| /* |
| * Copyright 2023 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h" |
| |
| #include "include/gpu/ShaderErrorHandler.h" |
| #include "include/gpu/graphite/TextureInfo.h" |
| #include "src/core/SkSLTypeShared.h" |
| #include "src/core/SkTraceEvent.h" |
| #include "src/gpu/SkSLToBackend.h" |
| #include "src/gpu/graphite/Attribute.h" |
| #include "src/gpu/graphite/ContextUtils.h" |
| #include "src/gpu/graphite/GraphicsPipelineDesc.h" |
| #include "src/gpu/graphite/Log.h" |
| #include "src/gpu/graphite/RenderPassDesc.h" |
| #include "src/gpu/graphite/RendererProvider.h" |
| #include "src/gpu/graphite/ResourceTypes.h" |
| #include "src/gpu/graphite/RuntimeEffectDictionary.h" |
| #include "src/gpu/graphite/ShaderInfo.h" |
| #include "src/gpu/graphite/vk/VulkanCaps.h" |
| #include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h" |
| #include "src/gpu/graphite/vk/VulkanRenderPass.h" |
| #include "src/gpu/graphite/vk/VulkanResourceProvider.h" |
| #include "src/gpu/graphite/vk/VulkanSharedContext.h" |
| #include "src/gpu/graphite/vk/VulkanSpirvTransforms.h" |
| #include "src/gpu/vk/VulkanUtilsPriv.h" |
| #include "src/sksl/SkSLProgramKind.h" |
| #include "src/sksl/SkSLProgramSettings.h" |
| #include "src/sksl/ir/SkSLProgram.h" |
| #include "src/utils/SkShaderUtils.h" |
| |
| namespace skgpu::graphite { |
| |
| static inline VkFormat attrib_type_to_vkformat(VertexAttribType type) { |
| switch (type) { |
| case VertexAttribType::kFloat: |
| return VK_FORMAT_R32_SFLOAT; |
| case VertexAttribType::kFloat2: |
| return VK_FORMAT_R32G32_SFLOAT; |
| case VertexAttribType::kFloat3: |
| return VK_FORMAT_R32G32B32_SFLOAT; |
| case VertexAttribType::kFloat4: |
| return VK_FORMAT_R32G32B32A32_SFLOAT; |
| case VertexAttribType::kHalf: |
| return VK_FORMAT_R16_SFLOAT; |
| case VertexAttribType::kHalf2: |
| return VK_FORMAT_R16G16_SFLOAT; |
| case VertexAttribType::kHalf4: |
| return VK_FORMAT_R16G16B16A16_SFLOAT; |
| case VertexAttribType::kInt2: |
| return VK_FORMAT_R32G32_SINT; |
| case VertexAttribType::kInt3: |
| return VK_FORMAT_R32G32B32_SINT; |
| case VertexAttribType::kInt4: |
| return VK_FORMAT_R32G32B32A32_SINT; |
| case VertexAttribType::kUInt2: |
| return VK_FORMAT_R32G32_UINT; |
| case VertexAttribType::kByte: |
| return VK_FORMAT_R8_SINT; |
| case VertexAttribType::kByte2: |
| return VK_FORMAT_R8G8_SINT; |
| case VertexAttribType::kByte4: |
| return VK_FORMAT_R8G8B8A8_SINT; |
| case VertexAttribType::kUByte: |
| return VK_FORMAT_R8_UINT; |
| case VertexAttribType::kUByte2: |
| return VK_FORMAT_R8G8_UINT; |
| case VertexAttribType::kUByte4: |
| return VK_FORMAT_R8G8B8A8_UINT; |
| case VertexAttribType::kUByte_norm: |
| return VK_FORMAT_R8_UNORM; |
| case VertexAttribType::kUByte4_norm: |
| return VK_FORMAT_R8G8B8A8_UNORM; |
| case VertexAttribType::kShort2: |
| return VK_FORMAT_R16G16_SINT; |
| case VertexAttribType::kShort4: |
| return VK_FORMAT_R16G16B16A16_SINT; |
| case VertexAttribType::kUShort2: |
| return VK_FORMAT_R16G16_UINT; |
| case VertexAttribType::kUShort2_norm: |
| return VK_FORMAT_R16G16_UNORM; |
| case VertexAttribType::kInt: |
| return VK_FORMAT_R32_SINT; |
| case VertexAttribType::kUInt: |
| return VK_FORMAT_R32_UINT; |
| case VertexAttribType::kUShort_norm: |
| return VK_FORMAT_R16_UNORM; |
| case VertexAttribType::kUShort4_norm: |
| return VK_FORMAT_R16G16B16A16_UNORM; |
| } |
| SK_ABORT("Unknown vertex attrib type"); |
| } |
| |
| // A helper to derive the vertex input state either for version 1 or 2 of the Vulkan structs. |
| template <typename VertexInputBindingDescription, typename VertexInputAttributeDescription> |
| static void get_vertex_input_state( |
| VkVertexInputRate appendVertexRate, |
| const SkSpan<const Attribute>& staticAttrs, |
| const SkSpan<const Attribute>& appendAttrs, |
| skia_private::STArray<2, VertexInputBindingDescription>& bindingDescs, |
| skia_private::STArray<16, VertexInputAttributeDescription>& attributeDescs, |
| const VertexInputBindingDescription& defaultBindingDesc, |
| const VertexInputAttributeDescription& defaultAttributeDesc) { |
| int attribIndex = 0; |
| size_t staticAttributeOffset = 0; |
| for (auto attrib : staticAttrs) { |
| VertexInputAttributeDescription vkAttrib = defaultAttributeDesc; |
| vkAttrib.location = attribIndex++; |
| vkAttrib.binding = VulkanGraphicsPipeline::kStaticDataBufferIndex; |
| vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType()); |
| vkAttrib.offset = staticAttributeOffset; |
| staticAttributeOffset += attrib.sizeAlign4(); |
| attributeDescs.push_back(vkAttrib); |
| } |
| |
| size_t appendAttributeOffset = 0; |
| for (auto attrib : appendAttrs) { |
| VertexInputAttributeDescription vkAttrib = defaultAttributeDesc; |
| vkAttrib.location = attribIndex++; |
| vkAttrib.binding = VulkanGraphicsPipeline::kAppendDataBufferIndex; |
| vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType()); |
| vkAttrib.offset = appendAttributeOffset; |
| appendAttributeOffset += attrib.sizeAlign4(); |
| attributeDescs.push_back(vkAttrib); |
| } |
| |
| if (!staticAttrs.empty()) { |
| VertexInputBindingDescription vkBinding = defaultBindingDesc; |
| vkBinding.binding = VulkanGraphicsPipeline::kStaticDataBufferIndex; |
| vkBinding.stride = (uint32_t)staticAttributeOffset; |
| vkBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; |
| bindingDescs.push_back(vkBinding); |
| } |
| if (!appendAttrs.empty()) { |
| VertexInputBindingDescription vkBinding = defaultBindingDesc; |
| vkBinding.binding = VulkanGraphicsPipeline::kAppendDataBufferIndex; |
| vkBinding.stride = (uint32_t)appendAttributeOffset; |
| vkBinding.inputRate = appendVertexRate; |
| bindingDescs.push_back(vkBinding); |
| } |
| } |
| |
| static void setup_vertex_input_state( |
| VkVertexInputRate appendVertexRate, |
| const SkSpan<const Attribute>& staticAttrs, |
| const SkSpan<const Attribute>& appendAttrs, |
| VkPipelineVertexInputStateCreateInfo* vertexInputInfo, |
| skia_private::STArray<2, VkVertexInputBindingDescription>& bindingDescs, |
| skia_private::STArray<16, VkVertexInputAttributeDescription>& attributeDescs) { |
| // Setup attribute & binding descriptions |
| get_vertex_input_state(appendVertexRate, |
| staticAttrs, |
| appendAttrs, |
| bindingDescs, |
| attributeDescs, |
| /*defaultBindingDesc=*/{}, |
| /*defaultAttributeDesc=*/{}); |
| |
| *vertexInputInfo = {}; |
| vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
| vertexInputInfo->vertexBindingDescriptionCount = bindingDescs.size(); |
| vertexInputInfo->pVertexBindingDescriptions = bindingDescs.begin(); |
| vertexInputInfo->vertexAttributeDescriptionCount = attributeDescs.size(); |
| vertexInputInfo->pVertexAttributeDescriptions = attributeDescs.begin(); |
| } |
| |
| static VkPrimitiveTopology primitive_type_to_vk_topology(PrimitiveType primitiveType) { |
| switch (primitiveType) { |
| case PrimitiveType::kTriangles: |
| return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; |
| case PrimitiveType::kTriangleStrip: |
| return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; |
| case PrimitiveType::kPoints: |
| return VK_PRIMITIVE_TOPOLOGY_POINT_LIST; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static void setup_input_assembly_state(const Caps& caps, |
| PrimitiveType primitiveType, |
| VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) { |
| *inputAssemblyInfo = {}; |
| inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
| inputAssemblyInfo->primitiveRestartEnable = VK_FALSE; |
| if (caps.useBasicDynamicState()) { |
| // Note: when topology is dynamic state, the topology _class_ still needs to be specified. |
| inputAssemblyInfo->topology = primitiveType == PrimitiveType::kPoints |
| ? VK_PRIMITIVE_TOPOLOGY_POINT_LIST |
| : VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; |
| } else { |
| inputAssemblyInfo->topology = primitive_type_to_vk_topology(primitiveType); |
| } |
| } |
| |
| static VkStencilOp stencil_op_to_vk_stencil_op(StencilOp op) { |
| static const VkStencilOp gTable[] = { |
| VK_STENCIL_OP_KEEP, // kKeep |
| VK_STENCIL_OP_ZERO, // kZero |
| VK_STENCIL_OP_REPLACE, // kReplace |
| VK_STENCIL_OP_INVERT, // kInvert |
| VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap |
| VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap |
| VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp |
| VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp |
| }; |
| static_assert(std::size(gTable) == kStencilOpCount); |
| static_assert(0 == (int)StencilOp::kKeep); |
| static_assert(1 == (int)StencilOp::kZero); |
| static_assert(2 == (int)StencilOp::kReplace); |
| static_assert(3 == (int)StencilOp::kInvert); |
| static_assert(4 == (int)StencilOp::kIncWrap); |
| static_assert(5 == (int)StencilOp::kDecWrap); |
| static_assert(6 == (int)StencilOp::kIncClamp); |
| static_assert(7 == (int)StencilOp::kDecClamp); |
| SkASSERT(op < (StencilOp)kStencilOpCount); |
| return gTable[(int)op]; |
| } |
| |
| static VkCompareOp compare_op_to_vk_compare_op(CompareOp op) { |
| static const VkCompareOp gTable[] = { |
| VK_COMPARE_OP_ALWAYS, // kAlways |
| VK_COMPARE_OP_NEVER, // kNever |
| VK_COMPARE_OP_GREATER, // kGreater |
| VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual |
| VK_COMPARE_OP_LESS, // kLess |
| VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual |
| VK_COMPARE_OP_EQUAL, // kEqual |
| VK_COMPARE_OP_NOT_EQUAL, // kNotEqual |
| }; |
| static_assert(std::size(gTable) == kCompareOpCount); |
| static_assert(0 == (int)CompareOp::kAlways); |
| static_assert(1 == (int)CompareOp::kNever); |
| static_assert(2 == (int)CompareOp::kGreater); |
| static_assert(3 == (int)CompareOp::kGEqual); |
| static_assert(4 == (int)CompareOp::kLess); |
| static_assert(5 == (int)CompareOp::kLEqual); |
| static_assert(6 == (int)CompareOp::kEqual); |
| static_assert(7 == (int)CompareOp::kNotEqual); |
| SkASSERT(op < (CompareOp)kCompareOpCount); |
| |
| return gTable[(int)op]; |
| } |
| |
| static void setup_stencil_op_state(VkStencilOpState* opState, |
| const DepthStencilSettings::Face& face, |
| uint32_t referenceValue) { |
| opState->failOp = stencil_op_to_vk_stencil_op(face.fStencilFailOp); |
| opState->passOp = stencil_op_to_vk_stencil_op(face.fDepthStencilPassOp); |
| opState->depthFailOp = stencil_op_to_vk_stencil_op(face.fDepthFailOp); |
| opState->compareOp = compare_op_to_vk_compare_op(face.fCompareOp); |
| opState->compareMask = face.fReadMask; |
| // Note: On some old ARM driver versions, dynamic state for stencil write mask doesn't work |
| // correctly in the presence of discard or alpha to coverage, if the static state provided |
| // when creating the pipeline has a value of 0. However, both alphaToCoverageEnable and |
| // rasterizerDiscardEnable are always false in Graphite, so no driver bug workaround is |
| // necessary at the moment. |
| opState->writeMask = face.fWriteMask; |
| opState->reference = referenceValue; |
| } |
| |
| static void setup_depth_stencil_state(const Caps& caps, |
| const DepthStencilSettings& stencilSettings, |
| VkPipelineDepthStencilStateCreateInfo* stencilInfo) { |
| SkASSERT(stencilSettings.fDepthTestEnabled || |
| stencilSettings.fDepthCompareOp == CompareOp::kAlways); |
| |
| *stencilInfo = {}; |
| stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; |
| if (!caps.useBasicDynamicState()) { |
| stencilInfo->depthTestEnable = stencilSettings.fDepthTestEnabled; |
| stencilInfo->depthWriteEnable = stencilSettings.fDepthWriteEnabled; |
| stencilInfo->depthCompareOp = compare_op_to_vk_compare_op(stencilSettings.fDepthCompareOp); |
| stencilInfo->depthBoundsTestEnable = VK_FALSE; |
| stencilInfo->stencilTestEnable = stencilSettings.fStencilTestEnabled; |
| if (stencilSettings.fStencilTestEnabled) { |
| setup_stencil_op_state(&stencilInfo->front, |
| stencilSettings.fFrontStencil, |
| stencilSettings.fStencilReferenceValue); |
| setup_stencil_op_state(&stencilInfo->back, |
| stencilSettings.fBackStencil, |
| stencilSettings.fStencilReferenceValue); |
| } |
| stencilInfo->minDepthBounds = 0.0f; |
| stencilInfo->maxDepthBounds = 1.0f; |
| } |
| } |
| |
| static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) { |
| *viewportInfo = {}; |
| viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; |
| |
| // The viewport and scissor are set dyanmically with draw pass commands |
| viewportInfo->viewportCount = 1; |
| viewportInfo->scissorCount = 1; |
| |
| SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount); |
| } |
| |
| static void setup_multisample_state(int numSamples, |
| VkPipelineMultisampleStateCreateInfo* multisampleInfo) { |
| *multisampleInfo = {}; |
| multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; |
| SkAssertResult(skgpu::SampleCountToVkSampleCount(numSamples, |
| &multisampleInfo->rasterizationSamples)); |
| multisampleInfo->sampleShadingEnable = VK_FALSE; |
| multisampleInfo->minSampleShading = 0.0f; |
| multisampleInfo->pSampleMask = nullptr; |
| multisampleInfo->alphaToCoverageEnable = VK_FALSE; |
| multisampleInfo->alphaToOneEnable = VK_FALSE; |
| } |
| |
| static VkBlendFactor blend_coeff_to_vk_blend(skgpu::BlendCoeff coeff) { |
| switch (coeff) { |
| case skgpu::BlendCoeff::kZero: |
| return VK_BLEND_FACTOR_ZERO; |
| case skgpu::BlendCoeff::kOne: |
| return VK_BLEND_FACTOR_ONE; |
| case skgpu::BlendCoeff::kSC: |
| return VK_BLEND_FACTOR_SRC_COLOR; |
| case skgpu::BlendCoeff::kISC: |
| return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; |
| case skgpu::BlendCoeff::kDC: |
| return VK_BLEND_FACTOR_DST_COLOR; |
| case skgpu::BlendCoeff::kIDC: |
| return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; |
| case skgpu::BlendCoeff::kSA: |
| return VK_BLEND_FACTOR_SRC_ALPHA; |
| case skgpu::BlendCoeff::kISA: |
| return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
| case skgpu::BlendCoeff::kDA: |
| return VK_BLEND_FACTOR_DST_ALPHA; |
| case skgpu::BlendCoeff::kIDA: |
| return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA; |
| case skgpu::BlendCoeff::kConstC: |
| return VK_BLEND_FACTOR_CONSTANT_COLOR; |
| case skgpu::BlendCoeff::kIConstC: |
| return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR; |
| case skgpu::BlendCoeff::kS2C: |
| return VK_BLEND_FACTOR_SRC1_COLOR; |
| case skgpu::BlendCoeff::kIS2C: |
| return VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR; |
| case skgpu::BlendCoeff::kS2A: |
| return VK_BLEND_FACTOR_SRC1_ALPHA; |
| case skgpu::BlendCoeff::kIS2A: |
| return VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA; |
| case skgpu::BlendCoeff::kIllegal: |
| return VK_BLEND_FACTOR_ZERO; |
| } |
| SkUNREACHABLE; |
| } |
| |
| static VkBlendOp blend_equation_to_vk_blend_op(skgpu::BlendEquation equation) { |
| static const VkBlendOp gTable[] = { |
| // Basic blend ops |
| VK_BLEND_OP_ADD, |
| VK_BLEND_OP_SUBTRACT, |
| VK_BLEND_OP_REVERSE_SUBTRACT, |
| |
| // Advanced blend ops |
| VK_BLEND_OP_SCREEN_EXT, |
| VK_BLEND_OP_OVERLAY_EXT, |
| VK_BLEND_OP_DARKEN_EXT, |
| VK_BLEND_OP_LIGHTEN_EXT, |
| VK_BLEND_OP_COLORDODGE_EXT, |
| VK_BLEND_OP_COLORBURN_EXT, |
| VK_BLEND_OP_HARDLIGHT_EXT, |
| VK_BLEND_OP_SOFTLIGHT_EXT, |
| VK_BLEND_OP_DIFFERENCE_EXT, |
| VK_BLEND_OP_EXCLUSION_EXT, |
| VK_BLEND_OP_MULTIPLY_EXT, |
| VK_BLEND_OP_HSL_HUE_EXT, |
| VK_BLEND_OP_HSL_SATURATION_EXT, |
| VK_BLEND_OP_HSL_COLOR_EXT, |
| VK_BLEND_OP_HSL_LUMINOSITY_EXT, |
| |
| // Illegal. |
| VK_BLEND_OP_ADD, |
| }; |
| static_assert(0 == (int)skgpu::BlendEquation::kAdd); |
| static_assert(1 == (int)skgpu::BlendEquation::kSubtract); |
| static_assert(2 == (int)skgpu::BlendEquation::kReverseSubtract); |
| static_assert(3 == (int)skgpu::BlendEquation::kScreen); |
| static_assert(4 == (int)skgpu::BlendEquation::kOverlay); |
| static_assert(5 == (int)skgpu::BlendEquation::kDarken); |
| static_assert(6 == (int)skgpu::BlendEquation::kLighten); |
| static_assert(7 == (int)skgpu::BlendEquation::kColorDodge); |
| static_assert(8 == (int)skgpu::BlendEquation::kColorBurn); |
| static_assert(9 == (int)skgpu::BlendEquation::kHardLight); |
| static_assert(10 == (int)skgpu::BlendEquation::kSoftLight); |
| static_assert(11 == (int)skgpu::BlendEquation::kDifference); |
| static_assert(12 == (int)skgpu::BlendEquation::kExclusion); |
| static_assert(13 == (int)skgpu::BlendEquation::kMultiply); |
| static_assert(14 == (int)skgpu::BlendEquation::kHSLHue); |
| static_assert(15 == (int)skgpu::BlendEquation::kHSLSaturation); |
| static_assert(16 == (int)skgpu::BlendEquation::kHSLColor); |
| static_assert(17 == (int)skgpu::BlendEquation::kHSLLuminosity); |
| static_assert(std::size(gTable) == skgpu::kBlendEquationCnt); |
| |
| SkASSERT((unsigned)equation < skgpu::kBlendEquationCnt); |
| return gTable[(int)equation]; |
| } |
| |
| static void setup_color_blend_state(const VulkanCaps& caps, |
| const skgpu::BlendInfo& blendInfo, |
| VkPipelineColorBlendStateCreateInfo* colorBlendInfo, |
| VkPipelineColorBlendAttachmentState* attachmentState) { |
| skgpu::BlendEquation equation = blendInfo.fEquation; |
| skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend; |
| skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend; |
| bool blendOff = skgpu::BlendShouldDisable(equation, srcCoeff, dstCoeff); |
| |
| *attachmentState = {}; |
| attachmentState->blendEnable = !blendOff; |
| if (!blendOff) { |
| attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff); |
| attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff); |
| attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation); |
| attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff); |
| attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff); |
| attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation); |
| } |
| |
| if (!blendInfo.fWritesColor) { |
| attachmentState->colorWriteMask = 0; |
| } else { |
| attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | |
| VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; |
| } |
| |
| *colorBlendInfo = {}; |
| colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; |
| colorBlendInfo->logicOpEnable = VK_FALSE; |
| colorBlendInfo->attachmentCount = 1; |
| colorBlendInfo->pAttachments = attachmentState; |
| // colorBlendInfo->blendConstants is set dynamically |
| |
| if (caps.supportsRasterizationOrderColorAttachmentAccess()) { |
| colorBlendInfo->flags = |
| VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT; |
| } |
| } |
| |
| static void setup_raster_state(const Caps& caps, |
| bool isWireframe, |
| VkPipelineRasterizationStateCreateInfo* rasterInfo) { |
| *rasterInfo = {}; |
| rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; |
| rasterInfo->depthClampEnable = VK_FALSE; |
| rasterInfo->rasterizerDiscardEnable = VK_FALSE; |
| rasterInfo->polygonMode = isWireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL; |
| rasterInfo->cullMode = VK_CULL_MODE_NONE; |
| rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; |
| rasterInfo->depthBiasEnable = VK_FALSE; |
| rasterInfo->depthBiasConstantFactor = 0.0f; |
| rasterInfo->depthBiasClamp = 0.0f; |
| rasterInfo->depthBiasSlopeFactor = 0.0f; |
| rasterInfo->lineWidth = 1.0f; |
| } |
| |
| static void setup_shader_stage_info(VkShaderStageFlagBits stage, |
| VkShaderModule shaderModule, |
| VkPipelineShaderStageCreateInfo* shaderStageInfo) { |
| *shaderStageInfo = {}; |
| shaderStageInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| shaderStageInfo->stage = stage; |
| shaderStageInfo->module = shaderModule; |
| shaderStageInfo->pName = "main"; |
| } |
| |
| static VkDescriptorSetLayout descriptor_data_to_layout( |
| const VulkanSharedContext* sharedContext, const SkSpan<DescriptorData>& descriptorData) { |
| // descriptorData can be empty to indicate that we should create a mock placeholder layout |
| // with no descriptors. |
| VkDescriptorSetLayout setLayout; |
| DescriptorDataToVkDescSetLayout(sharedContext, descriptorData, &setLayout); |
| if (setLayout == VK_NULL_HANDLE) { |
| SKGPU_LOG_E("Failed to create descriptor set layout; pipeline creation will fail.\n"); |
| return VK_NULL_HANDLE; |
| } |
| return setLayout; |
| } |
| |
| static void destroy_desc_set_layouts(const VulkanSharedContext* sharedContext, |
| skia_private::TArray<VkDescriptorSetLayout>& setLayouts) { |
| for (int i = 0; i < setLayouts.size(); i++) { |
| if (setLayouts[i] != VK_NULL_HANDLE) { |
| VULKAN_CALL(sharedContext->interface(), |
| DestroyDescriptorSetLayout(sharedContext->device(), |
| setLayouts[i], |
| nullptr)); |
| } |
| } |
| } |
| |
| static bool input_attachment_desc_set_layout(VkDescriptorSetLayout& outLayout, |
| const VulkanSharedContext* sharedContext, |
| bool mockOnly) { |
| skia_private::STArray<1, DescriptorData> inputAttachmentDesc; |
| |
| if (!mockOnly) { |
| inputAttachmentDesc.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor); |
| } |
| |
| // If mockOnly is true (meaning no input attachment descriptor is actually needed), then still |
| // request a mock VkDescriptorSetLayout handle by passing in the unpopulated span. |
| outLayout = descriptor_data_to_layout(sharedContext, {inputAttachmentDesc}); |
| return outLayout != VK_NULL_HANDLE; |
| } |
| |
| static bool uniform_desc_set_layout(VkDescriptorSetLayout& outLayout, |
| const VulkanSharedContext* sharedContext, |
| bool hasStepUniforms, |
| bool hasPaintUniforms, |
| bool hasGradientBuffer) { |
| // Define a container with size reserved for up to kNumUniformBuffers descriptors. Only add |
| // DescriptorData for uniforms that actually are used and need to be included in the layout. |
| skia_private::STArray< |
| VulkanGraphicsPipeline::kNumUniformBuffers, DescriptorData> uniformDescriptors; |
| |
| DescriptorType uniformBufferType = |
| sharedContext->caps()->storageBufferSupport() ? DescriptorType::kStorageBuffer |
| : DescriptorType::kUniformBuffer; |
| if (hasStepUniforms) { |
| uniformDescriptors.push_back({ |
| uniformBufferType, /*count=*/1, |
| VulkanGraphicsPipeline::kRenderStepUniformBufferIndex, |
| PipelineStageFlags::kVertexShader | PipelineStageFlags::kFragmentShader}); |
| } |
| if (hasPaintUniforms) { |
| uniformDescriptors.push_back({ |
| uniformBufferType, /*count=*/1, |
| VulkanGraphicsPipeline::kPaintUniformBufferIndex, |
| PipelineStageFlags::kVertexShader | PipelineStageFlags::kFragmentShader}); |
| } |
| if (hasGradientBuffer) { |
| uniformDescriptors.push_back({ |
| DescriptorType::kStorageBuffer, |
| /*count=*/1, |
| VulkanGraphicsPipeline::kGradientBufferIndex, |
| PipelineStageFlags::kFragmentShader}); |
| } |
| |
| // If no uniforms are used, still request a mock VkDescriptorSetLayout handle by passing in the |
| // unpopulated span of uniformDescriptors to descriptor set layout creation. |
| outLayout = descriptor_data_to_layout(sharedContext, {uniformDescriptors}); |
| return true; |
| } |
| |
| static bool texture_sampler_desc_set_layout(VkDescriptorSetLayout& outLayout, |
| const VulkanSharedContext* sharedContext, |
| const int numTextureSamplers, |
| SkSpan<sk_sp<VulkanSampler>> immutableSamplers) { |
| SkASSERT(numTextureSamplers >= 0); |
| // The immutable sampler span size must be = the total number of texture/samplers such that |
| // we can use the index of a sampler as its binding index (or we just have none, which |
| // enables us to skip some of this logic entirely). |
| SkASSERT(immutableSamplers.empty() || |
| SkTo<int>(immutableSamplers.size()) == numTextureSamplers); |
| |
| skia_private::TArray<DescriptorData> textureSamplerDescs(numTextureSamplers); |
| for (int i = 0; i < numTextureSamplers; i++) { |
| Sampler* immutableSampler = nullptr; |
| if (!immutableSamplers.empty() && immutableSamplers[i]) { |
| immutableSampler = immutableSamplers[i].get(); |
| } |
| textureSamplerDescs.push_back({DescriptorType::kCombinedTextureSampler, |
| /*count=*/1, |
| /*bindingIdx=*/i, |
| PipelineStageFlags::kFragmentShader, |
| immutableSampler}); |
| } |
| |
| // If no texture/samplers are used, a mock VkDescriptorSetLayout handle by passing in the |
| // unpopulated span of textureSamplerDescs to descriptor set layout creation. |
| outLayout = descriptor_data_to_layout(sharedContext, {textureSamplerDescs}); |
| return outLayout != VK_NULL_HANDLE; |
| } |
| |
| static VkPipelineLayout setup_pipeline_layout(const VulkanSharedContext* sharedContext, |
| uint32_t pushConstantSize, |
| VkShaderStageFlagBits pushConstantPipelineStageFlags, |
| bool hasStepUniforms, |
| bool hasPaintUniforms, |
| bool hasGradientBuffer, |
| int numTextureSamplers, |
| bool loadMsaaFromResolve, |
| SkSpan<sk_sp<VulkanSampler>> immutableSamplers) { |
| // Create a container with the max anticipated amount (kMaxNumDescSets) of VkDescriptorSetLayout |
| // handles which will be used to create the pipeline layout. |
| skia_private::STArray< |
| VulkanGraphicsPipeline::kMaxNumDescSets, VkDescriptorSetLayout> setLayouts; |
| setLayouts.push_back_n(VulkanGraphicsPipeline::kMaxNumDescSets, VkDescriptorSetLayout()); |
| |
| // Populate the container with actual descriptor set layout handles. Each index should contain |
| // either a valid/real or a mock/placehodler layout handle. Mock VkDescriptorSetLayouts do not |
| // actually contain any descriptors, but are needed as placeholders to maintain expected |
| // descriptor set binding indices. This is because VK_NULL_HANDLE is a valid |
| // VkDescriptorSetLayout value iff the graphicsPipelineLibrary feature is enabled, which is not |
| // the case for all targeted devices (see |
| // VUID-VkPipelineLayoutCreateInfo-graphicsPipelineLibrary-06753). If any of the helpers |
| // encounter an error (i.e., return false), return a null VkPipelineLayout. |
| if (!input_attachment_desc_set_layout( |
| setLayouts[VulkanGraphicsPipeline::kDstAsInputDescSetIndex], |
| sharedContext, |
| /*mockOnly=*/false) || // We always add an input attachment descriptor |
| !uniform_desc_set_layout( |
| setLayouts[VulkanGraphicsPipeline::kUniformBufferDescSetIndex], |
| sharedContext, |
| hasStepUniforms, |
| hasPaintUniforms, |
| hasGradientBuffer) || |
| !texture_sampler_desc_set_layout( |
| setLayouts[VulkanGraphicsPipeline::kTextureBindDescSetIndex], |
| sharedContext, |
| numTextureSamplers, |
| immutableSamplers) || |
| !input_attachment_desc_set_layout( |
| setLayouts[VulkanGraphicsPipeline::kLoadMsaaFromResolveInputDescSetIndex], |
| sharedContext, |
| /*mockOnly=*/!loadMsaaFromResolve)) { // Actual descriptor needed iff loading MSAA |
| destroy_desc_set_layouts(sharedContext, setLayouts); |
| return VK_NULL_HANDLE; |
| } |
| |
| // Generate a pipeline layout using the now-populated descriptor set layout array |
| VkPushConstantRange pushConstantRange; |
| if (pushConstantSize) { |
| pushConstantRange.offset = 0; |
| pushConstantRange.size = pushConstantSize; |
| pushConstantRange.stageFlags = pushConstantPipelineStageFlags; |
| } |
| VkPipelineLayoutCreateInfo layoutCreateInfo = {}; |
| layoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; |
| layoutCreateInfo.setLayoutCount = setLayouts.size(); |
| layoutCreateInfo.pSetLayouts = setLayouts.begin(); |
| layoutCreateInfo.pushConstantRangeCount = pushConstantSize ? 1 : 0; |
| layoutCreateInfo.pPushConstantRanges = pushConstantSize ? &pushConstantRange : nullptr; |
| |
| VkResult result; |
| VkPipelineLayout layout; |
| VULKAN_CALL_RESULT(sharedContext, |
| result, |
| CreatePipelineLayout(sharedContext->device(), |
| &layoutCreateInfo, |
| /*const VkAllocationCallbacks*=*/nullptr, |
| &layout)); |
| |
| // DescriptorSetLayouts can be deleted after the pipeline layout is created. |
| destroy_desc_set_layouts(sharedContext, setLayouts); |
| |
| return result == VK_SUCCESS ? layout : VK_NULL_HANDLE; |
| } |
| |
| static VkResult create_shaders_pipeline(const VulkanSharedContext* sharedContext, |
| VkGraphicsPipelineCreateInfo& completePipelineInfo, |
| VkPipelineLibraryCreateInfoKHR& shadersLibraryInfo, |
| VkGraphicsPipelineLibraryCreateInfoEXT& libraryInfo, |
| VkPipeline* shadersPipeline) { |
| // Provide state that only pertains to the shaders subset to create the library. |
| VkGraphicsPipelineCreateInfo shadersPipelineCreateInfo = {}; |
| shadersPipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
| shadersPipelineCreateInfo.flags = 0; |
| shadersPipelineCreateInfo.stageCount = completePipelineInfo.stageCount; |
| shadersPipelineCreateInfo.pStages = completePipelineInfo.pStages; |
| shadersPipelineCreateInfo.pViewportState = completePipelineInfo.pViewportState; |
| shadersPipelineCreateInfo.pRasterizationState = completePipelineInfo.pRasterizationState; |
| shadersPipelineCreateInfo.pMultisampleState = completePipelineInfo.pMultisampleState; |
| shadersPipelineCreateInfo.pDepthStencilState = completePipelineInfo.pDepthStencilState; |
| shadersPipelineCreateInfo.pDynamicState = completePipelineInfo.pDynamicState; |
| shadersPipelineCreateInfo.layout = completePipelineInfo.layout; |
| shadersPipelineCreateInfo.renderPass = completePipelineInfo.renderPass; |
| shadersPipelineCreateInfo.subpass = completePipelineInfo.subpass; |
| |
| // Specify that this is the shaders subset of the pipeline. |
| libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | |
| VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT; |
| shadersPipelineCreateInfo.flags |= VK_PIPELINE_CREATE_LIBRARY_BIT_KHR; |
| skgpu::AddToPNextChain(&shadersPipelineCreateInfo, &libraryInfo); |
| |
| // Create the library. |
| VkResult result; |
| { |
| TRACE_EVENT0_ALWAYS("skia.shaders", "VkCreateGraphicsPipeline - shaders"); |
| VULKAN_CALL_RESULT(sharedContext, |
| result, |
| CreateGraphicsPipelines(sharedContext->device(), |
| sharedContext->getPipelineCache(), |
| /*createInfoCount=*/1, |
| &shadersPipelineCreateInfo, |
| /*pAllocator=*/nullptr, |
| shadersPipeline)); |
| } |
| if (result != VK_SUCCESS) { |
| return result; |
| } |
| |
| // The complete pipeline doesn't need all the state anymore, it inherits them from the |
| // shaders library. |
| completePipelineInfo.stageCount = 0; |
| completePipelineInfo.pStages = nullptr; |
| completePipelineInfo.pViewportState = nullptr; |
| completePipelineInfo.pRasterizationState = nullptr; |
| completePipelineInfo.pDepthStencilState = nullptr; |
| |
| // The complete pipeline provides the vertex input and fragment output interface state. |
| // It's important that these states are not built into a separate library, because some |
| // drivers can generate more efficient blend code if they have information about the |
| // fragment shader. |
| libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | |
| VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT; |
| skgpu::AddToPNextChain(&completePipelineInfo, &libraryInfo); |
| |
| // Tell the complete pipeline to link with the shaders library: |
| shadersLibraryInfo.libraryCount = 1; |
| shadersLibraryInfo.pLibraries = shadersPipeline; |
| AddToPNextChain(&completePipelineInfo, &shadersLibraryInfo); |
| |
| return VK_SUCCESS; |
| } |
| |
| using VkDynamicStateList = std::array<VkDynamicState, 22>; |
| static void setup_dynamic_state(const Caps& caps, |
| VkPipelineDynamicStateCreateInfo* dynamicInfo, |
| VkDynamicStateList* dynamicStates) { |
| uint32_t count = 0; |
| |
| // The following state is always dynamic in Graphite |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_VIEWPORT; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_SCISSOR; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_BLEND_CONSTANTS; |
| |
| if (caps.useBasicDynamicState()) { |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_LINE_WIDTH; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BIAS; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BOUNDS; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_REFERENCE; |
| |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_COMPARE_OP; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_OP; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE; |
| |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY; |
| |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_CULL_MODE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_FRONT_FACE; |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE; |
| } |
| if (caps.useVertexInputDynamicState()) { |
| (*dynamicStates)[count++] = VK_DYNAMIC_STATE_VERTEX_INPUT_EXT; |
| } |
| |
| // VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT are not |
| // used because Graphite only sets one scissor and viewport. |
| // |
| // VK_DYNAMIC_STATE_LOGIC_OP_EXT and VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT are irrelevant to |
| // Graphite. |
| // |
| // VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE is not used because it will be eventually made |
| // obsolete with VK_EXT_vertex_input_dynamic_state and VK_EXT_graphics_pipeline_library. |
| // |
| // Dynamic state from VK_EXT_extended_dynamic_state3 is not yet used. They _could_ be useful, |
| // but very few bits are universal and lots of the interesting bits are covered by |
| // VK_EXT_graphics_pipeline_library already. Still, state like |
| // VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT or VK_DYNAMIC_STATE_POLYGON_MODE_EXT could be used in |
| // the future. |
| |
| memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo)); |
| dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; |
| dynamicInfo->dynamicStateCount = count; |
| dynamicInfo->pDynamicStates = dynamicStates->data(); |
| } |
| |
| VulkanProgramInfo::~VulkanProgramInfo() { |
| if (fVS != VK_NULL_HANDLE) { |
| VULKAN_CALL(fSharedContext->interface(), |
| DestroyShaderModule(fSharedContext->device(), fVS, nullptr)); |
| fVS = VK_NULL_HANDLE; |
| } |
| if (fFS != VK_NULL_HANDLE) { |
| VULKAN_CALL(fSharedContext->interface(), |
| DestroyShaderModule(fSharedContext->device(), fFS, nullptr)); |
| fFS = VK_NULL_HANDLE; |
| } |
| if (fLayout != VK_NULL_HANDLE) { |
| VULKAN_CALL(fSharedContext->interface(), |
| DestroyPipelineLayout(fSharedContext->device(), |
| fLayout, |
| nullptr)); |
| fLayout = VK_NULL_HANDLE; |
| } |
| } |
| |
| sk_sp<VulkanGraphicsPipeline> VulkanGraphicsPipeline::Make( |
| const VulkanSharedContext* sharedContext, |
| VulkanResourceProvider* rsrcProvider, |
| const RuntimeEffectDictionary* runtimeDict, |
| const UniqueKey& pipelineKey, |
| const GraphicsPipelineDesc& pipelineDesc, |
| const RenderPassDesc& renderPassDesc, |
| SkEnumBitMask<PipelineCreationFlags> pipelineCreationFlags, |
| uint32_t compilationID) { |
| SkASSERT(rsrcProvider); |
| |
| SkSL::ProgramSettings settings; |
| settings.fSharpenTextures = true; |
| settings.fForceNoRTFlip = true; |
| |
| ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler(); |
| |
| const RenderStep* step = sharedContext->rendererProvider()->lookup(pipelineDesc.renderStepID()); |
| const bool useStorageBuffers = sharedContext->caps()->storageBufferSupport(); |
| |
| if (step->staticAttributes().size() + step->appendAttributes().size() > |
| sharedContext->vulkanCaps().maxVertexAttributes()) { |
| SKGPU_LOG_W("Requested more than the supported number of vertex attributes"); |
| return nullptr; |
| } |
| |
| skia_private::TArray<SamplerDesc> descContainer {}; |
| std::unique_ptr<ShaderInfo> shaderInfo = |
| ShaderInfo::Make(sharedContext->caps(), |
| sharedContext->shaderCodeDictionary(), |
| runtimeDict, |
| step, |
| pipelineDesc.paintParamsID(), |
| useStorageBuffers, |
| renderPassDesc.fColorAttachment.fFormat, |
| renderPassDesc.fWriteSwizzle, |
| renderPassDesc.fDstReadStrategy, |
| &descContainer); |
| |
| // Populate an array of sampler ptrs where a sampler's index within the array indicates their |
| // binding index within the descriptor set. Initialize all values to nullptr, which represents a |
| // "regular", dynamic sampler at that index. |
| skia_private::TArray<sk_sp<VulkanSampler>> immutableSamplers; |
| immutableSamplers.push_back_n(shaderInfo->numFragmentTexturesAndSamplers()); |
| |
| // This logic relies upon Vulkan using combined texture/sampler bindings, which is necessary for |
| // ycbcr samplers per the Vulkan spec. |
| SkASSERT(!sharedContext->caps()->resourceBindingRequirements().fSeparateTextureAndSamplerBinding |
| && shaderInfo->numFragmentTexturesAndSamplers() == descContainer.size()); |
| for (int i = 0; i < descContainer.size(); i++) { |
| // If a SamplerDesc is not equivalent to the default-initialized SamplerDesc, that indicates |
| // the usage of an immutable sampler. That sampler desc should then be used to obtain an |
| // actual immutable sampler from the resource provider and added at the proper index within |
| // immutableSamplers for inclusion in the pipeline layout. |
| if (descContainer.at(i) != SamplerDesc()) { |
| sk_sp<Sampler> immutableSampler = |
| rsrcProvider->findOrCreateCompatibleSampler(descContainer.at(i)); |
| sk_sp<VulkanSampler> vulkanSampler = |
| sk_ref_sp<VulkanSampler>(static_cast<VulkanSampler*>(immutableSampler.get())); |
| SkASSERT(vulkanSampler); |
| immutableSamplers[i] = std::move(vulkanSampler); |
| } |
| } |
| |
| auto program = VulkanProgramInfo::Make(sharedContext); |
| |
| const std::string& fsSkSL = shaderInfo->fragmentSkSL(); |
| const bool hasFragmentSkSL = !fsSkSL.empty(); |
| SkSL::NativeShader vsSPIRV, fsSPIRV; |
| SkSL::Program::Interface vsInterface, fsInterface; |
| if (hasFragmentSkSL) { |
| if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), |
| fsSkSL, |
| SkSL::ProgramKind::kGraphiteFragment, |
| settings, |
| &fsSPIRV, |
| &fsInterface, |
| errorHandler)) { |
| return nullptr; |
| } |
| |
| // Apply transformations to the fragment shader SPIR-V if needed. |
| // |
| // SkSL->SPIR-V compilations are relatively costly. In anticipation of caching those |
| // operations, we allow certain transformations to be applied directly on to compiled |
| // SPIR-V. This allows the SkSL to be compiled only once, and the SPIR-V from the cache can |
| // simply be directly modified afterwards as needed. This is why transform options exist |
| // independently from flags used in SkSL->SPIRV compilation. |
| SPIRVTransformOptions options; |
| options.fMultisampleInputLoad = |
| renderPassDesc.fSampleCount > 1 && |
| shaderInfo->dstReadStrategy() == DstReadStrategy::kReadFromInput; |
| if (options.fMultisampleInputLoad) { |
| fsSPIRV = TransformSPIRV(fsSPIRV, options); |
| } |
| |
| if(!program->setFragmentShader(CreateVulkanShaderModule( |
| sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT))) { |
| return nullptr; |
| } |
| } |
| |
| const std::string& vsSkSL = shaderInfo->vertexSkSL(); |
| if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), |
| vsSkSL, |
| SkSL::ProgramKind::kGraphiteVertex, |
| settings, |
| &vsSPIRV, |
| &vsInterface, |
| errorHandler)) { |
| return nullptr; |
| } |
| if (!program->setVertexShader(CreateVulkanShaderModule( |
| sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT))) { |
| return nullptr; |
| } |
| |
| // TODO: Query RenderPassDesc for input attachment information. For now, we only use one for |
| // loading MSAA from resolve so we can simply pass in 0 when not doing that. |
| if (!program->setLayout(setup_pipeline_layout( |
| sharedContext, |
| VulkanResourceProvider::kIntrinsicConstantSize, |
| VulkanResourceProvider::kIntrinsicConstantStageFlags, |
| !step->uniforms().empty(), |
| shaderInfo->hasPaintUniforms(), |
| shaderInfo->hasGradientBuffer(), |
| shaderInfo->numFragmentTexturesAndSamplers(), |
| /*loadMsaaFromResolve=*/false, |
| SkSpan<sk_sp<VulkanSampler>>(immutableSamplers)))) { |
| return nullptr; |
| } |
| |
| // This pipeline factory is for regular pipelines that run in the main subpass. Depending on |
| // if there will be a load-MSAA subpass, the index changes. Ideally with |
| // VK_dynamic_rendering_local_read, we can reuse pipelines across subpasses for layer elision. |
| int subpassIndex = RenderPassDescWillLoadMSAAFromResolve(renderPassDesc) ? 1 : 0; |
| VertexInputBindingDescriptions vertexBindingDescriptions; |
| VertexInputAttributeDescriptions vertexAttributeDescriptions; |
| VkPipeline shadersPipeline = VK_NULL_HANDLE; |
| VkPipeline vkPipeline = MakePipeline( |
| sharedContext, |
| rsrcProvider, |
| *program, |
| subpassIndex, |
| step->primitiveType(), |
| step->appendsVertices() ? VK_VERTEX_INPUT_RATE_VERTEX : VK_VERTEX_INPUT_RATE_INSTANCE, |
| step->staticAttributes(), |
| step->appendAttributes(), |
| vertexBindingDescriptions, |
| vertexAttributeDescriptions, |
| step->depthStencilSettings(), |
| shaderInfo->blendInfo(), |
| renderPassDesc, |
| &shadersPipeline); |
| |
| sk_sp<VulkanGraphicsPipeline> pipeline; |
| if (vkPipeline) { |
| PipelineInfo pipelineInfo{ *shaderInfo, pipelineCreationFlags, |
| pipelineKey.hash(), compilationID }; |
| #if defined(GPU_TEST_UTILS) |
| pipelineInfo.fNativeVertexShader = SkShaderUtils::SpirvAsHexStream(vsSPIRV.fBinary); |
| pipelineInfo.fNativeFragmentShader = SkShaderUtils::SpirvAsHexStream(fsSPIRV.fBinary); |
| #endif |
| |
| pipeline = sk_sp<VulkanGraphicsPipeline>( |
| new VulkanGraphicsPipeline(sharedContext, |
| pipelineInfo, |
| program->releaseLayout(), |
| vkPipeline, |
| shadersPipeline, |
| /*ownsPipelineLayout=*/true, |
| std::move(immutableSamplers), |
| step->renderStepID(), |
| step->primitiveType(), |
| step->depthStencilSettings(), |
| std::move(vertexBindingDescriptions), |
| std::move(vertexAttributeDescriptions))); |
| } |
| |
| return pipeline; |
| } |
| |
| VkPipeline VulkanGraphicsPipeline::MakePipeline( |
| const VulkanSharedContext* sharedContext, |
| VulkanResourceProvider* rsrcProvider, |
| const VulkanProgramInfo& program, |
| int subpassIndex, |
| PrimitiveType primitiveType, |
| VkVertexInputRate appendInputRate, |
| SkSpan<const Attribute> staticAttrs, |
| SkSpan<const Attribute> appendAttrs, |
| VertexInputBindingDescriptions& vertexBindingDescriptions, |
| VertexInputAttributeDescriptions& vertexAttributeDescriptions, |
| const DepthStencilSettings& depthStencilSettings, |
| const BlendInfo& blendInfo, |
| const RenderPassDesc& renderPassDesc, |
| VkPipeline* shadersPipeline) { |
| SkASSERT(program.layout() && program.vs()); // but a fragment shader isn't required |
| |
| VkPipelineVertexInputStateCreateInfo vertexInputInfo; |
| skia_private::STArray<2, VkVertexInputBindingDescription> bindingDescs; |
| skia_private::STArray<16, VkVertexInputAttributeDescription> attributeDescs; |
| if (sharedContext->caps()->useVertexInputDynamicState()) { |
| VkVertexInputBindingDescription2EXT defaultBindingDesc = {}; |
| defaultBindingDesc.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT; |
| defaultBindingDesc.divisor = 1; |
| |
| VkVertexInputAttributeDescription2EXT defaultAttributeDesc = {}; |
| defaultAttributeDesc.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT; |
| |
| get_vertex_input_state(appendInputRate, |
| staticAttrs, |
| appendAttrs, |
| vertexBindingDescriptions, |
| vertexAttributeDescriptions, |
| defaultBindingDesc, |
| defaultAttributeDesc); |
| } else { |
| setup_vertex_input_state(appendInputRate, |
| staticAttrs, |
| appendAttrs, |
| &vertexInputInfo, |
| bindingDescs, |
| attributeDescs); |
| } |
| |
| VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo; |
| setup_input_assembly_state(*sharedContext->caps(), primitiveType, &inputAssemblyInfo); |
| |
| VkPipelineDepthStencilStateCreateInfo depthStencilInfo; |
| setup_depth_stencil_state(*sharedContext->caps(), depthStencilSettings, &depthStencilInfo); |
| |
| VkPipelineViewportStateCreateInfo viewportInfo; |
| setup_viewport_scissor_state(&viewportInfo); |
| |
| VkPipelineMultisampleStateCreateInfo multisampleInfo; |
| setup_multisample_state(renderPassDesc.fSampleCount, &multisampleInfo); |
| |
| // We will only have one color blend attachment per pipeline. |
| VkPipelineColorBlendAttachmentState attachmentStates[1]; |
| VkPipelineColorBlendStateCreateInfo colorBlendInfo; |
| setup_color_blend_state( |
| sharedContext->vulkanCaps(), blendInfo, &colorBlendInfo, attachmentStates); |
| |
| VkPipelineRasterizationStateCreateInfo rasterInfo; |
| // TODO: Check for wire frame mode once that is an available context option within graphite. |
| setup_raster_state(*sharedContext->caps(), /*isWireframe=*/false, &rasterInfo); |
| |
| VkPipelineShaderStageCreateInfo pipelineShaderStages[2]; |
| setup_shader_stage_info(VK_SHADER_STAGE_VERTEX_BIT, |
| program.vs(), |
| &pipelineShaderStages[0]); |
| if (program.fs()) { |
| setup_shader_stage_info(VK_SHADER_STAGE_FRAGMENT_BIT, |
| program.fs(), |
| &pipelineShaderStages[1]); |
| } |
| |
| VkDynamicStateList dynamicStates; |
| VkPipelineDynamicStateCreateInfo dynamicInfo; |
| setup_dynamic_state(*sharedContext->caps(), &dynamicInfo, &dynamicStates); |
| |
| sk_sp<VulkanRenderPass> compatibleRenderPass = |
| rsrcProvider->findOrCreateRenderPass(renderPassDesc, /*compatibleOnly=*/true); |
| if (!compatibleRenderPass) { |
| SKGPU_LOG_E("Failed to create compatible renderpass for pipeline"); |
| return VK_NULL_HANDLE; |
| } |
| SkDEBUGCODE(int subpassCount = RenderPassDescWillLoadMSAAFromResolve(renderPassDesc) ? 2 : 1;) |
| SkASSERT(subpassIndex >= 0 && subpassIndex < subpassCount); |
| |
| VkGraphicsPipelineCreateInfo pipelineCreateInfo = {}; |
| pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
| pipelineCreateInfo.stageCount = program.fs() ? 2 : 1; |
| pipelineCreateInfo.pStages = &pipelineShaderStages[0]; |
| pipelineCreateInfo.pVertexInputState = |
| sharedContext->caps()->useVertexInputDynamicState() ? nullptr : &vertexInputInfo; |
| pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo; |
| pipelineCreateInfo.pTessellationState = nullptr; |
| pipelineCreateInfo.pViewportState = &viewportInfo; |
| pipelineCreateInfo.pRasterizationState = &rasterInfo; |
| pipelineCreateInfo.pMultisampleState = &multisampleInfo; |
| pipelineCreateInfo.pDepthStencilState = &depthStencilInfo; |
| pipelineCreateInfo.pColorBlendState = &colorBlendInfo; |
| pipelineCreateInfo.pDynamicState = &dynamicInfo; |
| pipelineCreateInfo.layout = program.layout(); |
| pipelineCreateInfo.renderPass = compatibleRenderPass->renderPass(); |
| pipelineCreateInfo.subpass = subpassIndex; |
| pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE; |
| pipelineCreateInfo.basePipelineIndex = -1; |
| |
| VkPipelineLibraryCreateInfoKHR shadersLibraryInfo = {}; |
| shadersLibraryInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR; |
| |
| VkGraphicsPipelineLibraryCreateInfoEXT libraryInfo = {}; |
| libraryInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT; |
| |
| if (shadersPipeline && sharedContext->caps()->usePipelineLibraries()) { |
| // When using VK_EXT_graphics_pipeline_library, create the "shaders" subset of the pipeline, |
| // and then create the full pipeline (with the vertex input and fragment output state) |
| // immediately afterwards using the shaders library, which is a cheap operation. |
| // This is typically what vendors without dynamic blend state do in their GL drivers. |
| // |
| // This can be further optimized by the front-end creating fewer shaders pipelines, and only |
| // create multiple full pipelines out of them as needed. |
| VkResult result = create_shaders_pipeline(sharedContext, |
| pipelineCreateInfo, |
| shadersLibraryInfo, |
| libraryInfo, |
| shadersPipeline); |
| if (result != VK_SUCCESS) { |
| SKGPU_LOG_E("Failed to create pipeline library. Error: %d\n", result); |
| return VK_NULL_HANDLE; |
| } |
| } |
| |
| VkPipeline vkPipeline; |
| VkResult result; |
| { |
| TRACE_EVENT0_ALWAYS("skia.shaders", "VkCreateGraphicsPipeline"); |
| VULKAN_CALL_RESULT(sharedContext, |
| result, |
| CreateGraphicsPipelines(sharedContext->device(), |
| sharedContext->getPipelineCache(), |
| /*createInfoCount=*/1, |
| &pipelineCreateInfo, |
| /*pAllocator=*/nullptr, |
| &vkPipeline)); |
| } |
| if (result != VK_SUCCESS) { |
| SKGPU_LOG_E("Failed to create pipeline. Error: %d\n", result); |
| return VK_NULL_HANDLE; |
| } |
| |
| return vkPipeline; |
| } |
| |
| std::unique_ptr<VulkanProgramInfo> VulkanGraphicsPipeline::CreateLoadMSAAProgram( |
| const VulkanSharedContext* sharedContext) { |
| SkSL::ProgramSettings settings; |
| settings.fForceNoRTFlip = true; |
| SkSL::NativeShader vsSPIRV, fsSPIRV; |
| ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler(); |
| |
| std::string vertShaderText; |
| vertShaderText.append( |
| "layout(vulkan, push_constant) uniform vertexUniformBuffer {" |
| "half4 uPosXform;" |
| "};" |
| |
| // MSAA Load Program VS |
| "void main() {" |
| "float2 position = float2(sk_VertexID >> 1, sk_VertexID & 1);" |
| "sk_Position.xy = position * uPosXform.xy + uPosXform.zw;" |
| "sk_Position.zw = half2(0, 1);" |
| "}"); |
| |
| std::string fragShaderText; |
| fragShaderText.append( |
| "layout(vulkan, input_attachment_index=0, set=" + |
| std::to_string(VulkanGraphicsPipeline::kLoadMsaaFromResolveInputDescSetIndex) + |
| ", binding=0) subpassInput uInput;" |
| |
| // MSAA Load Program FS |
| "void main() {" |
| "sk_FragColor = subpassLoad(uInput);" |
| "}"); |
| |
| auto program = VulkanProgramInfo::Make(sharedContext); |
| |
| SkSL::Program::Interface vsInterface, fsInterface; |
| if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), |
| vertShaderText, |
| SkSL::ProgramKind::kGraphiteVertex, |
| settings, |
| &vsSPIRV, |
| &vsInterface, |
| errorHandler)) { |
| return nullptr; |
| } |
| if (!program->setVertexShader(CreateVulkanShaderModule( |
| sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT))) { |
| return nullptr; |
| } |
| |
| if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(), |
| fragShaderText, |
| SkSL::ProgramKind::kGraphiteFragment, |
| settings, |
| &fsSPIRV, |
| &fsInterface, |
| errorHandler)) { |
| return nullptr; |
| } |
| if (!program->setFragmentShader(CreateVulkanShaderModule( |
| sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT))) { |
| return nullptr; |
| } |
| |
| // The load msaa pipeline takes no step or paint uniforms and no instance attributes. It only |
| // references one input attachment texture (which does not require a sampler) and one vertex |
| // attribute (NDC position) |
| skia_private::TArray<DescriptorData> inputAttachmentDescriptors(1); |
| inputAttachmentDescriptors.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor); |
| // This pipeline is used to read from the resolve attachment to a color attachment. We should |
| // never require an immutable sampler for this, since that would imply that we are rendering to |
| // a surface with an external format. |
| if (!program->setLayout(setup_pipeline_layout( |
| sharedContext, |
| /*pushConstantSize=*/32, |
| (VkShaderStageFlagBits)VK_SHADER_STAGE_VERTEX_BIT, |
| /*hasStepUniforms=*/false, |
| /*hasPaintUniforms=*/false, |
| /*hasGradientBuffer=*/false, |
| /*numTextureSamplers=*/0, |
| /*loadMsaaFromResolve=*/true, |
| /*immutableSamplers=*/{}))) { |
| return nullptr; |
| } |
| |
| return program; |
| } |
| |
| sk_sp<VulkanGraphicsPipeline> VulkanGraphicsPipeline::MakeLoadMSAAPipeline( |
| const VulkanSharedContext* sharedContext, |
| VulkanResourceProvider* rsrcProvider, |
| const VulkanProgramInfo& loadMSAAProgram, |
| const RenderPassDesc& renderPassDesc) { |
| // The load MSAA pipeline does not have any vertex or instance attributes, does not use the |
| // depth or stencil attachments. Unlike the general Make factory, we do not destroy any of the |
| // shader modules or layout. The pipeline layout will not be owned by the created |
| // VulkanGraphicsPipeline either, as it's owned by the resource provider. |
| SkASSERT(RenderPassDescWillLoadMSAAFromResolve(renderPassDesc)); |
| VertexInputBindingDescriptions vertexBindingDescriptions; |
| VertexInputAttributeDescriptions vertexAttributeDescriptions; |
| VkPipeline vkPipeline = MakePipeline(sharedContext, |
| rsrcProvider, |
| loadMSAAProgram, |
| /*subpassIndex=*/0, // loading to MSAA is always first |
| PrimitiveType::kTriangleStrip, |
| /*appendInputRate=*/{}, |
| /*staticAttrs=*/{}, |
| /*appendAttrs=*/{}, |
| vertexBindingDescriptions, |
| vertexAttributeDescriptions, |
| /*depthStencilSettings=*/{}, |
| /*blendInfo=*/{}, |
| renderPassDesc, |
| /*shadersPipeline=*/nullptr); |
| if (!vkPipeline) { |
| return nullptr; |
| } |
| |
| SkASSERT(vertexBindingDescriptions.empty()); |
| SkASSERT(vertexAttributeDescriptions.empty()); |
| return sk_sp<VulkanGraphicsPipeline>( |
| new VulkanGraphicsPipeline(sharedContext, |
| /*pipelineInfo=*/{}, // leave empty for an internal pipeline |
| loadMSAAProgram.layout(), |
| vkPipeline, |
| /*shadersPipeline=*/VK_NULL_HANDLE, |
| /*ownsPipelineLayout=*/false, |
| /*immutableSamplers=*/{}, |
| RenderStep::RenderStepID::kInvalid, |
| PrimitiveType::kTriangleStrip, |
| /*depthStencilSettings=*/{}, |
| /*vertexBindingDescriptions=*/{}, |
| /*vertexAttributeDescriptions=*/{})); |
| } |
| |
| VulkanGraphicsPipeline::VulkanGraphicsPipeline( |
| const VulkanSharedContext* sharedContext, |
| const PipelineInfo& pipelineInfo, |
| VkPipelineLayout pipelineLayout, |
| VkPipeline pipeline, |
| VkPipeline shadersPipeline, |
| bool ownsPipelineLayout, |
| skia_private::TArray<sk_sp<VulkanSampler>>&& immutableSamplers, |
| RenderStep::RenderStepID renderStepID, |
| PrimitiveType primitiveType, |
| const DepthStencilSettings& depthStencilSettings, |
| VertexInputBindingDescriptions&& vertexBindingDescriptions, |
| VertexInputAttributeDescriptions&& vertexAttributeDescriptions) |
| : GraphicsPipeline(sharedContext, pipelineInfo) |
| , fPipelineLayout(pipelineLayout) |
| , fPipeline(pipeline) |
| , fShadersPipeline(shadersPipeline) |
| , fOwnsPipelineLayout(ownsPipelineLayout) |
| , fImmutableSamplers(std::move(immutableSamplers)) |
| , fPrimitiveType(primitiveType) |
| , fDepthStencilSettings(depthStencilSettings) |
| , fRenderStepID(renderStepID) |
| , fVertexBindingDescriptions(std::move(vertexBindingDescriptions)) |
| , fVertexAttributeDescriptions(std::move(vertexAttributeDescriptions)) {} |
| |
| void VulkanGraphicsPipeline::freeGpuData() { |
| auto sharedCtxt = static_cast<const VulkanSharedContext*>(this->sharedContext()); |
| if (fShadersPipeline != VK_NULL_HANDLE) { |
| VULKAN_CALL(sharedCtxt->interface(), |
| DestroyPipeline(sharedCtxt->device(), fShadersPipeline, nullptr)); |
| } |
| if (fPipeline != VK_NULL_HANDLE) { |
| VULKAN_CALL(sharedCtxt->interface(), |
| DestroyPipeline(sharedCtxt->device(), fPipeline, nullptr)); |
| } |
| if (fOwnsPipelineLayout && fPipelineLayout != VK_NULL_HANDLE) { |
| VULKAN_CALL(sharedCtxt->interface(), |
| DestroyPipelineLayout(sharedCtxt->device(), fPipelineLayout, nullptr)); |
| } |
| } |
| |
| void VulkanGraphicsPipeline::updateDynamicState(const VulkanSharedContext* sharedContext, |
| VkCommandBuffer commandBuffer, |
| const VulkanGraphicsPipeline* previous) const { |
| // The front-end currently is unaware of dynamic state, so we have no choice but to calculate |
| // the diff between pipelines and update the state as needed. This is not quite so efficient, |
| // but will need awareness from the front-end to optimize. |
| if (sharedContext->caps()->useBasicDynamicState()) { |
| const DepthStencilSettings& depthStencil = fDepthStencilSettings; |
| const DepthStencilSettings::Face& frontStencil = depthStencil.fFrontStencil; |
| const DepthStencilSettings::Face& backStencil = depthStencil.fBackStencil; |
| |
| const DepthStencilSettings* pastDepthStencil = |
| previous ? &previous->fDepthStencilSettings : nullptr; |
| const DepthStencilSettings::Face* pastFrontStencil = |
| previous ? &pastDepthStencil->fFrontStencil : nullptr; |
| const DepthStencilSettings::Face* pastBackStencil = |
| previous ? &pastDepthStencil->fBackStencil : nullptr; |
| |
| const bool frontStencilReadMaskDirty = |
| previous == nullptr || pastFrontStencil->fReadMask != frontStencil.fReadMask; |
| if (frontStencilReadMaskDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetStencilCompareMask( |
| commandBuffer, VK_STENCIL_FACE_FRONT_BIT, frontStencil.fReadMask)); |
| } |
| const bool backStencilReadMaskDirty = |
| previous == nullptr || pastBackStencil->fReadMask != backStencil.fReadMask; |
| if (backStencilReadMaskDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetStencilCompareMask( |
| commandBuffer, VK_STENCIL_FACE_BACK_BIT, backStencil.fReadMask)); |
| } |
| const bool frontStencilWriteMaskDirty = |
| previous == nullptr || pastFrontStencil->fWriteMask != frontStencil.fWriteMask; |
| if (frontStencilWriteMaskDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetStencilWriteMask( |
| commandBuffer, VK_STENCIL_FACE_FRONT_BIT, frontStencil.fWriteMask)); |
| } |
| const bool backStencilWriteMaskDirty = |
| previous == nullptr || pastBackStencil->fWriteMask != backStencil.fWriteMask; |
| if (backStencilWriteMaskDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetStencilWriteMask( |
| commandBuffer, VK_STENCIL_FACE_BACK_BIT, backStencil.fWriteMask)); |
| } |
| const bool stencilReferenceDirty = |
| previous == nullptr || |
| pastDepthStencil->fStencilReferenceValue != depthStencil.fStencilReferenceValue; |
| if (stencilReferenceDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetStencilReference(commandBuffer, |
| VK_STENCIL_FACE_FRONT_AND_BACK, |
| depthStencil.fStencilReferenceValue)); |
| } |
| const bool depthCompareOpDirty = |
| previous == nullptr || |
| pastDepthStencil->fDepthCompareOp != depthStencil.fDepthCompareOp; |
| if (depthCompareOpDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetDepthCompareOp( |
| commandBuffer, |
| compare_op_to_vk_compare_op(depthStencil.fDepthCompareOp))); |
| } |
| const bool depthTestEnabledDirty = |
| previous == nullptr || |
| pastDepthStencil->fDepthTestEnabled != depthStencil.fDepthTestEnabled; |
| if (depthTestEnabledDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetDepthTestEnable(commandBuffer, depthStencil.fDepthTestEnabled)); |
| } |
| const bool depthWriteEnabledDirty = |
| previous == nullptr || |
| pastDepthStencil->fDepthWriteEnabled != depthStencil.fDepthWriteEnabled; |
| if (depthWriteEnabledDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetDepthWriteEnable(commandBuffer, depthStencil.fDepthWriteEnabled)); |
| } |
| const bool stencilTestEnabledDirty = |
| previous == nullptr || |
| pastDepthStencil->fStencilTestEnabled != depthStencil.fStencilTestEnabled; |
| if (stencilTestEnabledDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetStencilTestEnable(commandBuffer, depthStencil.fStencilTestEnabled)); |
| } |
| const bool frontStencilOpsDirty = |
| previous == nullptr || |
| pastFrontStencil->fDepthStencilPassOp != frontStencil.fDepthStencilPassOp || |
| pastFrontStencil->fStencilFailOp != frontStencil.fStencilFailOp || |
| pastFrontStencil->fDepthFailOp != frontStencil.fDepthFailOp || |
| pastFrontStencil->fCompareOp != frontStencil.fCompareOp; |
| if (frontStencilOpsDirty) { |
| VULKAN_CALL( |
| sharedContext->interface(), |
| CmdSetStencilOp(commandBuffer, |
| VK_STENCIL_FACE_FRONT_BIT, |
| /*failOp=*/ |
| stencil_op_to_vk_stencil_op(frontStencil.fStencilFailOp), |
| /*passOp=*/ |
| stencil_op_to_vk_stencil_op(frontStencil.fDepthStencilPassOp), |
| /*depthFailOp=*/ |
| stencil_op_to_vk_stencil_op(frontStencil.fDepthFailOp), |
| /*compareOp=*/ |
| compare_op_to_vk_compare_op(frontStencil.fCompareOp))); |
| } |
| const bool backStencilOpsDirty = |
| previous == nullptr || |
| pastBackStencil->fDepthStencilPassOp != backStencil.fDepthStencilPassOp || |
| pastBackStencil->fStencilFailOp != backStencil.fStencilFailOp || |
| pastBackStencil->fDepthFailOp != backStencil.fDepthFailOp || |
| pastBackStencil->fCompareOp != backStencil.fCompareOp; |
| if (backStencilOpsDirty) { |
| VULKAN_CALL( |
| sharedContext->interface(), |
| CmdSetStencilOp(commandBuffer, |
| VK_STENCIL_FACE_BACK_BIT, |
| /*failOp=*/ |
| stencil_op_to_vk_stencil_op(backStencil.fStencilFailOp), |
| /*passOp=*/ |
| stencil_op_to_vk_stencil_op(backStencil.fDepthStencilPassOp), |
| /*depthFailOp=*/ |
| stencil_op_to_vk_stencil_op(backStencil.fDepthFailOp), |
| /*compareOp=*/ |
| compare_op_to_vk_compare_op(backStencil.fCompareOp))); |
| } |
| const bool primitiveTypeDirty = |
| previous == nullptr || previous->fPrimitiveType != fPrimitiveType; |
| if (primitiveTypeDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetPrimitiveTopology(commandBuffer, |
| primitive_type_to_vk_topology(fPrimitiveType))); |
| } |
| } |
| if (sharedContext->caps()->useVertexInputDynamicState()) { |
| const bool vertexInputDirty = |
| previous == nullptr || previous->fRenderStepID != fRenderStepID; |
| |
| if (vertexInputDirty) { |
| VULKAN_CALL(sharedContext->interface(), |
| CmdSetVertexInput(commandBuffer, |
| fVertexBindingDescriptions.size(), |
| fVertexBindingDescriptions.begin(), |
| fVertexAttributeDescriptions.size(), |
| fVertexAttributeDescriptions.begin())); |
| } |
| } |
| } |
| |
| } // namespace skgpu::graphite |