|  | /* | 
|  | * Copyright 2017 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "src/core/SkGaussFilter.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <tuple> | 
|  | #include <vector> | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | // one part in a million | 
|  | static constexpr double kEpsilon = 0.000001; | 
|  |  | 
|  | static double careful_add(int n, double* gauss) { | 
|  | // Sum smallest to largest to retain precision. | 
|  | double sum = 0; | 
|  | for (int i = n - 1; i >= 1; i--) { | 
|  | sum += 2.0 * gauss[i]; | 
|  | } | 
|  | sum += gauss[0]; | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | DEF_TEST(SkGaussFilterCommon, r) { | 
|  | using Test = std::tuple<double, std::vector<double>>; | 
|  |  | 
|  | auto golden_check = [&](const Test& test) { | 
|  | double sigma; std::vector<double> golden; | 
|  | std::tie(sigma, golden) = test; | 
|  | SkGaussFilter filter{sigma}; | 
|  | double result[SkGaussFilter::kGaussArrayMax]; | 
|  | int n = 0; | 
|  | for (auto d : filter) { | 
|  | result[n++] = d; | 
|  | } | 
|  | REPORTER_ASSERT(r, static_cast<size_t>(n) == golden.size()); | 
|  | double sum = careful_add(n, result); | 
|  | REPORTER_ASSERT(r, sum == 1.0); | 
|  | for (size_t i = 0; i < golden.size(); i++) { | 
|  | REPORTER_ASSERT(r, std::abs(golden[i] - result[i]) < kEpsilon); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The following two sigmas account for about 85% of all sigmas used for masks. | 
|  | // Golden values generated using Mathematica. | 
|  | auto tests = { | 
|  | // GaussianMatrix[{{Automatic}, {.788675}}] | 
|  | Test{0.788675,   {0.593605, 0.176225, 0.0269721}}, | 
|  |  | 
|  | // GaussianMatrix[{{4}, {1.07735}}, Method -> "Bessel"] | 
|  | Test{1.07735,  {0.429537, 0.214955, 0.059143, 0.0111337}}, | 
|  | }; | 
|  |  | 
|  | for (auto& test : tests) { | 
|  | golden_check(test); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(SkGaussFilterSweep, r) { | 
|  | // The double just before 2.0. | 
|  | const double maxSigma = nextafter(2.0, 0.0); | 
|  | auto check = [&](double sigma) { | 
|  | SkGaussFilter filter{sigma}; | 
|  | double result[SkGaussFilter::kGaussArrayMax]; | 
|  | int n = 0; | 
|  | for (auto d : filter) { | 
|  | result[n++] = d; | 
|  | } | 
|  | REPORTER_ASSERT(r, n <= SkGaussFilter::kGaussArrayMax); | 
|  | double sum = careful_add(n, result); | 
|  | REPORTER_ASSERT(r, sum == 1.0); | 
|  | }; | 
|  |  | 
|  | for (double sigma = 0.0; sigma < 2.0; sigma += 0.1) { | 
|  | check(sigma); | 
|  | } | 
|  | check(maxSigma); | 
|  | } |