| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkMatrixPriv_DEFINE |
| #define SkMatrixPriv_DEFINE |
| |
| #include "include/core/SkM44.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkTypes.h" |
| #include "src/base/SkVx.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| struct SkPoint3; |
| |
| class SkMatrixPriv { |
| public: |
| enum { |
| // writeTo/readFromMemory will never return a value larger than this |
| kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t), |
| }; |
| |
| static size_t WriteToMemory(const SkMatrix& matrix, void* buffer) { |
| return matrix.writeToMemory(buffer); |
| } |
| |
| static size_t ReadFromMemory(SkMatrix* matrix, const void* buffer, size_t length) { |
| return matrix->readFromMemory(buffer, length); |
| } |
| |
| typedef SkMatrix::MapXYProc MapXYProc; |
| typedef SkMatrix::MapPtsProc MapPtsProc; |
| |
| |
| static MapPtsProc GetMapPtsProc(const SkMatrix& matrix) { |
| return SkMatrix::GetMapPtsProc(matrix.getType()); |
| } |
| |
| static MapXYProc GetMapXYProc(const SkMatrix& matrix) { |
| return SkMatrix::GetMapXYProc(matrix.getType()); |
| } |
| |
| /** |
| * Attempt to map the rect through the inverse of the matrix. If it is not invertible, |
| * then this returns false and dst is unchanged. |
| */ |
| [[nodiscard]] static bool InverseMapRect(const SkMatrix& mx, SkRect* dst, const SkRect& src) { |
| if (mx.isScaleTranslate()) { |
| // A scale-translate matrix with a 0 scale factor is not invertible. |
| if (mx.getScaleX() == 0.f || mx.getScaleY() == 0.f) { |
| return false; |
| } |
| |
| const SkScalar tx = mx.getTranslateX(); |
| const SkScalar ty = mx.getTranslateY(); |
| // mx maps coordinates as ((sx*x + tx), (sy*y + ty)) so the inverse is |
| // ((x - tx)/sx), (y - ty)/sy). If sx or sy are negative, we have to swap the edge |
| // values to maintain a sorted rect. |
| auto inverted = skvx::float4::Load(&src.fLeft); |
| inverted -= skvx::float4(tx, ty, tx, ty); |
| |
| if (mx.getType() > SkMatrix::kTranslate_Mask) { |
| const SkScalar sx = 1.f / mx.getScaleX(); |
| const SkScalar sy = 1.f / mx.getScaleY(); |
| inverted *= skvx::float4(sx, sy, sx, sy); |
| if (sx < 0.f && sy < 0.f) { |
| inverted = skvx::shuffle<2, 3, 0, 1>(inverted); // swap L|R and T|B |
| } else if (sx < 0.f) { |
| inverted = skvx::shuffle<2, 1, 0, 3>(inverted); // swap L|R |
| } else if (sy < 0.f) { |
| inverted = skvx::shuffle<0, 3, 2, 1>(inverted); // swap T|B |
| } |
| } |
| inverted.store(&dst->fLeft); |
| return true; |
| } |
| |
| // general case |
| SkMatrix inverse; |
| if (mx.invert(&inverse)) { |
| inverse.mapRect(dst, src); |
| return true; |
| } |
| return false; |
| } |
| |
| /** Maps count pts, skipping stride bytes to advance from one SkPoint to the next. |
| Points are mapped by multiplying each SkPoint by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, pt = | y | |
| | G H I | | 1 | |
| |
| each resulting pts SkPoint is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param mx matrix used to map the points |
| @param pts storage for mapped points |
| @param stride size of record starting with SkPoint, in bytes |
| @param count number of points to transform |
| */ |
| static void MapPointsWithStride(const SkMatrix& mx, SkPoint pts[], size_t stride, int count) { |
| SkASSERT(stride >= sizeof(SkPoint)); |
| SkASSERT(0 == stride % sizeof(SkScalar)); |
| |
| SkMatrix::TypeMask tm = mx.getType(); |
| |
| if (SkMatrix::kIdentity_Mask == tm) { |
| return; |
| } |
| if (SkMatrix::kTranslate_Mask == tm) { |
| const SkScalar tx = mx.getTranslateX(); |
| const SkScalar ty = mx.getTranslateY(); |
| skvx::float2 trans(tx, ty); |
| for (int i = 0; i < count; ++i) { |
| (skvx::float2::Load(&pts->fX) + trans).store(&pts->fX); |
| pts = (SkPoint*)((intptr_t)pts + stride); |
| } |
| return; |
| } |
| // Insert other special-cases here (e.g. scale+translate) |
| |
| // general case |
| SkMatrix::MapXYProc proc = mx.getMapXYProc(); |
| for (int i = 0; i < count; ++i) { |
| proc(mx, pts->fX, pts->fY, pts); |
| pts = (SkPoint*)((intptr_t)pts + stride); |
| } |
| } |
| |
| /** Maps src SkPoint array of length count to dst SkPoint array, skipping stride bytes |
| to advance from one SkPoint to the next. |
| Points are mapped by multiplying each SkPoint by SkMatrix. Given: |
| |
| | A B C | | x | |
| Matrix = | D E F |, src = | y | |
| | G H I | | 1 | |
| |
| each resulting dst SkPoint is computed as: |
| |
| |A B C| |x| Ax+By+C Dx+Ey+F |
| Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
| |G H I| |1| Gx+Hy+I Gx+Hy+I |
| |
| @param mx matrix used to map the points |
| @param dst storage for mapped points |
| @param src points to transform |
| @param stride size of record starting with SkPoint, in bytes |
| @param count number of points to transform |
| */ |
| static void MapPointsWithStride(const SkMatrix& mx, SkPoint dst[], size_t dstStride, |
| const SkPoint src[], size_t srcStride, int count) { |
| SkASSERT(srcStride >= sizeof(SkPoint)); |
| SkASSERT(dstStride >= sizeof(SkPoint)); |
| SkASSERT(0 == srcStride % sizeof(SkScalar)); |
| SkASSERT(0 == dstStride % sizeof(SkScalar)); |
| for (int i = 0; i < count; ++i) { |
| mx.mapPoints(dst, src, 1); |
| src = (SkPoint*)((intptr_t)src + srcStride); |
| dst = (SkPoint*)((intptr_t)dst + dstStride); |
| } |
| } |
| |
| static void MapHomogeneousPointsWithStride(const SkMatrix& mx, SkPoint3 dst[], size_t dstStride, |
| const SkPoint3 src[], size_t srcStride, int count); |
| |
| static bool PostIDiv(SkMatrix* matrix, int divx, int divy) { |
| return matrix->postIDiv(divx, divy); |
| } |
| |
| static bool CheapEqual(const SkMatrix& a, const SkMatrix& b) { |
| return &a == &b || 0 == memcmp(a.fMat, b.fMat, sizeof(a.fMat)); |
| } |
| |
| static const SkScalar* M44ColMajor(const SkM44& m) { return m.fMat; } |
| |
| // This is legacy functionality that only checks the 3x3 portion. The matrix could have Z-based |
| // shear, or other complex behavior. Only use this if you're planning to use the information |
| // to accelerate some purely 2D operation. |
| static bool IsScaleTranslateAsM33(const SkM44& m) { |
| return m.rc(1,0) == 0 && m.rc(3,0) == 0 && |
| m.rc(0,1) == 0 && m.rc(3,1) == 0 && |
| m.rc(3,3) == 1; |
| |
| } |
| |
| // Map the four corners of 'r' and return the bounding box of those points. The four corners of |
| // 'r' are assumed to have z = 0 and w = 1. If the matrix has perspective, the returned |
| // rectangle will be the bounding box of the projected points after being clipped to w > 0. |
| static SkRect MapRect(const SkM44& m, const SkRect& r); |
| |
| // Returns the differential area scale factor for a local point 'p' that will be transformed |
| // by 'm' (which may have perspective). If 'm' does not have perspective, this scale factor is |
| // constant regardless of 'p'; when it does have perspective, it is specific to that point. |
| // |
| // This can be crudely thought of as "device pixel area" / "local pixel area" at 'p'. |
| // |
| // Returns positive infinity if the transformed homogeneous point has w <= 0. |
| static SkScalar DifferentialAreaScale(const SkMatrix& m, const SkPoint& p); |
| |
| // Determines if the transformation m applied to the bounds can be approximated by |
| // an affine transformation, i.e., the perspective part of the transformation has little |
| // visible effect. |
| static bool NearlyAffine(const SkMatrix& m, |
| const SkRect& bounds, |
| SkScalar tolerance = SK_ScalarNearlyZero); |
| |
| static SkScalar ComputeResScaleForStroking(const SkMatrix& matrix); |
| }; |
| |
| #endif |