blob: 113adb2ba23e9dc53a5a2febcb8006803074c20e [file] [log] [blame]
// Graphite-specific vertex shader code
// Wang's formula gives the minimum number of evenly spaced (in the parametric sense) line segments
// that a bezier curve must be chopped into in order to guarantee all lines stay within a distance
// of "1/precision" pixels from the true curve. Its definition for a bezier curve of degree "n" is
// as follows:
//
// maxLength = max([length(p[i+2] - 2p[i+1] + p[i]) for (0 <= i <= n-2)])
// numParametricSegments = sqrt(maxLength * precision * n*(n - 1)/8)
//
// (Goldman, Ron. (2003). 5.6.3 Wang's Formula. "Pyramid Algorithms: A Dynamic Programming Approach
// to Curves and Surfaces for Geometric Modeling". Morgan Kaufmann Publishers.)
const float $Degree = 3;
const float $Precision = 1;
const float $LengthTerm = ($Degree * ($Degree - 1) / 8.0) * $Precision;
const float $LengthTermPow2 = (($Degree * $Degree) * (($Degree - 1) * ($Degree - 1)) / 64.0) *
($Precision * $Precision);
// Returns the length squared of the largest forward difference from Wang's cubic formula.
float wangs_formula_max_fdiff_pow2(float2 p0, float2 p1, float2 p2, float2 p3,
float2x2 matrix) {
float2 d0 = matrix * (fma(float2(-2), p1, p2) + p0);
float2 d1 = matrix * (fma(float2(-2), p2, p3) + p1);
return max(dot(d0,d0), dot(d1,d1));
}
float wangs_formula_cubic(float _precision_, float2 p0, float2 p1, float2 p2, float2 p3,
float2x2 matrix) {
float m = wangs_formula_max_fdiff_pow2(p0, p1, p2, p3, matrix);
return max(ceil(sqrt($LengthTerm * _precision_ * sqrt(m))), 1.0);
}
float wangs_formula_cubic_log2(float _precision_, float2 p0, float2 p1, float2 p2, float2 p3,
float2x2 matrix) {
float m = wangs_formula_max_fdiff_pow2(p0, p1, p2, p3, matrix);
return ceil(log2(max($LengthTermPow2 * _precision_ * _precision_ * m, 1.0)) * .25);
}
float wangs_formula_conic_pow2(float _precision_, float2 p0, float2 p1, float2 p2, float w) {
// Translate the bounding box center to the origin.
float2 C = (min(min(p0, p1), p2) + max(max(p0, p1), p2)) * 0.5;
p0 -= C;
p1 -= C;
p2 -= C;
// Compute max length.
float m = sqrt(max(max(dot(p0,p0), dot(p1,p1)), dot(p2,p2)));
// Compute forward differences.
float2 dp = fma(float2(-2.0 * w), p1, p0) + p2;
float dw = abs(fma(-2.0, w, 2.0));
// Compute numerator and denominator for parametric step size of linearization. Here, the
// epsilon referenced from the cited paper is 1/precision.
float rp_minus_1 = max(0.0, fma(m, _precision_, -1.0));
float numer = length(dp) * _precision_ + rp_minus_1 * dw;
float denom = 4 * min(w, 1.0);
return numer/denom;
}
float wangs_formula_conic(float _precision_, float2 p0, float2 p1, float2 p2, float w) {
float n2 = wangs_formula_conic_pow2(_precision_, p0, p1, p2, w);
return max(ceil(sqrt(n2)), 1.0);
}
float wangs_formula_conic_log2(float _precision_, float2 p0, float2 p1, float2 p2, float w) {
float n2 = wangs_formula_conic_pow2(_precision_, p0, p1, p2, w);
return ceil(log2(max(n2, 1.0)) * .5);
}
float2 middle_out_curve(float resolveLevel, float idxInResolveLevel, float4 p01, float4 p23) {
float2 localcoord;
if (isinf(p23.z)) {
// This patch is an exact triangle.
localcoord = (resolveLevel != 0) ? p01.zw
: (idxInResolveLevel != 0) ? p23.xy
: p01.xy;
} else {
float2 p0=p01.xy, p1=p01.zw, p2=p23.xy, p3=p23.zw;
float w = -1; // w < 0 tells us to treat the instance as an integral cubic.
float maxResolveLevel;
if (isinf(p23.w)) {
// Conics are 3 points, with the weight in p3.
w = p3.x;
maxResolveLevel = wangs_formula_conic_log2(4, p0, p1, p2, w);
p1 *= w; // Unproject p1.
p3 = p2; // Duplicate the endpoint for shared code that also runs on cubics.
} else {
// The patch is an integral cubic.
maxResolveLevel = wangs_formula_cubic_log2(4, p0, p1, p2, p3, float2x2(1.0));
}
if (resolveLevel > maxResolveLevel) {
// This vertex is at a higher resolve level than we need. Demote to a lower
// resolveLevel, which will produce a degenerate triangle.
idxInResolveLevel = floor(ldexp(idxInResolveLevel,
int(maxResolveLevel - resolveLevel)));
resolveLevel = maxResolveLevel;
}
// Promote our location to a discrete position in the maximum fixed resolve level.
// This is extra paranoia to ensure we get the exact same fp32 coordinates for
// colocated points from different resolve levels (e.g., the vertices T=3/4 and
// T=6/8 should be exactly colocated).
float fixedVertexID = floor(.5 + ldexp(idxInResolveLevel, int(5 - resolveLevel)));
if (0 < fixedVertexID && fixedVertexID < 32) {
float T = fixedVertexID * (1 / 32.0);
// Evaluate at T. Use De Casteljau's for its accuracy and stability.
float2 ab = mix(p0, p1, T);
float2 bc = mix(p1, p2, T);
float2 cd = mix(p2, p3, T);
float2 abc = mix(ab, bc, T);
float2 bcd = mix(bc, cd, T);
float2 abcd = mix(abc, bcd, T);
// Evaluate the conic weight at T.
float u = mix(1.0, w, T);
float v = w + 1 - u; // == mix(w, 1, T)
float uv = mix(u, v, T);
localcoord = (w < 0) ? /*cubic*/ abcd : /*conic*/ abc/uv;
} else {
localcoord = (fixedVertexID == 0) ? p0.xy : p3.xy;
}
}
return localcoord;
}
float2 middle_out_wedge(float resolveLevel, float idxInResolveLevel, float4 p01, float4 p23,
float2 fanPointAttrib) {
if (resolveLevel < 0) {
// A negative resolve level means this is the fan point.
return fanPointAttrib;
} else {
return middle_out_curve(resolveLevel, idxInResolveLevel, p01, p23);
}
}