blob: ec5c2b3e41db5ad774aafb8d9cbcde3479e2dfe6 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/**************************************************************************************************
*** This file was autogenerated from GrConfigConversionEffect.fp; do not modify.
**************************************************************************************************/
#ifndef GrConfigConversionEffect_DEFINED
#define GrConfigConversionEffect_DEFINED
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrClip.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
#include "GrRenderTargetContext.h"
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
class GrConfigConversionEffect : public GrFragmentProcessor {
public:
static bool TestForPreservingPMConversions(GrContext* context) {
static constexpr int kSize = 256;
static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig;
SkAutoTMalloc<uint32_t> data(kSize * kSize * 3);
uint32_t* srcData = data.get();
uint32_t* firstRead = data.get() + kSize * kSize;
uint32_t* secondRead = data.get() + 2 * kSize * kSize;
// Fill with every possible premultiplied A, color channel value. There will be 256-y
// duplicate values in row y. We set r, g, and b to the same value since they are handled
// identically.
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x < kSize; ++x) {
uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize * y + x]);
color[3] = y;
color[2] = SkTMin(x, y);
color[1] = SkTMin(x, y);
color[0] = SkTMin(x, y);
}
}
const SkImageInfo ii =
SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<GrRenderTargetContext> readRTC(context->makeDeferredRenderTargetContext(
SkBackingFit::kExact, kSize, kSize, kConfig, nullptr));
sk_sp<GrRenderTargetContext> tempRTC(context->makeDeferredRenderTargetContext(
SkBackingFit::kExact, kSize, kSize, kConfig, nullptr));
if (!readRTC || !readRTC->asTextureProxy() || !tempRTC) {
return false;
}
// Adding discard to appease vulkan validation warning about loading uninitialized data on
// draw
readRTC->discard();
GrSurfaceDesc desc;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
desc.fWidth = kSize;
desc.fHeight = kSize;
desc.fConfig = kConfig;
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
sk_sp<GrTextureProxy> dataProxy =
proxyProvider->createTextureProxy(desc, SkBudgeted::kYes, data, 0);
if (!dataProxy) {
return false;
}
static const SkRect kRect = SkRect::MakeIWH(kSize, kSize);
// We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw
// from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data.
// We then verify that two reads produced the same values.
GrPaint paint1;
GrPaint paint2;
GrPaint paint3;
std::unique_ptr<GrFragmentProcessor> pmToUPM(
new GrConfigConversionEffect(PMConversion::kToUnpremul));
std::unique_ptr<GrFragmentProcessor> upmToPM(
new GrConfigConversionEffect(PMConversion::kToPremul));
paint1.addColorTextureProcessor(dataProxy, SkMatrix::I());
paint1.addColorFragmentProcessor(pmToUPM->clone());
paint1.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) {
return false;
}
// Adding discard to appease vulkan validation warning about loading uninitialized data on
// draw
tempRTC->discard();
paint2.addColorTextureProcessor(readRTC->asTextureProxyRef(), SkMatrix::I());
paint2.addColorFragmentProcessor(std::move(upmToPM));
paint2.setPorterDuffXPFactory(SkBlendMode::kSrc);
tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
paint3.addColorTextureProcessor(tempRTC->asTextureProxyRef(), SkMatrix::I());
paint3.addColorFragmentProcessor(std::move(pmToUPM));
paint3.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kRect,
kRect);
if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) {
return false;
}
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x <= y; ++x) {
if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) {
return false;
}
}
}
return true;
}
PMConversion pmConversion() const { return fPmConversion; }
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
PMConversion pmConversion) {
if (!fp) {
return nullptr;
}
std::unique_ptr<GrFragmentProcessor> ccFP(new GrConfigConversionEffect(pmConversion));
std::unique_ptr<GrFragmentProcessor> fpPipeline[] = {std::move(fp), std::move(ccFP)};
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
GrConfigConversionEffect(const GrConfigConversionEffect& src);
std::unique_ptr<GrFragmentProcessor> clone() const override;
const char* name() const override { return "ConfigConversionEffect"; }
private:
GrConfigConversionEffect(PMConversion pmConversion)
: INHERITED(kGrConfigConversionEffect_ClassID, kNone_OptimizationFlags)
, fPmConversion(pmConversion) {}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
PMConversion fPmConversion;
typedef GrFragmentProcessor INHERITED;
};
#endif
#endif