blob: 0cee7515f74082eacbe314701b1225439997b2bb [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkString.h"
#include "src/core/SkGeometry.h"
#include "src/core/SkPathPriv.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/GrAuditTrail.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrDefaultGeoProcFactory.h"
#include "src/gpu/GrDrawOpTest.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrProcessor.h"
#include "src/gpu/GrProgramInfo.h"
#include "src/gpu/GrStyle.h"
#include "src/gpu/GrSurfaceDrawContext.h"
#include "src/gpu/GrVertexWriter.h"
#include "src/gpu/geometry/GrPathUtils.h"
#include "src/gpu/geometry/GrStyledShape.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/ops/GrAAConvexTessellator.h"
#include "src/gpu/ops/GrAALinearizingConvexPathRenderer.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
#include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
static const int DEFAULT_BUFFER_SIZE = 100;
// The thicker the stroke, the harder it is to produce high-quality results using tessellation. For
// the time being, we simply drop back to software rendering above this stroke width.
static const SkScalar kMaxStrokeWidth = 20.0;
GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() = default;
///////////////////////////////////////////////////////////////////////////////
GrPathRenderer::CanDrawPath
GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
if (GrAAType::kCoverage != args.fAAType) {
return CanDrawPath::kNo;
}
if (!args.fShape->knownToBeConvex()) {
return CanDrawPath::kNo;
}
if (args.fShape->style().pathEffect()) {
return CanDrawPath::kNo;
}
if (args.fShape->inverseFilled()) {
return CanDrawPath::kNo;
}
if (args.fShape->bounds().width() <= 0 && args.fShape->bounds().height() <= 0) {
// Stroked zero length lines should draw, but this PR doesn't handle that case
return CanDrawPath::kNo;
}
const SkStrokeRec& stroke = args.fShape->style().strokeRec();
if (stroke.getStyle() == SkStrokeRec::kStroke_Style ||
stroke.getStyle() == SkStrokeRec::kStrokeAndFill_Style) {
if (!args.fViewMatrix->isSimilarity()) {
return CanDrawPath::kNo;
}
SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * stroke.getWidth();
if (strokeWidth < 1.0f && stroke.getStyle() == SkStrokeRec::kStroke_Style) {
return CanDrawPath::kNo;
}
if (strokeWidth > kMaxStrokeWidth ||
!args.fShape->knownToBeClosed() ||
stroke.getJoin() == SkPaint::Join::kRound_Join) {
return CanDrawPath::kNo;
}
return CanDrawPath::kYes;
}
if (stroke.getStyle() != SkStrokeRec::kFill_Style) {
return CanDrawPath::kNo;
}
// This can almost handle perspective. It would need to use 3 component explicit local coords
// when there are FPs that require them. This is difficult to test because AAConvexPathRenderer
// takes almost all filled paths that could get here. So just avoid perspective fills.
if (args.fViewMatrix->hasPerspective()) {
return CanDrawPath::kNo;
}
return CanDrawPath::kYes;
}
// extract the result vertices and indices from the GrAAConvexTessellator
static void extract_verts(const GrAAConvexTessellator& tess,
const SkMatrix* localCoordsMatrix,
void* vertData,
const GrVertexColor& color,
uint16_t firstIndex,
uint16_t* idxs) {
GrVertexWriter verts{vertData};
for (int i = 0; i < tess.numPts(); ++i) {
SkPoint lc;
if (localCoordsMatrix) {
localCoordsMatrix->mapPoints(&lc, &tess.point(i), 1);
}
verts.write(tess.point(i), color, GrVertexWriter::If(localCoordsMatrix, lc),
tess.coverage(i));
}
for (int i = 0; i < tess.numIndices(); ++i) {
idxs[i] = tess.index(i) + firstIndex;
}
}
static GrGeometryProcessor* create_lines_only_gp(SkArenaAlloc* arena,
bool tweakAlphaForCoverage,
bool usesLocalCoords,
bool wideColor) {
using namespace GrDefaultGeoProcFactory;
Coverage::Type coverageType =
tweakAlphaForCoverage ? Coverage::kAttributeTweakAlpha_Type : Coverage::kAttribute_Type;
LocalCoords::Type localCoordsType =
usesLocalCoords ? LocalCoords::kHasExplicit_Type : LocalCoords::kUnused_Type;
Color::Type colorType =
wideColor ? Color::kPremulWideColorAttribute_Type : Color::kPremulGrColorAttribute_Type;
return Make(arena, colorType, coverageType, localCoordsType, SkMatrix::I());
}
namespace {
class AAFlatteningConvexPathOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelperWithStencil;
public:
DEFINE_OP_CLASS_ID
static GrOp::Owner Make(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkPath& path,
SkScalar strokeWidth,
SkStrokeRec::Style style,
SkPaint::Join join,
SkScalar miterLimit,
const GrUserStencilSettings* stencilSettings) {
return Helper::FactoryHelper<AAFlatteningConvexPathOp>(context, std::move(paint),
viewMatrix, path,
strokeWidth, style, join, miterLimit,
stencilSettings);
}
AAFlatteningConvexPathOp(GrProcessorSet* processorSet,
const SkPMColor4f& color,
const SkMatrix& viewMatrix,
const SkPath& path,
SkScalar strokeWidth,
SkStrokeRec::Style style,
SkPaint::Join join,
SkScalar miterLimit,
const GrUserStencilSettings* stencilSettings)
: INHERITED(ClassID()), fHelper(processorSet, GrAAType::kCoverage, stencilSettings) {
fPaths.emplace_back(
PathData{viewMatrix, path, color, strokeWidth, miterLimit, style, join});
// compute bounds
SkRect bounds = path.getBounds();
SkScalar w = strokeWidth;
if (w > 0) {
w /= 2;
SkScalar maxScale = viewMatrix.getMaxScale();
// We should not have a perspective matrix, thus we should have a valid scale.
SkASSERT(maxScale != -1);
if (SkPaint::kMiter_Join == join && w * maxScale > 1.f) {
w *= miterLimit;
}
bounds.outset(w, w);
}
this->setTransformedBounds(bounds, viewMatrix, HasAABloat::kYes, IsHairline::kNo);
}
const char* name() const override { return "AAFlatteningConvexPathOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
if (fProgramInfo) {
fProgramInfo->visitFPProxies(func);
} else {
fHelper.visitProxies(func);
}
}
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
GrProcessorSet::Analysis finalize(
const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage,
GrClampType clampType) override {
return fHelper.finalizeProcessors(
caps, clip, hasMixedSampledCoverage, clampType,
GrProcessorAnalysisCoverage::kSingleChannel, &fPaths.back().fColor, &fWideColor);
}
private:
GrProgramInfo* programInfo() override { return fProgramInfo; }
void onCreateProgramInfo(const GrCaps* caps,
SkArenaAlloc* arena,
const GrSurfaceProxyView& writeView,
GrAppliedClip&& appliedClip,
const GrXferProcessor::DstProxyView& dstProxyView,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {
GrGeometryProcessor* gp = create_lines_only_gp(arena,
fHelper.compatibleWithCoverageAsAlpha(),
fHelper.usesLocalCoords(),
fWideColor);
if (!gp) {
SkDebugf("Couldn't create a GrGeometryProcessor\n");
return;
}
fProgramInfo = fHelper.createProgramInfoWithStencil(caps, arena, writeView,
std::move(appliedClip), dstProxyView,
gp, GrPrimitiveType::kTriangles,
renderPassXferBarriers, colorLoadOp);
}
void recordDraw(Target* target,
int vertexCount, size_t vertexStride, void* vertices,
int indexCount, uint16_t* indices) {
if (vertexCount == 0 || indexCount == 0) {
return;
}
sk_sp<const GrBuffer> vertexBuffer;
int firstVertex;
void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer,
&firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
memcpy(verts, vertices, vertexCount * vertexStride);
sk_sp<const GrBuffer> indexBuffer;
int firstIndex;
uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
if (!idxs) {
SkDebugf("Could not allocate indices\n");
return;
}
memcpy(idxs, indices, indexCount * sizeof(uint16_t));
GrSimpleMesh* mesh = target->allocMesh();
mesh->setIndexed(std::move(indexBuffer), indexCount, firstIndex, 0, vertexCount - 1,
GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex);
fMeshes.push_back(mesh);
}
void onPrepareDraws(Target* target) override {
if (!fProgramInfo) {
this->createProgramInfo(target);
if (!fProgramInfo) {
return;
}
}
size_t vertexStride = fProgramInfo->geomProc().vertexStride();
int instanceCount = fPaths.count();
int64_t vertexCount = 0;
int64_t indexCount = 0;
int64_t maxVertices = DEFAULT_BUFFER_SIZE;
int64_t maxIndices = DEFAULT_BUFFER_SIZE;
uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride);
uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t));
for (int i = 0; i < instanceCount; i++) {
const PathData& args = fPaths[i];
GrAAConvexTessellator tess(args.fStyle, args.fStrokeWidth,
args.fJoin, args.fMiterLimit);
if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
continue;
}
int currentVertices = tess.numPts();
if (vertexCount + currentVertices > static_cast<int>(UINT16_MAX)) {
// if we added the current instance, we would overflow the indices we can store in a
// uint16_t. Draw what we've got so far and reset.
this->recordDraw(target, vertexCount, vertexStride, vertices, indexCount, indices);
vertexCount = 0;
indexCount = 0;
}
if (vertexCount + currentVertices > maxVertices) {
maxVertices = std::max(vertexCount + currentVertices, maxVertices * 2);
if (maxVertices * vertexStride > SK_MaxS32) {
sk_free(vertices);
sk_free(indices);
return;
}
vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride);
}
int currentIndices = tess.numIndices();
if (indexCount + currentIndices > maxIndices) {
maxIndices = std::max(indexCount + currentIndices, maxIndices * 2);
if (maxIndices * sizeof(uint16_t) > SK_MaxS32) {
sk_free(vertices);
sk_free(indices);
return;
}
indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t));
}
const SkMatrix* localCoordsMatrix = nullptr;
SkMatrix ivm;
if (fHelper.usesLocalCoords()) {
if (!args.fViewMatrix.invert(&ivm)) {
ivm = SkMatrix::I();
}
localCoordsMatrix = &ivm;
}
extract_verts(tess, localCoordsMatrix, vertices + vertexStride * vertexCount,
GrVertexColor(args.fColor, fWideColor), vertexCount,
indices + indexCount);
vertexCount += currentVertices;
indexCount += currentIndices;
}
if (vertexCount <= SK_MaxS32 && indexCount <= SK_MaxS32) {
this->recordDraw(target, vertexCount, vertexStride, vertices, indexCount, indices);
}
sk_free(vertices);
sk_free(indices);
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
if (!fProgramInfo || fMeshes.isEmpty()) {
return;
}
flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds);
flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline());
for (int i = 0; i < fMeshes.count(); ++i) {
flushState->drawMesh(*fMeshes[i]);
}
}
CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
AAFlatteningConvexPathOp* that = t->cast<AAFlatteningConvexPathOp>();
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return CombineResult::kCannotCombine;
}
fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
fWideColor |= that->fWideColor;
return CombineResult::kMerged;
}
#if GR_TEST_UTILS
SkString onDumpInfo() const override {
SkString string;
for (const auto& path : fPaths) {
string.appendf(
"Color: 0x%08x, StrokeWidth: %.2f, Style: %d, Join: %d, "
"MiterLimit: %.2f\n",
path.fColor.toBytes_RGBA(), path.fStrokeWidth, path.fStyle, path.fJoin,
path.fMiterLimit);
}
string += fHelper.dumpInfo();
return string;
}
#endif
struct PathData {
SkMatrix fViewMatrix;
SkPath fPath;
SkPMColor4f fColor;
SkScalar fStrokeWidth;
SkScalar fMiterLimit;
SkStrokeRec::Style fStyle;
SkPaint::Join fJoin;
};
SkSTArray<1, PathData, true> fPaths;
Helper fHelper;
bool fWideColor;
SkTDArray<GrSimpleMesh*> fMeshes;
GrProgramInfo* fProgramInfo = nullptr;
using INHERITED = GrMeshDrawOp;
};
} // anonymous namespace
bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) {
GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
"GrAALinearizingConvexPathRenderer::onDrawPath");
SkASSERT(args.fRenderTargetContext->numSamples() <= 1);
SkASSERT(!args.fShape->isEmpty());
SkASSERT(!args.fShape->style().pathEffect());
SkPath path;
args.fShape->asPath(&path);
bool fill = args.fShape->style().isSimpleFill();
const SkStrokeRec& stroke = args.fShape->style().strokeRec();
SkScalar strokeWidth = fill ? -1.0f : stroke.getWidth();
SkPaint::Join join = fill ? SkPaint::Join::kMiter_Join : stroke.getJoin();
SkScalar miterLimit = stroke.getMiter();
GrOp::Owner op = AAFlatteningConvexPathOp::Make(
args.fContext, std::move(args.fPaint), *args.fViewMatrix, path, strokeWidth,
stroke.getStyle(), join, miterLimit, args.fUserStencilSettings);
args.fRenderTargetContext->addDrawOp(args.fClip, std::move(op));
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if GR_TEST_UTILS
GR_DRAW_OP_TEST_DEFINE(AAFlatteningConvexPathOp) {
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
const SkPath& path = GrTest::TestPathConvex(random);
SkStrokeRec::Style styles[3] = { SkStrokeRec::kFill_Style,
SkStrokeRec::kStroke_Style,
SkStrokeRec::kStrokeAndFill_Style };
SkStrokeRec::Style style = styles[random->nextU() % 3];
SkScalar strokeWidth = -1.f;
SkPaint::Join join = SkPaint::kMiter_Join;
SkScalar miterLimit = 0.5f;
if (SkStrokeRec::kFill_Style != style) {
strokeWidth = random->nextRangeF(1.0f, 10.0f);
if (random->nextBool()) {
join = SkPaint::kMiter_Join;
} else {
join = SkPaint::kBevel_Join;
}
miterLimit = random->nextRangeF(0.5f, 2.0f);
}
const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context);
return AAFlatteningConvexPathOp::Make(context, std::move(paint), viewMatrix, path, strokeWidth,
style, join, miterLimit, stencilSettings);
}
#endif