitForLLVM(); |
| fImpl->llvm_ee .reset(nullptr); |
| fImpl->llvm_ctx.reset(nullptr); |
| #elif defined(SKVM_JIT) |
| if (fImpl->dylib) { |
| close_dylib(fImpl->dylib); |
| } else if (auto jit_entry = fImpl->jit_entry.load()) { |
| unmap_jit_buffer(jit_entry, fImpl->jit_size); |
| } |
| #else |
| SkASSERT(!this->hasJIT()); |
| #endif |
| |
| fImpl->jit_entry.store(nullptr); |
| fImpl->jit_size = 0; |
| fImpl->dylib = nullptr; |
| } |
| |
| Program::Program() : fImpl(std::make_unique<Impl>()) {} |
| |
| Program::~Program() { |
| // Moved-from Programs may have fImpl == nullptr. |
| if (fImpl) { |
| this->dropJIT(); |
| } |
| } |
| |
| Program::Program(Program&& other) : fImpl(std::move(other.fImpl)) {} |
| |
| Program& Program::operator=(Program&& other) { |
| fImpl = std::move(other.fImpl); |
| return *this; |
| } |
| |
| Program::Program(const std::vector<OptimizedInstruction>& instructions, |
| const std::vector<int>& strides, |
| const char* debug_name, bool allow_jit) : Program() { |
| fImpl->strides = strides; |
| if (gSkVMAllowJIT && allow_jit) { |
| #if 1 && defined(SKVM_LLVM) |
| this->setupLLVM(instructions, debug_name); |
| #elif 1 && defined(SKVM_JIT) |
| this->setupJIT(instructions, debug_name); |
| #endif |
| } |
| |
| // Might as well do this after setupLLVM() to get a little more time to compile. |
| this->setupInterpreter(instructions); |
| } |
| |
| std::vector<InterpreterInstruction> Program::instructions() const { return fImpl->instructions; } |
| int Program::nargs() const { return (int)fImpl->strides.size(); } |
| int Program::nregs() const { return fImpl->regs; } |
| int Program::loop () const { return fImpl->loop; } |
| bool Program::empty() const { return fImpl->instructions.empty(); } |
| |
| // Translate OptimizedInstructions to InterpreterInstructions. |
| void Program::setupInterpreter(const std::vector<OptimizedInstruction>& instructions) { |
| // Register each instruction is assigned to. |
| std::vector<Reg> reg(instructions.size()); |
| |
| // This next bit is a bit more complicated than strictly necessary; |
| // we could just assign every instruction to its own register. |
| // |
| // But recycling registers is fairly cheap, and good practice for the |
| // JITs where minimizing register pressure really is important. |
| // |
| // We have effectively infinite registers, so we hoist any value we can. |
| // (The JIT may choose a more complex policy to reduce register pressure.) |
| |
| fImpl->regs = 0; |
| std::vector<Reg> avail; |
| |
| // Assign this value to a register, recycling them where we can. |
| auto assign_register = [&](Val id) { |
| const OptimizedInstruction& inst = instructions[id]; |
| |
| // If this is a real input and it's lifetime ends at this instruction, |
| // we can recycle the register it's occupying. |
| auto maybe_recycle_register = [&](Val input) { |
| if (input != NA && instructions[input].death == id) { |
| avail.push_back(reg[input]); |
| } |
| }; |
| |
| // Take care to not recycle the same register twice. |
| const Val x = inst.x, y = inst.y, z = inst.z, w = inst.w; |
| if (true ) { maybe_recycle_register(x); } |
| if (y != x ) { maybe_recycle_register(y); } |
| if (z != x && z != y ) { maybe_recycle_register(z); } |
| if (w != x && w != y && w != z) { maybe_recycle_register(w); } |
| |
| // Instructions that die at themselves (stores) don't need a register. |
| if (inst.death != id) { |
| // Allocate a register if we have to, preferring to reuse anything available. |
| if (avail.empty()) { |
| reg[id] = fImpl->regs++; |
| } else { |
| reg[id] = avail.back(); |
| avail.pop_back(); |
| } |
| } |
| }; |
| |
| // Assign a register to each hoisted instruction, then each non-hoisted loop instruction. |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| if ( instructions[id].can_hoist) { assign_register(id); } |
| } |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| if (!instructions[id].can_hoist) { assign_register(id); } |
| } |
| |
| // Translate OptimizedInstructions to InterpreterIstructions by mapping values to |
| // registers. This will be two passes, first hoisted instructions, then inside the loop. |
| |
| // The loop begins at the fImpl->loop'th Instruction. |
| fImpl->loop = 0; |
| fImpl->instructions.reserve(instructions.size()); |
| |
| // Add a mapping for the N/A sentinel Val to any arbitrary register |
| // so lookups don't have to know which arguments are used by which Ops. |
| auto lookup_register = [&](Val id) { |
| return id == NA ? (Reg)0 |
| : reg[id]; |
| }; |
| |
| auto push_instruction = [&](Val id, const OptimizedInstruction& inst) { |
| InterpreterInstruction pinst{ |
| inst.op, |
| lookup_register(id), |
| lookup_register(inst.x), |
| lookup_register(inst.y), |
| lookup_register(inst.z), |
| lookup_register(inst.w), |
| inst.immA, |
| inst.immB, |
| inst.immC, |
| }; |
| fImpl->instructions.push_back(pinst); |
| }; |
| |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| const OptimizedInstruction& inst = instructions[id]; |
| if (inst.can_hoist) { |
| push_instruction(id, inst); |
| fImpl->loop++; |
| } |
| } |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| const OptimizedInstruction& inst = instructions[id]; |
| if (!inst.can_hoist) { |
| push_instruction(id, inst); |
| } |
| } |
| } |
| |
| #if defined(SKVM_JIT) |
| |
| namespace SkVMJitTypes { |
| #if defined(__x86_64__) || defined(_M_X64) |
| using Reg = Assembler::Ymm; |
| #elif defined(__aarch64__) |
| using Reg = Assembler::V; |
| #endif |
| } // namespace SkVMJitTypes |
| |
| bool Program::jit(const std::vector<OptimizedInstruction>& instructions, |
| int* stack_hint, |
| uint32_t* registers_used, |
| Assembler* a) const { |
| using A = Assembler; |
| using SkVMJitTypes::Reg; |
| |
| SkTHashMap<int, A::Label> constants; // Constants (mostly splats) share the same pool. |
| A::Label iota; // Varies per lane, for Op::index. |
| A::Label load64_index; // Used to load low or high half of 64-bit lanes. |
| |
| // The `regs` array tracks everything we know about each register's state: |
| // - NA: empty |
| // - RES: reserved by ABI |
| // - TMP: holding a temporary |
| // - id: holding Val id |
| constexpr Val RES = NA-1, |
| TMP = RES-1; |
| |
| // Map val -> stack slot. |
| std::vector<int> stack_slot(instructions.size(), NA); |
| int next_stack_slot = 0; |
| |
| const int nstack_slots = *stack_hint >= 0 ? *stack_hint |
| : stack_slot.size(); |
| #if defined(__x86_64__) || defined(_M_X64) |
| if (!SkCpu::Supports(SkCpu::HSW)) { |
| return false; |
| } |
| const int K = 8; |
| #if defined(_M_X64) // Important to check this first; clang-cl defines both. |
| const A::GP64 N = A::rcx, |
| GP0 = A::rax, |
| GP1 = A::r11, |
| arg[] = { A::rdx, A::r8, A::r9, A::r10, A::rdi, A::rsi }; |
| |
| // xmm6-15 need are callee-saved. |
| std::array<Val,16> regs = { |
| NA, NA, NA, NA, NA, NA,RES,RES, |
| RES,RES,RES,RES, RES,RES,RES,RES, |
| }; |
| const uint32_t incoming_registers_used = *registers_used; |
| |
| auto enter = [&]{ |
| // rcx,rdx,r8,r9 are all already holding their correct values. |
| // Load caller-saved r10 from rsp+40 if there's a fourth arg. |
| if (fImpl->strides.size() >= 4) { |
| a->mov(A::r10, A::Mem{A::rsp, 40}); |
| } |
| // Load callee-saved rdi from rsp+48 if there's a fifth arg, |
| // first saving it to ABI reserved shadow area rsp+8. |
| if (fImpl->strides.size() >= 5) { |
| a->mov(A::Mem{A::rsp, 8}, A::rdi); |
| a->mov(A::rdi, A::Mem{A::rsp, 48}); |
| } |
| // Load callee-saved rsi from rsp+56 if there's a sixth arg, |
| // first saving it to ABI reserved shadow area rsp+16. |
| if (fImpl->strides.size() >= 6) { |
| a->mov(A::Mem{A::rsp, 16}, A::rsi); |
| a->mov(A::rsi, A::Mem{A::rsp, 56}); |
| } |
| |
| // Allocate stack for our values and callee-saved xmm6-15. |
| int stack_needed = nstack_slots*K*4; |
| for (int r = 6; r < 16; r++) { |
| if (incoming_registers_used & (1<<r)) { |
| stack_needed += 16; |
| } |
| } |
| if (stack_needed) { a->sub(A::rsp, stack_needed); } |
| |
| int next_saved_xmm = nstack_slots*K*4; |
| for (int r = 6; r < 16; r++) { |
| if (incoming_registers_used & (1<<r)) { |
| a->vmovups(A::Mem{A::rsp, next_saved_xmm}, (A::Xmm)r); |
| next_saved_xmm += 16; |
| regs[r] = NA; |
| } |
| } |
| }; |
| auto exit = [&]{ |
| // The second pass of jit() shouldn't use any register it didn't in the first pass. |
| SkASSERT((*registers_used & incoming_registers_used) == *registers_used); |
| |
| // Restore callee-saved xmm6-15 and the stack pointer. |
| int stack_used = nstack_slots*K*4; |
| for (int r = 6; r < 16; r++) { |
| if (incoming_registers_used & (1<<r)) { |
| a->vmovups((A::Xmm)r, A::Mem{A::rsp, stack_used}); |
| stack_used += 16; |
| } |
| } |
| if (stack_used) { a->add(A::rsp, stack_used); } |
| |
| // Restore callee-saved rdi/rsi if we used them. |
| if (fImpl->strides.size() >= 5) { |
| a->mov(A::rdi, A::Mem{A::rsp, 8}); |
| } |
| if (fImpl->strides.size() >= 6) { |
| a->mov(A::rsi, A::Mem{A::rsp, 16}); |
| } |
| |
| a->vzeroupper(); |
| a->ret(); |
| }; |
| #elif defined(__x86_64__) |
| const A::GP64 N = A::rdi, |
| GP0 = A::rax, |
| GP1 = A::r11, |
| arg[] = { A::rsi, A::rdx, A::rcx, A::r8, A::r9, A::r10 }; |
| |
| // All 16 ymm registers are available to use. |
| std::array<Val,16> regs = { |
| NA,NA,NA,NA, NA,NA,NA,NA, |
| NA,NA,NA,NA, NA,NA,NA,NA, |
| }; |
| |
| auto enter = [&]{ |
| // Load caller-saved r10 from rsp+8 if there's a sixth arg. |
| if (fImpl->strides.size() >= 6) { |
| a->mov(A::r10, A::Mem{A::rsp, 8}); |
| } |
| if (nstack_slots) { a->sub(A::rsp, nstack_slots*K*4); } |
| }; |
| auto exit = [&]{ |
| if (nstack_slots) { a->add(A::rsp, nstack_slots*K*4); } |
| a->vzeroupper(); |
| a->ret(); |
| }; |
| #endif |
| |
| auto load_from_memory = [&](Reg r, Val v) { |
| if (instructions[v].op == Op::splat) { |
| if (instructions[v].immA == 0) { |
| a->vpxor(r,r,r); |
| } else { |
| a->vmovups(r, constants.find(instructions[v].immA)); |
| } |
| } else { |
| SkASSERT(stack_slot[v] != NA); |
| a->vmovups(r, A::Mem{A::rsp, stack_slot[v]*K*4}); |
| } |
| }; |
| auto store_to_stack = [&](Reg r, Val v) { |
| SkASSERT(next_stack_slot < nstack_slots); |
| stack_slot[v] = next_stack_slot++; |
| a->vmovups(A::Mem{A::rsp, stack_slot[v]*K*4}, r); |
| }; |
| #elif defined(__aarch64__) |
| const int K = 4; |
| const A::X N = A::x0, |
| GP0 = A::x8, |
| GP1 = A::x9, |
| arg[] = { A::x1, A::x2, A::x3, A::x4, A::x5, A::x6, A::x7 }; |
| |
| // We can use v0-v7 and v16-v31 freely; we'd need to preserve v8-v15 in enter/exit. |
| std::array<Val,32> regs = { |
| NA, NA, NA, NA, NA, NA, NA, NA, |
| RES,RES,RES,RES, RES,RES,RES,RES, |
| NA, NA, NA, NA, NA, NA, NA, NA, |
| NA, NA, NA, NA, NA, NA, NA, NA, |
| }; |
| |
| auto enter = [&]{ if (nstack_slots) { a->sub(A::sp, A::sp, nstack_slots*K*4); } }; |
| auto exit = [&]{ if (nstack_slots) { a->add(A::sp, A::sp, nstack_slots*K*4); } |
| a->ret(A::x30); }; |
| |
| auto load_from_memory = [&](Reg r, Val v) { |
| if (instructions[v].op == Op::splat) { |
| if (instructions[v].immA == 0) { |
| a->eor16b(r,r,r); |
| } else { |
| a->ldrq(r, constants.find(instructions[v].immA)); |
| } |
| } else { |
| SkASSERT(stack_slot[v] != NA); |
| a->ldrq(r, A::sp, stack_slot[v]); |
| } |
| }; |
| auto store_to_stack = [&](Reg r, Val v) { |
| SkASSERT(next_stack_slot < nstack_slots); |
| stack_slot[v] = next_stack_slot++; |
| a->strq(r, A::sp, stack_slot[v]); |
| }; |
| #endif |
| |
| *registers_used = 0; // We'll update this as we go. |
| |
| if (SK_ARRAY_COUNT(arg) < fImpl->strides.size()) { |
| return false; |
| } |
| |
| auto emit = [&](Val id, bool scalar) { |
| const int active_lanes = scalar ? 1 : K; |
| const OptimizedInstruction& inst = instructions[id]; |
| const Op op = inst.op; |
| const Val x = inst.x, |
| y = inst.y, |
| z = inst.z, |
| w = inst.w; |
| const int immA = inst.immA, |
| immB = inst.immB, |
| immC = inst.immC; |
| |
| // alloc_tmp() returns the first of N adjacent temporary registers, |
| // each freed manually with free_tmp() or noted as our result with mark_tmp_as_dst(). |
| auto alloc_tmp = [&](int N=1) -> Reg { |
| auto needs_spill = [&](Val v) -> bool { |
| SkASSERT(v >= 0); // {NA,TMP,RES} need to be handled before calling this. |
| return stack_slot[v] == NA // We haven't spilled it already? |
| && instructions[v].op != Op::splat; // No need to spill constants. |
| }; |
| |
| // We want to find a block of N adjacent registers requiring the fewest spills. |
| int best_block = -1, |
| min_spills = 0x7fff'ffff; |
| for (int block = 0; block+N <= (int)regs.size(); block++) { |
| int spills = 0; |
| for (int r = block; r < block+N; r++) { |
| Val v = regs[r]; |
| // Registers holding NA (nothing) are ideal, nothing to spill. |
| if (v == NA) { |
| continue; |
| } |
| // We can't spill anything REServed or that we'll need this instruction. |
| if (v == RES || |
| v == TMP || v == id || v == x || v == y || v == z || v == w) { |
| spills = 0x7fff'ffff; |
| block = r; // (optimization) continue outer loop at next register. |
| break; |
| } |
| // Usually here we've got a value v that we'd have to spill to the stack |
| // before reusing its register, but sometimes even now we get a freebie. |
| spills += needs_spill(v) ? 1 : 0; |
| } |
| |
| // TODO: non-arbitrary tie-breaking? |
| if (min_spills > spills) { |
| min_spills = spills; |
| best_block = block; |
| } |
| if (min_spills == 0) { |
| break; // (optimization) stop early if we find an unbeatable block. |
| } |
| } |
| |
| // TODO: our search's success isn't obviously guaranteed... it depends on N |
| // and the number and relative position in regs of any unspillable values. |
| // I think we should be able to get away with N≤2 on x86-64 and N≤4 on arm64; |
| // we'll need to revisit this logic should this assert fire. |
| SkASSERT(min_spills <= N); |
| |
| // Spill what needs spilling, and mark the block all as TMP. |
| for (int r = best_block; r < best_block+N; r++) { |
| Val& v = regs[r]; |
| *registers_used |= (1<<r); |
| |
| SkASSERT(v == NA || v >= 0); |
| if (v >= 0 && needs_spill(v)) { |
| store_to_stack((Reg)r, v); |
| SkASSERT(!needs_spill(v)); |
| min_spills--; |
| } |
| |
| v = TMP; |
| } |
| SkASSERT(min_spills == 0); |
| return (Reg)best_block; |
| }; |
| |
| auto free_tmp = [&](Reg r) { |
| SkASSERT(regs[r] == TMP); |
| regs[r] = NA; |
| }; |
| |
| // Which register holds dst,x,y,z,w for this instruction? NA if none does yet. |
| int rd = NA, |
| rx = NA, |
| ry = NA, |
| rz = NA, |
| rw = NA; |
| |
| auto update_regs = [&](Reg r, Val v) { |
| if (v == id) { rd = r; } |
| if (v == x) { rx = r; } |
| if (v == y) { ry = r; } |
| if (v == z) { rz = r; } |
| if (v == w) { rw = r; } |
| return r; |
| }; |
| |
| auto find_existing_reg = [&](Val v) -> int { |
| // Quick-check our working registers. |
| if (v == id && rd != NA) { return rd; } |
| if (v == x && rx != NA) { return rx; } |
| if (v == y && ry != NA) { return ry; } |
| if (v == z && rz != NA) { return rz; } |
| if (v == w && rw != NA) { return rw; } |
| |
| // Search inter-instruction register map. |
| for (auto [r,val] : SkMakeEnumerate(regs)) { |
| if (val == v) { |
| return update_regs((Reg)r, v); |
| } |
| } |
| return NA; |
| }; |
| |
| // Return a register for Val, holding that value if it already exists. |
| // During this instruction all calls to r(v) will return the same register. |
| auto r = [&](Val v) -> Reg { |
| SkASSERT(v >= 0); |
| |
| if (int found = find_existing_reg(v); found != NA) { |
| return (Reg)found; |
| } |
| |
| Reg r = alloc_tmp(); |
| SkASSERT(regs[r] == TMP); |
| |
| SkASSERT(v <= id); |
| if (v < id) { |
| // If v < id, we're loading one of this instruction's inputs. |
| // If v == id we're just allocating its destination register. |
| load_from_memory(r, v); |
| } |
| regs[r] = v; |
| return update_regs(r, v); |
| }; |
| |
| auto dies_here = [&](Val v) -> bool { |
| SkASSERT(v >= 0); |
| return instructions[v].death == id; |
| }; |
| |
| // Alias dst() to r(v) if dies_here(v). |
| auto try_alias = [&](Val v) -> bool { |
| SkASSERT(v == x || v == y || v == z || v == w); |
| if (dies_here(v)) { |
| rd = r(v); // Vals v and id share a register for this instruction. |
| regs[rd] = id; // Next instruction, Val id will be in the register, not Val v. |
| return true; |
| } |
| return false; |
| }; |
| |
| // Generally r(id), |
| // but with a hint, try to alias dst() to r(v) if dies_here(v). |
| auto dst = [&](Val hint1 = NA, Val hint2 = NA) -> Reg { |
| if (hint1 != NA && try_alias(hint1)) { return r(id); } |
| if (hint2 != NA && try_alias(hint2)) { return r(id); } |
| return r(id); |
| }; |
| |
| #if defined(__aarch64__) // Nothing sneaky, just unused on x86-64. |
| auto mark_tmp_as_dst = [&](Reg tmp) { |
| SkASSERT(regs[tmp] == TMP); |
| rd = tmp; |
| regs[rd] = id; |
| SkASSERT(dst() == tmp); |
| }; |
| #endif |
| |
| #if defined(__x86_64__) || defined(_M_X64) |
| // On x86 we can work with many values directly from the stack or program constant pool. |
| auto any = [&](Val v) -> A::Operand { |
| SkASSERT(v >= 0); |
| SkASSERT(v < id); |
| |
| if (int found = find_existing_reg(v); found != NA) { |
| return (Reg)found; |
| } |
| if (instructions[v].op == Op::splat) { |
| return constants.find(instructions[v].immA); |
| } |
| return A::Mem{A::rsp, stack_slot[v]*K*4}; |
| }; |
| |
| // This is never really worth asking except when any() might be used; |
| // if we need this value in ARM, might as well just call r(v) to get it into a register. |
| auto in_reg = [&](Val v) -> bool { |
| return find_existing_reg(v) != NA; |
| }; |
| #endif |
| |
| switch (op) { |
| // Make sure splat constants can be found by load_from_memory() or any(). |
| case Op::splat: |
| (void)constants[immA]; |
| break; |
| |
| #if defined(__x86_64__) || defined(_M_X64) |
| case Op::assert_true: { |
| a->vptest (r(x), &constants[0xffffffff]); |
| A::Label all_true; |
| a->jc(&all_true); |
| a->int3(); |
| a->label(&all_true); |
| } break; |
| |
| case Op::store8: |
| if (scalar) { |
| a->vpextrb(A::Mem{arg[immA]}, (A::Xmm)r(x), 0); |
| } else { |
| a->vpackusdw(dst(x), r(x), r(x)); |
| a->vpermq (dst(), dst(), 0xd8); |
| a->vpackuswb(dst(), dst(), dst()); |
| a->vmovq (A::Mem{arg[immA]}, (A::Xmm)dst()); |
| } break; |
| |
| case Op::store16: |
| if (scalar) { |
| a->vpextrw(A::Mem{arg[immA]}, (A::Xmm)r(x), 0); |
| } else { |
| a->vpackusdw(dst(x), r(x), r(x)); |
| a->vpermq (dst(), dst(), 0xd8); |
| a->vmovups (A::Mem{arg[immA]}, (A::Xmm)dst()); |
| } break; |
| |
| case Op::store32: if (scalar) { a->vmovd (A::Mem{arg[immA]}, (A::Xmm)r(x)); } |
| else { a->vmovups(A::Mem{arg[immA]}, r(x)); } |
| break; |
| |
| case Op::store64: if (scalar) { |
| a->vmovd(A::Mem{arg[immA],0}, (A::Xmm)r(x)); |
| a->vmovd(A::Mem{arg[immA],4}, (A::Xmm)r(y)); |
| } else { |
| // r(x) = {a,b,c,d|e,f,g,h} |
| // r(y) = {i,j,k,l|m,n,o,p} |
| // We want to write a,i,b,j,c,k,d,l,e,m... |
| A::Ymm L = alloc_tmp(), |
| H = alloc_tmp(); |
| a->vpunpckldq(L, r(x), any(y)); // L = {a,i,b,j|e,m,f,n} |
| a->vpunpckhdq(H, r(x), any(y)); // H = {c,k,d,l|g,o,h,p} |
| a->vperm2f128(dst(), L,H, 0x20); // = {a,i,b,j|c,k,d,l} |
| a->vmovups(A::Mem{arg[immA], 0}, dst()); |
| a->vperm2f128(dst(), L,H, 0x31); // = {e,m,f,n|g,o,h,p} |
| a->vmovups(A::Mem{arg[immA],32}, dst()); |
| free_tmp(L); |
| free_tmp(H); |
| } break; |
| |
| case Op::store128: { |
| // TODO: >32-bit stores |
| a->vmovd (A::Mem{arg[immA], 0*16 + 0}, (A::Xmm)r(x) ); |
| a->vmovd (A::Mem{arg[immA], 0*16 + 4}, (A::Xmm)r(y) ); |
| a->vmovd (A::Mem{arg[immA], 0*16 + 8}, (A::Xmm)r(z) ); |
| a->vmovd (A::Mem{arg[immA], 0*16 + 12}, (A::Xmm)r(w) ); |
| if (scalar) { break; } |
| |
| a->vpextrd(A::Mem{arg[immA], 1*16 + 0}, (A::Xmm)r(x), 1); |
| a->vpextrd(A::Mem{arg[immA], 1*16 + 4}, (A::Xmm)r(y), 1); |
| a->vpextrd(A::Mem{arg[immA], 1*16 + 8}, (A::Xmm)r(z), 1); |
| a->vpextrd(A::Mem{arg[immA], 1*16 + 12}, (A::Xmm)r(w), 1); |
| |
| a->vpextrd(A::Mem{arg[immA], 2*16 + 0}, (A::Xmm)r(x), 2); |
| a->vpextrd(A::Mem{arg[immA], 2*16 + 4}, (A::Xmm)r(y), 2); |
| a->vpextrd(A::Mem{arg[immA], 2*16 + 8}, (A::Xmm)r(z), 2); |
| a->vpextrd(A::Mem{arg[immA], 2*16 + 12}, (A::Xmm)r(w), 2); |
| |
| a->vpextrd(A::Mem{arg[immA], 3*16 + 0}, (A::Xmm)r(x), 3); |
| a->vpextrd(A::Mem{arg[immA], 3*16 + 4}, (A::Xmm)r(y), 3); |
| a->vpextrd(A::Mem{arg[immA], 3*16 + 8}, (A::Xmm)r(z), 3); |
| a->vpextrd(A::Mem{arg[immA], 3*16 + 12}, (A::Xmm)r(w), 3); |
| // Now we need to store the upper 128 bits of x,y,z,w. |
| // Storing in this order rather than interlacing minimizes temporaries. |
| a->vextracti128(dst(), r(x), 1); |
| a->vmovd (A::Mem{arg[immA], 4*16 + 0}, (A::Xmm)dst() ); |
| a->vpextrd(A::Mem{arg[immA], 5*16 + 0}, (A::Xmm)dst(), 1); |
| a->vpextrd(A::Mem{arg[immA], 6*16 + 0}, (A::Xmm)dst(), 2); |
| a->vpextrd(A::Mem{arg[immA], 7*16 + 0}, (A::Xmm)dst(), 3); |
| |
| a->vextracti128(dst(), r(y), 1); |
| a->vmovd (A::Mem{arg[immA], 4*16 + 4}, (A::Xmm)dst() ); |
| a->vpextrd(A::Mem{arg[immA], 5*16 + 4}, (A::Xmm)dst(), 1); |
| a->vpextrd(A::Mem{arg[immA], 6*16 + 4}, (A::Xmm)dst(), 2); |
| a->vpextrd(A::Mem{arg[immA], 7*16 + 4}, (A::Xmm)dst(), 3); |
| |
| a->vextracti128(dst(), r(z), 1); |
| a->vmovd (A::Mem{arg[immA], 4*16 + 8}, (A::Xmm)dst() ); |
| a->vpextrd(A::Mem{arg[immA], 5*16 + 8}, (A::Xmm)dst(), 1); |
| a->vpextrd(A::Mem{arg[immA], 6*16 + 8}, (A::Xmm)dst(), 2); |
| a->vpextrd(A::Mem{arg[immA], 7*16 + 8}, (A::Xmm)dst(), 3); |
| |
| a->vextracti128(dst(), r(w), 1); |
| a->vmovd (A::Mem{arg[immA], 4*16 + 12}, (A::Xmm)dst() ); |
| a->vpextrd(A::Mem{arg[immA], 5*16 + 12}, (A::Xmm)dst(), 1); |
| a->vpextrd(A::Mem{arg[immA], 6*16 + 12}, (A::Xmm)dst(), 2); |
| a->vpextrd(A::Mem{arg[immA], 7*16 + 12}, (A::Xmm)dst(), 3); |
| } break; |
| |
| case Op::load8: if (scalar) { |
| a->vpxor (dst(), dst(), dst()); |
| a->vpinsrb((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{arg[immA]}, 0); |
| } else { |
| a->vpmovzxbd(dst(), A::Mem{arg[immA]}); |
| } break; |
| |
| case Op::load16: if (scalar) { |
| a->vpxor (dst(), dst(), dst()); |
| a->vpinsrw((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{arg[immA]}, 0); |
| } else { |
| a->vpmovzxwd(dst(), A::Mem{arg[immA]}); |
| } break; |
| |
| case Op::load32: if (scalar) { a->vmovd ((A::Xmm)dst(), A::Mem{arg[immA]}); } |
| else { a->vmovups( dst(), A::Mem{arg[immA]}); } |
| break; |
| |
| case Op::load64: if (scalar) { |
| a->vmovd((A::Xmm)dst(), A::Mem{arg[immA], 4*immB}); |
| } else { |
| A::Ymm tmp = alloc_tmp(); |
| a->vmovups(tmp, &load64_index); |
| a->vpermps(dst(), tmp, A::Mem{arg[immA], 0}); |
| a->vpermps( tmp, tmp, A::Mem{arg[immA], 32}); |
| // Low 128 bits holds immB=0 lanes, high 128 bits holds immB=1. |
| a->vperm2f128(dst(), dst(),tmp, immB ? 0x31 : 0x20); |
| free_tmp(tmp); |
| } break; |
| |
| case Op::load128: if (scalar) { |
| a->vmovd((A::Xmm)dst(), A::Mem{arg[immA], 4*immB}); |
| } else { |
| // Load 4 low values into xmm tmp, |
| A::Ymm tmp = alloc_tmp(); |
| A::Xmm t = (A::Xmm)tmp; |
| a->vmovd (t, A::Mem{arg[immA], 0*16 + 4*immB} ); |
| a->vpinsrd(t,t, A::Mem{arg[immA], 1*16 + 4*immB}, 1); |
| a->vpinsrd(t,t, A::Mem{arg[immA], 2*16 + 4*immB}, 2); |
| a->vpinsrd(t,t, A::Mem{arg[immA], 3*16 + 4*immB}, 3); |
| |
| // Load 4 high values into xmm dst(), |
| A::Xmm d = (A::Xmm)dst(); |
| a->vmovd (d, A::Mem{arg[immA], 4*16 + 4*immB} ); |
| a->vpinsrd(d,d, A::Mem{arg[immA], 5*16 + 4*immB}, 1); |
| a->vpinsrd(d,d, A::Mem{arg[immA], 6*16 + 4*immB}, 2); |
| a->vpinsrd(d,d, A::Mem{arg[immA], 7*16 + 4*immB}, 3); |
| |
| // Merge the two, ymm dst() = {xmm tmp|xmm dst()} |
| a->vperm2f128(dst(), tmp,dst(), 0x20); |
| free_tmp(tmp); |
| } break; |
| |
| case Op::gather8: { |
| // As usual, the gather base pointer is immB bytes off of uniform immA. |
| a->mov(GP0, A::Mem{arg[immA], immB}); |
| |
| A::Ymm tmp = alloc_tmp(); |
| a->vmovups(tmp, any(x)); |
| |
| for (int i = 0; i < active_lanes; i++) { |
| if (i == 4) { |
| // vpextrd can only pluck indices out from an Xmm register, |
| // so we manually swap over to the top when we're halfway through. |
| a->vextracti128((A::Xmm)tmp, tmp, 1); |
| } |
| a->vpextrd(GP1, (A::Xmm)tmp, i%4); |
| a->vpinsrb((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{GP0,0,GP1,A::ONE}, i); |
| } |
| a->vpmovzxbd(dst(), dst()); |
| free_tmp(tmp); |
| } break; |
| |
| case Op::gather16: { |
| // Just as gather8 except vpinsrb->vpinsrw, ONE->TWO, and vpmovzxbd->vpmovzxwd. |
| a->mov(GP0, A::Mem{arg[immA], immB}); |
| |
| A::Ymm tmp = alloc_tmp(); |
| a->vmovups(tmp, any(x)); |
| |
| for (int i = 0; i < active_lanes; i++) { |
| if (i == 4) { |
| a->vextracti128((A::Xmm)tmp, tmp, 1); |
| } |
| a->vpextrd(GP1, (A::Xmm)tmp, i%4); |
| a->vpinsrw((A::Xmm)dst(), (A::Xmm)dst(), A::Mem{GP0,0,GP1,A::TWO}, i); |
| } |
| a->vpmovzxwd(dst(), dst()); |
| free_tmp(tmp); |
| } break; |
| |
| case Op::gather32: |
| if (scalar) { |
| // Our gather base pointer is immB bytes off of uniform immA. |
| a->mov(GP0, A::Mem{arg[immA], immB}); |
| |
| // Grab our index from lane 0 of the index argument. |
| a->vmovd(GP1, (A::Xmm)r(x)); |
| |
| // dst = *(base + 4*index) |
| a->vmovd((A::Xmm)dst(x), A::Mem{GP0, 0, GP1, A::FOUR}); |
| } else { |
| a->mov(GP0, A::Mem{arg[immA], immB}); |
| |
| A::Ymm mask = alloc_tmp(); |
| a->vpcmpeqd(mask, mask, mask); // (All lanes enabled.) |
| |
| a->vgatherdps(dst(), A::FOUR, r(x), GP0, mask); |
| free_tmp(mask); |
| } |
| break; |
| |
| case Op::uniform32: a->vbroadcastss(dst(), A::Mem{arg[immA], immB}); |
| break; |
| |
| case Op::array32: a->mov(GP0, A::Mem{arg[immA], immB}); |
| a->vbroadcastss(dst(), A::Mem{GP0, immC}); |
| break; |
| |
| case Op::index: a->vmovd((A::Xmm)dst(), N); |
| a->vbroadcastss(dst(), dst()); |
| a->vpsubd(dst(), dst(), &iota); |
| break; |
| |
| // We can swap the arguments of symmetric instructions to make better use of any(). |
| case Op::add_f32: |
| if (in_reg(x)) { a->vaddps(dst(x), r(x), any(y)); } |
| else { a->vaddps(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op::mul_f32: |
| if (in_reg(x)) { a->vmulps(dst(x), r(x), any(y)); } |
| else { a->vmulps(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op::sub_f32: a->vsubps(dst(x), r(x), any(y)); break; |
| case Op::div_f32: a->vdivps(dst(x), r(x), any(y)); break; |
| case Op::min_f32: a->vminps(dst(y), r(y), any(x)); break; // Order matters, |
| case Op::max_f32: a->vmaxps(dst(y), r(y), any(x)); break; // see test SkVM_min_max. |
| |
| case Op::fma_f32: |
| if (try_alias(x)) { a->vfmadd132ps(dst(x), r(z), any(y)); } else |
| if (try_alias(y)) { a->vfmadd213ps(dst(y), r(x), any(z)); } else |
| if (try_alias(z)) { a->vfmadd231ps(dst(z), r(x), any(y)); } else |
| { a->vmovups (dst(), any(x)); |
| a->vfmadd132ps(dst(), r(z), any(y)); } |
| break; |
| |
| case Op::fms_f32: |
| if (try_alias(x)) { a->vfmsub132ps(dst(x), r(z), any(y)); } else |
| if (try_alias(y)) { a->vfmsub213ps(dst(y), r(x), any(z)); } else |
| if (try_alias(z)) { a->vfmsub231ps(dst(z), r(x), any(y)); } else |
| { a->vmovups (dst(), any(x)); |
| a->vfmsub132ps(dst(), r(z), any(y)); } |
| break; |
| |
| case Op::fnma_f32: |
| if (try_alias(x)) { a->vfnmadd132ps(dst(x), r(z), any(y)); } else |
| if (try_alias(y)) { a->vfnmadd213ps(dst(y), r(x), any(z)); } else |
| if (try_alias(z)) { a->vfnmadd231ps(dst(z), r(x), any(y)); } else |
| { a->vmovups (dst(), any(x)); |
| a->vfnmadd132ps(dst(), r(z), any(y)); } |
| break; |
| |
| // In situations like this we want to try aliasing dst(x) when x is |
| // already in a register, but not if we'd have to load it from the stack |
| // just to alias it. That's done better directly into the new register. |
| case Op::sqrt_f32: |
| if (in_reg(x)) { a->vsqrtps(dst(x), r(x)); } |
| else { a->vsqrtps(dst(), any(x)); } |
| break; |
| |
| case Op::add_i32: |
| if (in_reg(x)) { a->vpaddd(dst(x), r(x), any(y)); } |
| else { a->vpaddd(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op::mul_i32: |
| if (in_reg(x)) { a->vpmulld(dst(x), r(x), any(y)); } |
| else { a->vpmulld(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op::sub_i32: a->vpsubd(dst(x), r(x), any(y)); break; |
| |
| case Op::bit_and: |
| if (in_reg(x)) { a->vpand(dst(x), r(x), any(y)); } |
| else { a->vpand(dst(y), r(y), any(x)); } |
| break; |
| case Op::bit_or: |
| if (in_reg(x)) { a->vpor(dst(x), r(x), any(y)); } |
| else { a->vpor(dst(y), r(y), any(x)); } |
| break; |
| case Op::bit_xor: |
| if (in_reg(x)) { a->vpxor(dst(x), r(x), any(y)); } |
| else { a->vpxor(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op::bit_clear: a->vpandn(dst(y), r(y), any(x)); break; // Notice, y then x. |
| |
| case Op::select: |
| if (try_alias(z)) { a->vpblendvb(dst(z), r(z), any(y), r(x)); } |
| else { a->vpblendvb(dst(x), r(z), any(y), r(x)); } |
| break; |
| |
| case Op::shl_i32: a->vpslld(dst(x), r(x), immA); break; |
| case Op::shr_i32: a->vpsrld(dst(x), r(x), immA); break; |
| case Op::sra_i32: a->vpsrad(dst(x), r(x), immA); break; |
| |
| case Op::eq_i32: |
| if (in_reg(x)) { a->vpcmpeqd(dst(x), r(x), any(y)); } |
| else { a->vpcmpeqd(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op::gt_i32: a->vpcmpgtd(dst(), r(x), any(y)); break; |
| |
| case Op::eq_f32: |
| if (in_reg(x)) { a->vcmpeqps(dst(x), r(x), any(y)); } |
| else { a->vcmpeqps(dst(y), r(y), any(x)); } |
| break; |
| case Op::neq_f32: |
| if (in_reg(x)) { a->vcmpneqps(dst(x), r(x), any(y)); } |
| else { a->vcmpneqps(dst(y), r(y), any(x)); } |
| break; |
| |
| case Op:: gt_f32: a->vcmpltps (dst(y), r(y), any(x)); break; |
| case Op::gte_f32: a->vcmpleps (dst(y), r(y), any(x)); break; |
| |
| case Op::ceil: |
| if (in_reg(x)) { a->vroundps(dst(x), r(x), Assembler::CEIL); } |
| else { a->vroundps(dst(), any(x), Assembler::CEIL); } |
| break; |
| |
| case Op::floor: |
| if (in_reg(x)) { a->vroundps(dst(x), r(x), Assembler::FLOOR); } |
| else { a->vroundps(dst(), any(x), Assembler::FLOOR); } |
| break; |
| |
| case Op::to_f32: |
| if (in_reg(x)) { a->vcvtdq2ps(dst(x), r(x)); } |
| else { a->vcvtdq2ps(dst(), any(x)); } |
| break; |
| |
| case Op::trunc: |
| if (in_reg(x)) { a->vcvttps2dq(dst(x), r(x)); } |
| else { a->vcvttps2dq(dst(), any(x)); } |
| break; |
| |
| case Op::round: |
| if (in_reg(x)) { a->vcvtps2dq(dst(x), r(x)); } |
| else { a->vcvtps2dq(dst(), any(x)); } |
| break; |
| |
| case Op::to_fp16: |
| a->vcvtps2ph(dst(x), r(x), A::CURRENT); // f32 ymm -> f16 xmm |
| a->vpmovzxwd(dst(), dst()); // f16 xmm -> f16 ymm |
| break; |
| |
| case Op::from_fp16: |
| a->vpackusdw(dst(x), r(x), r(x)); // f16 ymm -> f16 xmm |
| a->vpermq (dst(), dst(), 0xd8); // swap middle two 64-bit lanes |
| a->vcvtph2ps(dst(), dst()); // f16 xmm -> f32 ymm |
| break; |
| |
| #elif defined(__aarch64__) |
| case Op::assert_true: { |
| a->uminv4s(dst(), r(x)); // uminv acts like an all() across the vector. |
| a->movs(GP0, dst(), 0); |
| A::Label all_true; |
| a->cbnz(GP0, &all_true); |
| a->brk(0); |
| a->label(&all_true); |
| } break; |
| |
| case Op::index: { |
| A::V tmp = alloc_tmp(); |
| a->ldrq (tmp, &iota); |
| a->dup4s(dst(), N); |
| a->sub4s(dst(), dst(), tmp); |
| free_tmp(tmp); |
| } break; |
| |
| case Op::store8: a->xtns2h(dst(x), r(x)); |
| a->xtnh2b(dst(), dst()); |
| if (scalar) { a->strb (dst(), arg[immA]); } |
| else { a->strs (dst(), arg[immA]); } |
| break; |
| |
| case Op::store16: a->xtns2h(dst(x), r(x)); |
| if (scalar) { a->strh (dst(), arg[immA]); } |
| else { a->strd (dst(), arg[immA]); } |
| break; |
| |
| case Op::store32: if (scalar) { a->strs(r(x), arg[immA]); } |
| else { a->strq(r(x), arg[immA]); } |
| break; |
| |
| case Op::store64: if (scalar) { |
| a->strs(r(x), arg[immA], 0); |
| a->strs(r(y), arg[immA], 1); |
| } else if (r(y) == r(x)+1) { |
| a->st24s(r(x), arg[immA]); |
| } else { |
| Reg tmp0 = alloc_tmp(2), |
| tmp1 = (Reg)(tmp0+1); |
| a->orr16b(tmp0, r(x), r(x)); |
| a->orr16b(tmp1, r(y), r(y)); |
| a-> st24s(tmp0, arg[immA]); |
| free_tmp(tmp0); |
| free_tmp(tmp1); |
| } break; |
| |
| case Op::store128: |
| if (scalar) { |
| a->strs(r(x), arg[immA], 0); |
| a->strs(r(y), arg[immA], 1); |
| a->strs(r(z), arg[immA], 2); |
| a->strs(r(w), arg[immA], 3); |
| } else if (r(y) == r(x)+1 && |
| r(z) == r(x)+2 && |
| r(w) == r(x)+3) { |
| a->st44s(r(x), arg[immA]); |
| } else { |
| Reg tmp0 = alloc_tmp(4), |
| tmp1 = (Reg)(tmp0+1), |
| tmp2 = (Reg)(tmp0+2), |
| tmp3 = (Reg)(tmp0+3); |
| a->orr16b(tmp0, r(x), r(x)); |
| a->orr16b(tmp1, r(y), r(y)); |
| a->orr16b(tmp2, r(z), r(z)); |
| a->orr16b(tmp3, r(w), r(w)); |
| a-> st44s(tmp0, arg[immA]); |
| free_tmp(tmp0); |
| free_tmp(tmp1); |
| free_tmp(tmp2); |
| free_tmp(tmp3); |
| } break; |
| |
| |
| case Op::load8: if (scalar) { a->ldrb(dst(), arg[immA]); } |
| else { a->ldrs(dst(), arg[immA]); } |
| a->uxtlb2h(dst(), dst()); |
| a->uxtlh2s(dst(), dst()); |
| break; |
| |
| case Op::load16: if (scalar) { a->ldrh(dst(), arg[immA]); } |
| else { a->ldrd(dst(), arg[immA]); } |
| a->uxtlh2s(dst(), dst()); |
| break; |
| |
| case Op::load32: if (scalar) { a->ldrs(dst(), arg[immA]); } |
| else { a->ldrq(dst(), arg[immA]); } |
| break; |
| |
| case Op::load64: if (scalar) { |
| a->ldrs(dst(), arg[immA], immB); |
| } else { |
| Reg tmp0 = alloc_tmp(2), |
| tmp1 = (Reg)(tmp0+1); |
| a->ld24s(tmp0, arg[immA]); |
| // TODO: return both |
| switch (immB) { |
| case 0: mark_tmp_as_dst(tmp0); free_tmp(tmp1); break; |
| case 1: mark_tmp_as_dst(tmp1); free_tmp(tmp0); break; |
| } |
| } break; |
| |
| case Op::load128: if (scalar) { |
| a->ldrs(dst(), arg[immA], immB); |
| } else { |
| Reg tmp0 = alloc_tmp(4), |
| tmp1 = (Reg)(tmp0+1), |
| tmp2 = (Reg)(tmp0+2), |
| tmp3 = (Reg)(tmp0+3); |
| a->ld44s(tmp0, arg[immA]); |
| // TODO: return all four |
| switch (immB) { |
| case 0: mark_tmp_as_dst(tmp0); break; |
| case 1: mark_tmp_as_dst(tmp1); break; |
| case 2: mark_tmp_as_dst(tmp2); break; |
| case 3: mark_tmp_as_dst(tmp3); break; |
| } |
| if (immB != 0) { free_tmp(tmp0); } |
| if (immB != 1) { free_tmp(tmp1); } |
| if (immB != 2) { free_tmp(tmp2); } |
| if (immB != 3) { free_tmp(tmp3); } |
| } break; |
| |
| case Op::uniform32: a->add(GP0, arg[immA], immB); |
| a->ld1r4s(dst(), GP0); |
| break; |
| |
| case Op::array32: a->add(GP0, arg[immA], immB); |
| a->ldrd(GP0, GP0); |
| a->add(GP0, GP0, immC); |
| a->ld1r4s(dst(), GP0); |
| break; |
| |
| case Op::gather8: { |
| // As usual, the gather base pointer is immB bytes off of uniform immA. |
| a->add (GP0, arg[immA], immB); // GP0 = &(gather base pointer) |
| a->ldrd(GP0, GP0); // GP0 = gather base pointer |
| |
| for (int i = 0; i < active_lanes; i++) { |
| a->movs(GP1, r(x), i); // Extract index lane i into GP1. |
| a->add (GP1, GP0, GP1); // Add the gather base pointer. |
| a->ldrb(GP1, GP1); // Load that byte. |
| a->inss(dst(x), GP1, i); // Insert it into dst() lane i. |
| } |
| } break; |
| |
| // See gather8 for general idea; comments here only where gather16 differs. |
| case Op::gather16: { |
| a->add (GP0, arg[immA], immB); |
| a->ldrd(GP0, GP0); |
| for (int i = 0; i < active_lanes; i++) { |
| a->movs(GP1, r(x), i); |
| a->add (GP1, GP0, GP1, A::LSL, 1); // Scale index 2x into a byte offset. |
| a->ldrh(GP1, GP1); // 2-byte load. |
| a->inss(dst(x), GP1, i); |
| } |
| } break; |
| |
| // See gather8 for general idea; comments here only where gather32 differs. |
| case Op::gather32: { |
| a->add (GP0, arg[immA], immB); |
| a->ldrd(GP0, GP0); |
| for (int i = 0; i < active_lanes; i++) { |
| a->movs(GP1, r(x), i); |
| a->add (GP1, GP0, GP1, A::LSL, 2); // Scale index 4x into a byte offset. |
| a->ldrs(GP1, GP1); // 4-byte load. |
| a->inss(dst(x), GP1, i); |
| } |
| } break; |
| |
| case Op::add_f32: a->fadd4s(dst(x,y), r(x), r(y)); break; |
| case Op::sub_f32: a->fsub4s(dst(x,y), r(x), r(y)); break; |
| case Op::mul_f32: a->fmul4s(dst(x,y), r(x), r(y)); break; |
| case Op::div_f32: a->fdiv4s(dst(x,y), r(x), r(y)); break; |
| |
| case Op::sqrt_f32: a->fsqrt4s(dst(x), r(x)); break; |
| |
| case Op::fma_f32: // fmla.4s is z += x*y |
| if (try_alias(z)) { a->fmla4s( r(z), r(x), r(y)); } |
| else { a->orr16b(dst(), r(z), r(z)); |
| a->fmla4s(dst(), r(x), r(y)); } |
| break; |
| |
| case Op::fnma_f32: // fmls.4s is z -= x*y |
| if (try_alias(z)) { a->fmls4s( r(z), r(x), r(y)); } |
| else { a->orr16b(dst(), r(z), r(z)); |
| a->fmls4s(dst(), r(x), r(y)); } |
| break; |
| |
| case Op::fms_f32: // calculate z - xy, then negate to xy - z |
| if (try_alias(z)) { a->fmls4s( r(z), r(x), r(y)); } |
| else { a->orr16b(dst(), r(z), r(z)); |
| a->fmls4s(dst(), r(x), r(y)); } |
| a->fneg4s(dst(), dst()); |
| break; |
| |
| case Op:: gt_f32: a->fcmgt4s (dst(x,y), r(x), r(y)); break; |
| case Op::gte_f32: a->fcmge4s (dst(x,y), r(x), r(y)); break; |
| case Op:: eq_f32: a->fcmeq4s (dst(x,y), r(x), r(y)); break; |
| case Op::neq_f32: a->fcmeq4s (dst(x,y), r(x), r(y)); |
| a->not16b (dst(), dst()); break; |
| |
| |
| case Op::add_i32: a->add4s(dst(x,y), r(x), r(y)); break; |
| case Op::sub_i32: a->sub4s(dst(x,y), r(x), r(y)); break; |
| case Op::mul_i32: a->mul4s(dst(x,y), r(x), r(y)); break; |
| |
| case Op::bit_and : a->and16b(dst(x,y), r(x), r(y)); break; |
| case Op::bit_or : a->orr16b(dst(x,y), r(x), r(y)); break; |
| case Op::bit_xor : a->eor16b(dst(x,y), r(x), r(y)); break; |
| case Op::bit_clear: a->bic16b(dst(x,y), r(x), r(y)); break; |
| |
| case Op::select: // bsl16b is x = x ? y : z |
| if (try_alias(x)) { a->bsl16b( r(x), r(y), r(z)); } |
| else { a->orr16b(dst(), r(x), r(x)); |
| a->bsl16b(dst(), r(y), r(z)); } |
| break; |
| |
| // fmin4s and fmax4s don't work the way we want with NaN, |
| // so we write them the long way: |
| case Op::min_f32: // min(x,y) = y<x ? y : x |
| a->fcmgt4s(dst(), r(x), r(y)); |
| a->bsl16b (dst(), r(y), r(x)); |
| break; |
| |
| case Op::max_f32: // max(x,y) = x<y ? y : x |
| a->fcmgt4s(dst(), r(y), r(x)); |
| a->bsl16b (dst(), r(y), r(x)); |
| break; |
| |
| case Op::shl_i32: a-> shl4s(dst(x), r(x), immA); break; |
| case Op::shr_i32: a->ushr4s(dst(x), r(x), immA); break; |
| case Op::sra_i32: a->sshr4s(dst(x), r(x), immA); break; |
| |
| case Op::eq_i32: a->cmeq4s(dst(x,y), r(x), r(y)); break; |
| case Op::gt_i32: a->cmgt4s(dst(x,y), r(x), r(y)); break; |
| |
| case Op::to_f32: a->scvtf4s (dst(x), r(x)); break; |
| case Op::trunc: a->fcvtzs4s(dst(x), r(x)); break; |
| case Op::round: a->fcvtns4s(dst(x), r(x)); break; |
| case Op::ceil: a->frintp4s(dst(x), r(x)); break; |
| case Op::floor: a->frintm4s(dst(x), r(x)); break; |
| |
| case Op::to_fp16: |
| a->fcvtn (dst(x), r(x)); // 4x f32 -> 4x f16 in bottom four lanes |
| a->uxtlh2s(dst(), dst()); // expand to 4x f16 in even 16-bit lanes |
| break; |
| |
| case Op::from_fp16: |
| a->xtns2h(dst(x), r(x)); // pack even 16-bit lanes into bottom four lanes |
| a->fcvtl (dst(), dst()); // 4x f16 -> 4x f32 |
| break; |
| #endif |
| } |
| |
| // Proactively free the registers holding any value that dies here. |
| if (rd != NA && dies_here(regs[rd])) { regs[rd] = NA; } |
| if (rx != NA && regs[rx] != NA && dies_here(regs[rx])) { regs[rx] = NA; } |
| if (ry != NA && regs[ry] != NA && dies_here(regs[ry])) { regs[ry] = NA; } |
| if (rz != NA && regs[rz] != NA && dies_here(regs[rz])) { regs[rz] = NA; } |
| if (rw != NA && regs[rw] != NA && dies_here(regs[rw])) { regs[rw] = NA; } |
| return true; |
| }; |
| |
| #if defined(__x86_64__) || defined(_M_X64) |
| auto jump_if_less = [&](A::Label* l) { a->jl (l); }; |
| auto jump = [&](A::Label* l) { a->jmp(l); }; |
| |
| auto add = [&](A::GP64 gp, int imm) { a->add(gp, imm); }; |
| auto sub = [&](A::GP64 gp, int imm) { a->sub(gp, imm); }; |
| #elif defined(__aarch64__) |
| auto jump_if_less = [&](A::Label* l) { a->blt(l); }; |
| auto jump = [&](A::Label* l) { a->b (l); }; |
| |
| auto add = [&](A::X gp, int imm) { a->add(gp, gp, imm); }; |
| auto sub = [&](A::X gp, int imm) { a->sub(gp, gp, imm); }; |
| #endif |
| |
| A::Label body, |
| tail, |
| done; |
| |
| enter(); |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| if (instructions[id].can_hoist && !emit(id, /*scalar=*/false)) { |
| return false; |
| } |
| } |
| |
| // This point marks a kind of canonical fixed point for register contents: if loop |
| // code is generated as if these registers are holding these values, the next time |
| // the loop comes around we'd better find those same registers holding those same values. |
| auto restore_incoming_regs = [&,incoming=regs,saved_stack_slot=stack_slot, |
| saved_next_stack_slot=next_stack_slot]{ |
| for (int r = 0; r < (int)regs.size(); r++) { |
| if (regs[r] != incoming[r]) { |
| regs[r] = incoming[r]; |
| if (regs[r] >= 0) { |
| load_from_memory((Reg)r, regs[r]); |
| } |
| } |
| } |
| *stack_hint = std::max(*stack_hint, next_stack_slot); |
| stack_slot = saved_stack_slot; |
| next_stack_slot = saved_next_stack_slot; |
| }; |
| |
| a->label(&body); |
| { |
| a->cmp(N, K); |
| jump_if_less(&tail); |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| if (!instructions[id].can_hoist && !emit(id, /*scalar=*/false)) { |
| return false; |
| } |
| } |
| restore_incoming_regs(); |
| for (int i = 0; i < (int)fImpl->strides.size(); i++) { |
| if (fImpl->strides[i]) { |
| add(arg[i], K*fImpl->strides[i]); |
| } |
| } |
| sub(N, K); |
| jump(&body); |
| } |
| |
| a->label(&tail); |
| { |
| a->cmp(N, 1); |
| jump_if_less(&done); |
| for (Val id = 0; id < (Val)instructions.size(); id++) { |
| if (!instructions[id].can_hoist && !emit(id, /*scalar=*/true)) { |
| return false; |
| } |
| } |
| restore_incoming_regs(); |
| for (int i = 0; i < (int)fImpl->strides.size(); i++) { |
| if (fImpl->strides[i]) { |
| add(arg[i], 1*fImpl->strides[i]); |
| } |
| } |
| sub(N, 1); |
| jump(&tail); |
| } |
| |
| a->label(&done); |
| { |
| exit(); |
| } |
| |
| // Except for explicit aligned load and store instructions, AVX allows |
| // memory operands to be unaligned. So even though we're creating 16 |
| // byte patterns on ARM or 32-byte patterns on x86, we only need to |
| // align to 4 bytes, the element size and alignment requirement. |
| |
| constants.foreach([&](int imm, A::Label* label) { |
| a->align(4); |
| a->label(label); |
| for (int i = 0; i < K; i++) { |
| a->word(imm); |
| } |
| }); |
| |
| if (!iota.references.empty()) { |
| a->align(4); |
| a->label(&iota); // 0,1,2,3,4,... |
| for (int i = 0; i < K; i++) { |
| a->word(i); |
| } |
| } |
| |
| if (!load64_index.references.empty()) { |
| a->align(4); |
| a->label(&load64_index); // {0,2,4,6|1,3,5,7} |
| a->word(0); a->word(2); a->word(4); a->word(6); |
| a->word(1); a->word(3); a->word(5); a->word(7); |
| } |
| |
| return true; |
| } |
| |
| void Program::setupJIT(const std::vector<OptimizedInstruction>& instructions, |
| const char* debug_name) { |
| // Assemble with no buffer to determine a.size() (the number of bytes we'll assemble) |
| // and stack_hint/registers_used to feed forward into the next jit() call. |
| Assembler a{nullptr}; |
| int stack_hint = -1; |
| uint32_t registers_used = 0xffff'ffff; // Start conservatively with all. |
| if (!this->jit(instructions, &stack_hint, ®isters_used, &a)) { |
| return; |
| } |
| |
| fImpl->jit_size = a.size(); |
| void* jit_entry = alloc_jit_buffer(&fImpl->jit_size); |
| fImpl->jit_entry.store(jit_entry); |
| |
| // Assemble the program for real with stack_hint/registers_used as feedback from first call. |
| a = Assembler{jit_entry}; |
| SkAssertResult(this->jit(instructions, &stack_hint, ®isters_used, &a)); |
| SkASSERT(a.size() <= fImpl->jit_size); |
| |
| // Remap as executable, and flush caches on platforms that need that. |
| remap_as_executable(jit_entry, fImpl->jit_size); |
| |
| notify_vtune(debug_name, jit_entry, fImpl->jit_size); |
| |
| #if !defined(SK_BUILD_FOR_WIN) |
| // For profiling and debugging, it's helpful to have this code loaded |
| // dynamically rather than just jumping info fImpl->jit_entry. |
| if (gSkVMJITViaDylib) { |
| // Dump the raw program binary. |
| SkString path = SkStringPrintf("/tmp/%s.XXXXXX", debug_name); |
| int fd = mkstemp(path.writable_str()); |
| ::write(fd, jit_entry, a.size()); |
| close(fd); |
| |
| this->dropJIT(); // (unmap and null out fImpl->jit_entry.) |
| |
| // Convert it in-place to a dynamic library with a single symbol "skvm_jit": |
| SkString cmd = SkStringPrintf( |
| "echo '.global _skvm_jit\n_skvm_jit: .incbin \"%s\"'" |
| " | clang -x assembler -shared - -o %s", |
| path.c_str(), path.c_str()); |
| system(cmd.c_str()); |
| |
| // Load that dynamic library and look up skvm_jit(). |
| fImpl->dylib = dlopen(path.c_str(), RTLD_NOW|RTLD_LOCAL); |
| void* sym = nullptr; |
| for (const char* name : {"skvm_jit", "_skvm_jit"} ) { |
| if (!sym) { sym = dlsym(fImpl->dylib, name); } |
| } |
| fImpl->jit_entry.store(sym); |
| } |
| #endif |
| } |
| #endif |
| |
| } // namespace skvm |