blob: d611c698db2bebcbff588263b4bfde33840cf98f [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkMask_DEFINED
#define SkMask_DEFINED
#include "include/core/SkColorPriv.h"
#include "include/core/SkRect.h"
#include "include/private/SkColorData.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkTemplates.h"
#include <cstddef>
#include <cstdint>
#include <memory>
/** \class SkMask
SkMask is used to describe alpha bitmaps, either 1bit, 8bit, or
the 3-channel 3D format. These are passed to SkMaskFilter objects.
*/
struct SkMask {
enum Format : uint8_t {
kBW_Format, //!< 1bit per pixel mask (e.g. monochrome)
kA8_Format, //!< 8bits per pixel mask (e.g. antialiasing)
k3D_Format, //!< 3 8bit per pixl planes: alpha, mul, add
kARGB32_Format, //!< SkPMColor
kLCD16_Format, //!< 565 alpha for r/g/b
kSDF_Format, //!< 8bits representing signed distance field
};
enum {
kCountMaskFormats = kSDF_Format + 1
};
SkMask(const uint8_t* img, const SkIRect& bounds, uint32_t rowBytes, Format format)
: fImage(img), fBounds(bounds), fRowBytes(rowBytes), fFormat(format) {}
uint8_t const * const fImage;
const SkIRect fBounds;
const uint32_t fRowBytes;
const Format fFormat;
static bool IsValidFormat(uint8_t format) { return format < kCountMaskFormats; }
/** Returns true if the mask is empty: i.e. it has an empty bounds.
*/
bool isEmpty() const { return fBounds.isEmpty(); }
/** Return the byte size of the mask, assuming only 1 plane.
Does not account for k3D_Format. For that, use computeTotalImageSize().
If there is an overflow of 32bits, then returns 0.
*/
size_t computeImageSize() const;
/** Return the byte size of the mask, taking into account
any extra planes (e.g. k3D_Format).
If there is an overflow of 32bits, then returns 0.
*/
size_t computeTotalImageSize() const;
/** Returns the address of the byte that holds the specified bit.
Asserts that the mask is kBW_Format, and that x,y are in range.
x,y are in the same coordiate space as fBounds.
*/
const uint8_t* getAddr1(int x, int y) const {
SkASSERT(kBW_Format == fFormat);
SkASSERT(fBounds.contains(x, y));
SkASSERT(fImage != nullptr);
return fImage + ((x - fBounds.fLeft) >> 3) + (y - fBounds.fTop) * fRowBytes;
}
/** Returns the address of the specified byte.
Asserts that the mask is kA8_Format, and that x,y are in range.
x,y are in the same coordiate space as fBounds.
*/
const uint8_t* getAddr8(int x, int y) const {
SkASSERT(kA8_Format == fFormat || kSDF_Format == fFormat);
SkASSERT(fBounds.contains(x, y));
SkASSERT(fImage != nullptr);
return fImage + x - fBounds.fLeft + (y - fBounds.fTop) * fRowBytes;
}
/**
* Return the address of the specified 16bit mask. In the debug build,
* this asserts that the mask's format is kLCD16_Format, and that (x,y)
* are contained in the mask's fBounds.
*/
const uint16_t* getAddrLCD16(int x, int y) const {
SkASSERT(kLCD16_Format == fFormat);
SkASSERT(fBounds.contains(x, y));
SkASSERT(fImage != nullptr);
const uint16_t* row = (const uint16_t*)(fImage + (y - fBounds.fTop) * fRowBytes);
return row + (x - fBounds.fLeft);
}
/**
* Return the address of the specified 32bit mask. In the debug build,
* this asserts that the mask's format is 32bits, and that (x,y)
* are contained in the mask's fBounds.
*/
const uint32_t* getAddr32(int x, int y) const {
SkASSERT(kARGB32_Format == fFormat);
SkASSERT(fBounds.contains(x, y));
SkASSERT(fImage != nullptr);
const uint32_t* row = (const uint32_t*)(fImage + (y - fBounds.fTop) * fRowBytes);
return row + (x - fBounds.fLeft);
}
/**
* Returns the address of the specified pixel, computing the pixel-size
* at runtime based on the mask format. This will be slightly slower than
* using one of the routines where the format is implied by the name
* e.g. getAddr8 or getAddr32.
*
* x,y must be contained by the mask's bounds (this is asserted in the
* debug build, but not checked in the release build.)
*
* This should not be called with kBW_Format, as it will give unspecified
* results (and assert in the debug build).
*/
const void* getAddr(int x, int y) const;
/** Iterates over the coverage values along a scanline in a given SkMask::Format. Provides
* constructor, copy constructor for creating
* operator++, operator-- for iterating over the coverage values on a scanline
* operator>>= to add row bytes
* operator* to get the coverage value at the current location
* operator< to compare two iterators
*/
template <Format F> struct AlphaIter;
};
template <> struct SkMask::AlphaIter<SkMask::kBW_Format> {
AlphaIter(const uint8_t* ptr, int offset) : fPtr(ptr), fOffset(7 - offset) {}
AlphaIter(const AlphaIter& that) : fPtr(that.fPtr), fOffset(that.fOffset) {}
AlphaIter& operator++() {
if (0 < fOffset ) {
--fOffset;
} else {
++fPtr;
fOffset = 7;
}
return *this;
}
AlphaIter& operator--() {
if (fOffset < 7) {
++fOffset;
} else {
--fPtr;
fOffset = 0;
}
return *this;
}
AlphaIter& operator>>=(uint32_t rb) {
fPtr = SkTAddOffset<const uint8_t>(fPtr, rb);
return *this;
}
uint8_t operator*() const { return ((*fPtr) >> fOffset) & 1 ? 0xFF : 0; }
bool operator<(const AlphaIter& that) const {
return fPtr < that.fPtr || (fPtr == that.fPtr && fOffset > that.fOffset);
}
const uint8_t* fPtr;
int fOffset;
};
template <> struct SkMask::AlphaIter<SkMask::kA8_Format> {
AlphaIter(const uint8_t* ptr) : fPtr(ptr) {}
AlphaIter(const AlphaIter& that) : fPtr(that.fPtr) {}
AlphaIter& operator++() { ++fPtr; return *this; }
AlphaIter& operator--() { --fPtr; return *this; }
AlphaIter& operator>>=(uint32_t rb) {
fPtr = SkTAddOffset<const uint8_t>(fPtr, rb);
return *this;
}
uint8_t operator*() const { return *fPtr; }
bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr; }
const uint8_t* fPtr;
};
template <> struct SkMask::AlphaIter<SkMask::kARGB32_Format> {
AlphaIter(const uint32_t* ptr) : fPtr(ptr) {}
AlphaIter(const AlphaIter& that) : fPtr(that.fPtr) {}
AlphaIter& operator++() { ++fPtr; return *this; }
AlphaIter& operator--() { --fPtr; return *this; }
AlphaIter& operator>>=(uint32_t rb) {
fPtr = SkTAddOffset<const uint32_t>(fPtr, rb);
return *this;
}
uint8_t operator*() const { return SkGetPackedA32(*fPtr); }
bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr; }
const uint32_t* fPtr;
};
template <> struct SkMask::AlphaIter<SkMask::kLCD16_Format> {
AlphaIter(const uint16_t* ptr) : fPtr(ptr) {}
AlphaIter(const AlphaIter& that) : fPtr(that.fPtr) {}
AlphaIter& operator++() { ++fPtr; return *this; }
AlphaIter& operator--() { --fPtr; return *this; }
AlphaIter& operator>>=(uint32_t rb) {
fPtr = SkTAddOffset<const uint16_t>(fPtr, rb);
return *this;
}
uint8_t operator*() const {
unsigned packed = *fPtr;
unsigned r = SkPacked16ToR32(packed);
unsigned g = SkPacked16ToG32(packed);
unsigned b = SkPacked16ToB32(packed);
return (r + g + b) / 3;
}
bool operator<(const AlphaIter& that) const { return fPtr < that.fPtr; }
const uint16_t* fPtr;
};
///////////////////////////////////////////////////////////////////////////////
struct SkMaskBuilder : public SkMask {
SkMaskBuilder() : SkMask(nullptr, {0}, 0, SkMask::Format::kBW_Format) {}
SkMaskBuilder(const SkMaskBuilder&) = delete;
SkMaskBuilder(SkMaskBuilder&&) = default;
SkMaskBuilder& operator=(const SkMaskBuilder&) = delete;
SkMaskBuilder& operator=(SkMaskBuilder&& that) {
this->image() = that.image();
this->bounds() = that.bounds();
this->rowBytes() = that.rowBytes();
this->format() = that.format();
that.image() = nullptr;
return *this;
}
SkMaskBuilder(uint8_t* img, const SkIRect& bounds, uint32_t rowBytes, Format format)
: SkMask(img, bounds, rowBytes, format) {}
uint8_t*& image() { return *const_cast<uint8_t**>(&fImage); }
SkIRect& bounds() { return *const_cast<SkIRect*>(&fBounds); }
uint32_t& rowBytes() { return *const_cast<uint32_t*>(&fRowBytes); }
Format& format() { return *const_cast<Format*>(&fFormat); }
/** Returns the address of the byte that holds the specified bit.
Asserts that the mask is kBW_Format, and that x,y are in range.
x,y are in the same coordiate space as fBounds.
*/
uint8_t* getAddr1(int x, int y) {
return const_cast<uint8_t*>(this->SkMask::getAddr1(x, y));
}
/** Returns the address of the specified byte.
Asserts that the mask is kA8_Format, and that x,y are in range.
x,y are in the same coordiate space as fBounds.
*/
uint8_t* getAddr8(int x, int y) {
return const_cast<uint8_t*>(this->SkMask::getAddr8(x, y));
}
/**
* Return the address of the specified 16bit mask. In the debug build,
* this asserts that the mask's format is kLCD16_Format, and that (x,y)
* are contained in the mask's fBounds.
*/
uint16_t* getAddrLCD16(int x, int y) {
return const_cast<uint16_t*>(this->SkMask::getAddrLCD16(x, y));
}
/**
* Return the address of the specified 32bit mask. In the debug build,
* this asserts that the mask's format is 32bits, and that (x,y)
* are contained in the mask's fBounds.
*/
uint32_t* getAddr32(int x, int y) {
return const_cast<uint32_t*>(this->SkMask::getAddr32(x, y));
}
/**
* Returns the address of the specified pixel, computing the pixel-size
* at runtime based on the mask format. This will be slightly slower than
* using one of the routines where the format is implied by the name
* e.g. getAddr8 or getAddr32.
*
* x,y must be contained by the mask's bounds (this is asserted in the
* debug build, but not checked in the release build.)
*
* This should not be called with kBW_Format, as it will give unspecified
* results (and assert in the debug build).
*/
void* getAddr(int x, int y) {
return const_cast<void*>(this->SkMask::getAddr(x, y));
}
enum AllocType {
kUninit_Alloc,
kZeroInit_Alloc,
};
static uint8_t* AllocImage(size_t bytes, AllocType = kUninit_Alloc);
static void FreeImage(void* image);
enum CreateMode {
kJustComputeBounds_CreateMode, //!< compute bounds and return
kJustRenderImage_CreateMode, //!< render into preallocate mask
kComputeBoundsAndRenderImage_CreateMode //!< compute bounds, alloc image and render into it
};
/**
* Returns initial destination mask data padded by radiusX and radiusY
*/
static SkMaskBuilder PrepareDestination(int radiusX, int radiusY, const SkMask& src);
};
/**
* \using SkAutoMaskImage
*
* Stack class used to manage the fImage buffer in a SkMask.
* When this object loses scope, the buffer is freed with SkMask::FreeImage().
*/
using SkAutoMaskFreeImage = std::unique_ptr<uint8_t, SkFunctionObject<SkMaskBuilder::FreeImage>>;
#endif