blob: 45b6961486aa56aafefddf274e77d7109c28e06e [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h"
#include "include/gpu/ShaderErrorHandler.h"
#include "include/gpu/graphite/TextureInfo.h"
#include "src/core/SkSLTypeShared.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/SkSLToBackend.h"
#include "src/gpu/graphite/Attribute.h"
#include "src/gpu/graphite/ContextUtils.h"
#include "src/gpu/graphite/GraphicsPipelineDesc.h"
#include "src/gpu/graphite/Log.h"
#include "src/gpu/graphite/RenderPassDesc.h"
#include "src/gpu/graphite/RendererProvider.h"
#include "src/gpu/graphite/ResourceTypes.h"
#include "src/gpu/graphite/RuntimeEffectDictionary.h"
#include "src/gpu/graphite/ShaderInfo.h"
#include "src/gpu/graphite/vk/VulkanCaps.h"
#include "src/gpu/graphite/vk/VulkanGraphicsPipeline.h"
#include "src/gpu/graphite/vk/VulkanRenderPass.h"
#include "src/gpu/graphite/vk/VulkanResourceProvider.h"
#include "src/gpu/graphite/vk/VulkanSharedContext.h"
#include "src/gpu/graphite/vk/VulkanSpirvTransforms.h"
#include "src/gpu/vk/VulkanUtilsPriv.h"
#include "src/sksl/SkSLProgramKind.h"
#include "src/sksl/SkSLProgramSettings.h"
#include "src/sksl/ir/SkSLProgram.h"
#include "src/utils/SkShaderUtils.h"
namespace skgpu::graphite {
static inline VkFormat attrib_type_to_vkformat(VertexAttribType type) {
switch (type) {
case VertexAttribType::kFloat:
return VK_FORMAT_R32_SFLOAT;
case VertexAttribType::kFloat2:
return VK_FORMAT_R32G32_SFLOAT;
case VertexAttribType::kFloat3:
return VK_FORMAT_R32G32B32_SFLOAT;
case VertexAttribType::kFloat4:
return VK_FORMAT_R32G32B32A32_SFLOAT;
case VertexAttribType::kHalf:
return VK_FORMAT_R16_SFLOAT;
case VertexAttribType::kHalf2:
return VK_FORMAT_R16G16_SFLOAT;
case VertexAttribType::kHalf4:
return VK_FORMAT_R16G16B16A16_SFLOAT;
case VertexAttribType::kInt2:
return VK_FORMAT_R32G32_SINT;
case VertexAttribType::kInt3:
return VK_FORMAT_R32G32B32_SINT;
case VertexAttribType::kInt4:
return VK_FORMAT_R32G32B32A32_SINT;
case VertexAttribType::kUInt2:
return VK_FORMAT_R32G32_UINT;
case VertexAttribType::kByte:
return VK_FORMAT_R8_SINT;
case VertexAttribType::kByte2:
return VK_FORMAT_R8G8_SINT;
case VertexAttribType::kByte4:
return VK_FORMAT_R8G8B8A8_SINT;
case VertexAttribType::kUByte:
return VK_FORMAT_R8_UINT;
case VertexAttribType::kUByte2:
return VK_FORMAT_R8G8_UINT;
case VertexAttribType::kUByte4:
return VK_FORMAT_R8G8B8A8_UINT;
case VertexAttribType::kUByte_norm:
return VK_FORMAT_R8_UNORM;
case VertexAttribType::kUByte4_norm:
return VK_FORMAT_R8G8B8A8_UNORM;
case VertexAttribType::kShort2:
return VK_FORMAT_R16G16_SINT;
case VertexAttribType::kShort4:
return VK_FORMAT_R16G16B16A16_SINT;
case VertexAttribType::kUShort2:
return VK_FORMAT_R16G16_UINT;
case VertexAttribType::kUShort2_norm:
return VK_FORMAT_R16G16_UNORM;
case VertexAttribType::kInt:
return VK_FORMAT_R32_SINT;
case VertexAttribType::kUInt:
return VK_FORMAT_R32_UINT;
case VertexAttribType::kUShort_norm:
return VK_FORMAT_R16_UNORM;
case VertexAttribType::kUShort4_norm:
return VK_FORMAT_R16G16B16A16_UNORM;
}
SK_ABORT("Unknown vertex attrib type");
}
// A helper to derive the vertex input state either for version 1 or 2 of the Vulkan structs.
template <typename VertexInputBindingDescription, typename VertexInputAttributeDescription>
static void get_vertex_input_state(
VkVertexInputRate appendVertexRate,
const SkSpan<const Attribute>& staticAttrs,
const SkSpan<const Attribute>& appendAttrs,
skia_private::STArray<2, VertexInputBindingDescription>& bindingDescs,
skia_private::STArray<16, VertexInputAttributeDescription>& attributeDescs,
const VertexInputBindingDescription& defaultBindingDesc,
const VertexInputAttributeDescription& defaultAttributeDesc) {
int attribIndex = 0;
size_t staticAttributeOffset = 0;
for (auto attrib : staticAttrs) {
VertexInputAttributeDescription vkAttrib = defaultAttributeDesc;
vkAttrib.location = attribIndex++;
vkAttrib.binding = VulkanGraphicsPipeline::kStaticDataBufferIndex;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = staticAttributeOffset;
staticAttributeOffset += attrib.sizeAlign4();
attributeDescs.push_back(vkAttrib);
}
size_t appendAttributeOffset = 0;
for (auto attrib : appendAttrs) {
VertexInputAttributeDescription vkAttrib = defaultAttributeDesc;
vkAttrib.location = attribIndex++;
vkAttrib.binding = VulkanGraphicsPipeline::kAppendDataBufferIndex;
vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType());
vkAttrib.offset = appendAttributeOffset;
appendAttributeOffset += attrib.sizeAlign4();
attributeDescs.push_back(vkAttrib);
}
if (!staticAttrs.empty()) {
VertexInputBindingDescription vkBinding = defaultBindingDesc;
vkBinding.binding = VulkanGraphicsPipeline::kStaticDataBufferIndex;
vkBinding.stride = (uint32_t)staticAttributeOffset;
vkBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
bindingDescs.push_back(vkBinding);
}
if (!appendAttrs.empty()) {
VertexInputBindingDescription vkBinding = defaultBindingDesc;
vkBinding.binding = VulkanGraphicsPipeline::kAppendDataBufferIndex;
vkBinding.stride = (uint32_t)appendAttributeOffset;
vkBinding.inputRate = appendVertexRate;
bindingDescs.push_back(vkBinding);
}
}
static void setup_vertex_input_state(
VkVertexInputRate appendVertexRate,
const SkSpan<const Attribute>& staticAttrs,
const SkSpan<const Attribute>& appendAttrs,
VkPipelineVertexInputStateCreateInfo* vertexInputInfo,
skia_private::STArray<2, VkVertexInputBindingDescription>& bindingDescs,
skia_private::STArray<16, VkVertexInputAttributeDescription>& attributeDescs) {
// Setup attribute & binding descriptions
get_vertex_input_state(appendVertexRate,
staticAttrs,
appendAttrs,
bindingDescs,
attributeDescs,
/*defaultBindingDesc=*/{},
/*defaultAttributeDesc=*/{});
*vertexInputInfo = {};
vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo->vertexBindingDescriptionCount = bindingDescs.size();
vertexInputInfo->pVertexBindingDescriptions = bindingDescs.begin();
vertexInputInfo->vertexAttributeDescriptionCount = attributeDescs.size();
vertexInputInfo->pVertexAttributeDescriptions = attributeDescs.begin();
}
static VkPrimitiveTopology primitive_type_to_vk_topology(PrimitiveType primitiveType) {
switch (primitiveType) {
case PrimitiveType::kTriangles:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
case PrimitiveType::kTriangleStrip:
return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
case PrimitiveType::kPoints:
return VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
}
SkUNREACHABLE;
}
static void setup_input_assembly_state(const Caps& caps,
PrimitiveType primitiveType,
VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) {
*inputAssemblyInfo = {};
inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyInfo->primitiveRestartEnable = VK_FALSE;
if (caps.useBasicDynamicState()) {
// Note: when topology is dynamic state, the topology _class_ still needs to be specified.
inputAssemblyInfo->topology = primitiveType == PrimitiveType::kPoints
? VK_PRIMITIVE_TOPOLOGY_POINT_LIST
: VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
} else {
inputAssemblyInfo->topology = primitive_type_to_vk_topology(primitiveType);
}
}
static VkStencilOp stencil_op_to_vk_stencil_op(StencilOp op) {
static const VkStencilOp gTable[] = {
VK_STENCIL_OP_KEEP, // kKeep
VK_STENCIL_OP_ZERO, // kZero
VK_STENCIL_OP_REPLACE, // kReplace
VK_STENCIL_OP_INVERT, // kInvert
VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap
VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap
VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp
VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp
};
static_assert(std::size(gTable) == kStencilOpCount);
static_assert(0 == (int)StencilOp::kKeep);
static_assert(1 == (int)StencilOp::kZero);
static_assert(2 == (int)StencilOp::kReplace);
static_assert(3 == (int)StencilOp::kInvert);
static_assert(4 == (int)StencilOp::kIncWrap);
static_assert(5 == (int)StencilOp::kDecWrap);
static_assert(6 == (int)StencilOp::kIncClamp);
static_assert(7 == (int)StencilOp::kDecClamp);
SkASSERT(op < (StencilOp)kStencilOpCount);
return gTable[(int)op];
}
static VkCompareOp compare_op_to_vk_compare_op(CompareOp op) {
static const VkCompareOp gTable[] = {
VK_COMPARE_OP_ALWAYS, // kAlways
VK_COMPARE_OP_NEVER, // kNever
VK_COMPARE_OP_GREATER, // kGreater
VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual
VK_COMPARE_OP_LESS, // kLess
VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual
VK_COMPARE_OP_EQUAL, // kEqual
VK_COMPARE_OP_NOT_EQUAL, // kNotEqual
};
static_assert(std::size(gTable) == kCompareOpCount);
static_assert(0 == (int)CompareOp::kAlways);
static_assert(1 == (int)CompareOp::kNever);
static_assert(2 == (int)CompareOp::kGreater);
static_assert(3 == (int)CompareOp::kGEqual);
static_assert(4 == (int)CompareOp::kLess);
static_assert(5 == (int)CompareOp::kLEqual);
static_assert(6 == (int)CompareOp::kEqual);
static_assert(7 == (int)CompareOp::kNotEqual);
SkASSERT(op < (CompareOp)kCompareOpCount);
return gTable[(int)op];
}
static void setup_stencil_op_state(VkStencilOpState* opState,
const DepthStencilSettings::Face& face,
uint32_t referenceValue) {
opState->failOp = stencil_op_to_vk_stencil_op(face.fStencilFailOp);
opState->passOp = stencil_op_to_vk_stencil_op(face.fDepthStencilPassOp);
opState->depthFailOp = stencil_op_to_vk_stencil_op(face.fDepthFailOp);
opState->compareOp = compare_op_to_vk_compare_op(face.fCompareOp);
opState->compareMask = face.fReadMask;
// Note: On some old ARM driver versions, dynamic state for stencil write mask doesn't work
// correctly in the presence of discard or alpha to coverage, if the static state provided
// when creating the pipeline has a value of 0. However, both alphaToCoverageEnable and
// rasterizerDiscardEnable are always false in Graphite, so no driver bug workaround is
// necessary at the moment.
opState->writeMask = face.fWriteMask;
opState->reference = referenceValue;
}
static void setup_depth_stencil_state(const Caps& caps,
const DepthStencilSettings& stencilSettings,
VkPipelineDepthStencilStateCreateInfo* stencilInfo) {
SkASSERT(stencilSettings.fDepthTestEnabled ||
stencilSettings.fDepthCompareOp == CompareOp::kAlways);
*stencilInfo = {};
stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
if (!caps.useBasicDynamicState()) {
stencilInfo->depthTestEnable = stencilSettings.fDepthTestEnabled;
stencilInfo->depthWriteEnable = stencilSettings.fDepthWriteEnabled;
stencilInfo->depthCompareOp = compare_op_to_vk_compare_op(stencilSettings.fDepthCompareOp);
stencilInfo->depthBoundsTestEnable = VK_FALSE;
stencilInfo->stencilTestEnable = stencilSettings.fStencilTestEnabled;
if (stencilSettings.fStencilTestEnabled) {
setup_stencil_op_state(&stencilInfo->front,
stencilSettings.fFrontStencil,
stencilSettings.fStencilReferenceValue);
setup_stencil_op_state(&stencilInfo->back,
stencilSettings.fBackStencil,
stencilSettings.fStencilReferenceValue);
}
stencilInfo->minDepthBounds = 0.0f;
stencilInfo->maxDepthBounds = 1.0f;
}
}
static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) {
*viewportInfo = {};
viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
// The viewport and scissor are set dyanmically with draw pass commands
viewportInfo->viewportCount = 1;
viewportInfo->scissorCount = 1;
SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount);
}
static void setup_multisample_state(int numSamples,
VkPipelineMultisampleStateCreateInfo* multisampleInfo) {
*multisampleInfo = {};
multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
SkAssertResult(skgpu::SampleCountToVkSampleCount(numSamples,
&multisampleInfo->rasterizationSamples));
multisampleInfo->sampleShadingEnable = VK_FALSE;
multisampleInfo->minSampleShading = 0.0f;
multisampleInfo->pSampleMask = nullptr;
multisampleInfo->alphaToCoverageEnable = VK_FALSE;
multisampleInfo->alphaToOneEnable = VK_FALSE;
}
static VkBlendFactor blend_coeff_to_vk_blend(skgpu::BlendCoeff coeff) {
switch (coeff) {
case skgpu::BlendCoeff::kZero:
return VK_BLEND_FACTOR_ZERO;
case skgpu::BlendCoeff::kOne:
return VK_BLEND_FACTOR_ONE;
case skgpu::BlendCoeff::kSC:
return VK_BLEND_FACTOR_SRC_COLOR;
case skgpu::BlendCoeff::kISC:
return VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
case skgpu::BlendCoeff::kDC:
return VK_BLEND_FACTOR_DST_COLOR;
case skgpu::BlendCoeff::kIDC:
return VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
case skgpu::BlendCoeff::kSA:
return VK_BLEND_FACTOR_SRC_ALPHA;
case skgpu::BlendCoeff::kISA:
return VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
case skgpu::BlendCoeff::kDA:
return VK_BLEND_FACTOR_DST_ALPHA;
case skgpu::BlendCoeff::kIDA:
return VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA;
case skgpu::BlendCoeff::kConstC:
return VK_BLEND_FACTOR_CONSTANT_COLOR;
case skgpu::BlendCoeff::kIConstC:
return VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR;
case skgpu::BlendCoeff::kS2C:
return VK_BLEND_FACTOR_SRC1_COLOR;
case skgpu::BlendCoeff::kIS2C:
return VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR;
case skgpu::BlendCoeff::kS2A:
return VK_BLEND_FACTOR_SRC1_ALPHA;
case skgpu::BlendCoeff::kIS2A:
return VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
case skgpu::BlendCoeff::kIllegal:
return VK_BLEND_FACTOR_ZERO;
}
SkUNREACHABLE;
}
static VkBlendOp blend_equation_to_vk_blend_op(skgpu::BlendEquation equation) {
static const VkBlendOp gTable[] = {
// Basic blend ops
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
// Advanced blend ops
VK_BLEND_OP_SCREEN_EXT,
VK_BLEND_OP_OVERLAY_EXT,
VK_BLEND_OP_DARKEN_EXT,
VK_BLEND_OP_LIGHTEN_EXT,
VK_BLEND_OP_COLORDODGE_EXT,
VK_BLEND_OP_COLORBURN_EXT,
VK_BLEND_OP_HARDLIGHT_EXT,
VK_BLEND_OP_SOFTLIGHT_EXT,
VK_BLEND_OP_DIFFERENCE_EXT,
VK_BLEND_OP_EXCLUSION_EXT,
VK_BLEND_OP_MULTIPLY_EXT,
VK_BLEND_OP_HSL_HUE_EXT,
VK_BLEND_OP_HSL_SATURATION_EXT,
VK_BLEND_OP_HSL_COLOR_EXT,
VK_BLEND_OP_HSL_LUMINOSITY_EXT,
// Illegal.
VK_BLEND_OP_ADD,
};
static_assert(0 == (int)skgpu::BlendEquation::kAdd);
static_assert(1 == (int)skgpu::BlendEquation::kSubtract);
static_assert(2 == (int)skgpu::BlendEquation::kReverseSubtract);
static_assert(3 == (int)skgpu::BlendEquation::kScreen);
static_assert(4 == (int)skgpu::BlendEquation::kOverlay);
static_assert(5 == (int)skgpu::BlendEquation::kDarken);
static_assert(6 == (int)skgpu::BlendEquation::kLighten);
static_assert(7 == (int)skgpu::BlendEquation::kColorDodge);
static_assert(8 == (int)skgpu::BlendEquation::kColorBurn);
static_assert(9 == (int)skgpu::BlendEquation::kHardLight);
static_assert(10 == (int)skgpu::BlendEquation::kSoftLight);
static_assert(11 == (int)skgpu::BlendEquation::kDifference);
static_assert(12 == (int)skgpu::BlendEquation::kExclusion);
static_assert(13 == (int)skgpu::BlendEquation::kMultiply);
static_assert(14 == (int)skgpu::BlendEquation::kHSLHue);
static_assert(15 == (int)skgpu::BlendEquation::kHSLSaturation);
static_assert(16 == (int)skgpu::BlendEquation::kHSLColor);
static_assert(17 == (int)skgpu::BlendEquation::kHSLLuminosity);
static_assert(std::size(gTable) == skgpu::kBlendEquationCnt);
SkASSERT((unsigned)equation < skgpu::kBlendEquationCnt);
return gTable[(int)equation];
}
static void setup_color_blend_state(const VulkanCaps& caps,
const skgpu::BlendInfo& blendInfo,
VkPipelineColorBlendStateCreateInfo* colorBlendInfo,
VkPipelineColorBlendAttachmentState* attachmentState) {
skgpu::BlendEquation equation = blendInfo.fEquation;
skgpu::BlendCoeff srcCoeff = blendInfo.fSrcBlend;
skgpu::BlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = skgpu::BlendShouldDisable(equation, srcCoeff, dstCoeff);
*attachmentState = {};
attachmentState->blendEnable = !blendOff;
if (!blendOff) {
attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation);
attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff);
attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff);
attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation);
}
if (!blendInfo.fWritesColor) {
attachmentState->colorWriteMask = 0;
} else {
attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
}
*colorBlendInfo = {};
colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlendInfo->logicOpEnable = VK_FALSE;
colorBlendInfo->attachmentCount = 1;
colorBlendInfo->pAttachments = attachmentState;
// colorBlendInfo->blendConstants is set dynamically
if (caps.supportsRasterizationOrderColorAttachmentAccess()) {
colorBlendInfo->flags =
VK_PIPELINE_COLOR_BLEND_STATE_CREATE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_BIT_EXT;
}
}
static void setup_raster_state(const Caps& caps,
bool isWireframe,
VkPipelineRasterizationStateCreateInfo* rasterInfo) {
*rasterInfo = {};
rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterInfo->depthClampEnable = VK_FALSE;
rasterInfo->rasterizerDiscardEnable = VK_FALSE;
rasterInfo->polygonMode = isWireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL;
rasterInfo->cullMode = VK_CULL_MODE_NONE;
rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterInfo->depthBiasEnable = VK_FALSE;
rasterInfo->depthBiasConstantFactor = 0.0f;
rasterInfo->depthBiasClamp = 0.0f;
rasterInfo->depthBiasSlopeFactor = 0.0f;
rasterInfo->lineWidth = 1.0f;
}
static void setup_shader_stage_info(VkShaderStageFlagBits stage,
VkShaderModule shaderModule,
VkPipelineShaderStageCreateInfo* shaderStageInfo) {
*shaderStageInfo = {};
shaderStageInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStageInfo->stage = stage;
shaderStageInfo->module = shaderModule;
shaderStageInfo->pName = "main";
}
static VkDescriptorSetLayout descriptor_data_to_layout(
const VulkanSharedContext* sharedContext, const SkSpan<DescriptorData>& descriptorData) {
// descriptorData can be empty to indicate that we should create a mock placeholder layout
// with no descriptors.
VkDescriptorSetLayout setLayout;
DescriptorDataToVkDescSetLayout(sharedContext, descriptorData, &setLayout);
if (setLayout == VK_NULL_HANDLE) {
SKGPU_LOG_E("Failed to create descriptor set layout; pipeline creation will fail.\n");
return VK_NULL_HANDLE;
}
return setLayout;
}
static void destroy_desc_set_layouts(const VulkanSharedContext* sharedContext,
skia_private::TArray<VkDescriptorSetLayout>& setLayouts) {
for (int i = 0; i < setLayouts.size(); i++) {
if (setLayouts[i] != VK_NULL_HANDLE) {
VULKAN_CALL(sharedContext->interface(),
DestroyDescriptorSetLayout(sharedContext->device(),
setLayouts[i],
nullptr));
}
}
}
static bool input_attachment_desc_set_layout(VkDescriptorSetLayout& outLayout,
const VulkanSharedContext* sharedContext,
bool mockOnly) {
skia_private::STArray<1, DescriptorData> inputAttachmentDesc;
if (!mockOnly) {
inputAttachmentDesc.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor);
}
// If mockOnly is true (meaning no input attachment descriptor is actually needed), then still
// request a mock VkDescriptorSetLayout handle by passing in the unpopulated span.
outLayout = descriptor_data_to_layout(sharedContext, {inputAttachmentDesc});
return outLayout != VK_NULL_HANDLE;
}
static bool uniform_desc_set_layout(VkDescriptorSetLayout& outLayout,
const VulkanSharedContext* sharedContext,
bool hasStepUniforms,
bool hasPaintUniforms,
bool hasGradientBuffer) {
// Define a container with size reserved for up to kNumUniformBuffers descriptors. Only add
// DescriptorData for uniforms that actually are used and need to be included in the layout.
skia_private::STArray<
VulkanGraphicsPipeline::kNumUniformBuffers, DescriptorData> uniformDescriptors;
DescriptorType uniformBufferType =
sharedContext->caps()->storageBufferSupport() ? DescriptorType::kStorageBuffer
: DescriptorType::kUniformBuffer;
if (hasStepUniforms) {
uniformDescriptors.push_back({
uniformBufferType, /*count=*/1,
VulkanGraphicsPipeline::kRenderStepUniformBufferIndex,
PipelineStageFlags::kVertexShader | PipelineStageFlags::kFragmentShader});
}
if (hasPaintUniforms) {
uniformDescriptors.push_back({
uniformBufferType, /*count=*/1,
VulkanGraphicsPipeline::kPaintUniformBufferIndex,
PipelineStageFlags::kVertexShader | PipelineStageFlags::kFragmentShader});
}
if (hasGradientBuffer) {
uniformDescriptors.push_back({
DescriptorType::kStorageBuffer,
/*count=*/1,
VulkanGraphicsPipeline::kGradientBufferIndex,
PipelineStageFlags::kFragmentShader});
}
// If no uniforms are used, still request a mock VkDescriptorSetLayout handle by passing in the
// unpopulated span of uniformDescriptors to descriptor set layout creation.
outLayout = descriptor_data_to_layout(sharedContext, {uniformDescriptors});
return true;
}
static bool texture_sampler_desc_set_layout(VkDescriptorSetLayout& outLayout,
const VulkanSharedContext* sharedContext,
const int numTextureSamplers,
SkSpan<sk_sp<VulkanSampler>> immutableSamplers) {
SkASSERT(numTextureSamplers >= 0);
// The immutable sampler span size must be = the total number of texture/samplers such that
// we can use the index of a sampler as its binding index (or we just have none, which
// enables us to skip some of this logic entirely).
SkASSERT(immutableSamplers.empty() ||
SkTo<int>(immutableSamplers.size()) == numTextureSamplers);
skia_private::TArray<DescriptorData> textureSamplerDescs(numTextureSamplers);
for (int i = 0; i < numTextureSamplers; i++) {
Sampler* immutableSampler = nullptr;
if (!immutableSamplers.empty() && immutableSamplers[i]) {
immutableSampler = immutableSamplers[i].get();
}
textureSamplerDescs.push_back({DescriptorType::kCombinedTextureSampler,
/*count=*/1,
/*bindingIdx=*/i,
PipelineStageFlags::kFragmentShader,
immutableSampler});
}
// If no texture/samplers are used, a mock VkDescriptorSetLayout handle by passing in the
// unpopulated span of textureSamplerDescs to descriptor set layout creation.
outLayout = descriptor_data_to_layout(sharedContext, {textureSamplerDescs});
return outLayout != VK_NULL_HANDLE;
}
static VkPipelineLayout setup_pipeline_layout(const VulkanSharedContext* sharedContext,
uint32_t pushConstantSize,
VkShaderStageFlagBits pushConstantPipelineStageFlags,
bool hasStepUniforms,
bool hasPaintUniforms,
bool hasGradientBuffer,
int numTextureSamplers,
bool loadMsaaFromResolve,
SkSpan<sk_sp<VulkanSampler>> immutableSamplers) {
// Create a container with the max anticipated amount (kMaxNumDescSets) of VkDescriptorSetLayout
// handles which will be used to create the pipeline layout.
skia_private::STArray<
VulkanGraphicsPipeline::kMaxNumDescSets, VkDescriptorSetLayout> setLayouts;
setLayouts.push_back_n(VulkanGraphicsPipeline::kMaxNumDescSets, VkDescriptorSetLayout());
// Populate the container with actual descriptor set layout handles. Each index should contain
// either a valid/real or a mock/placehodler layout handle. Mock VkDescriptorSetLayouts do not
// actually contain any descriptors, but are needed as placeholders to maintain expected
// descriptor set binding indices. This is because VK_NULL_HANDLE is a valid
// VkDescriptorSetLayout value iff the graphicsPipelineLibrary feature is enabled, which is not
// the case for all targeted devices (see
// VUID-VkPipelineLayoutCreateInfo-graphicsPipelineLibrary-06753). If any of the helpers
// encounter an error (i.e., return false), return a null VkPipelineLayout.
if (!input_attachment_desc_set_layout(
setLayouts[VulkanGraphicsPipeline::kDstAsInputDescSetIndex],
sharedContext,
/*mockOnly=*/false) || // We always add an input attachment descriptor
!uniform_desc_set_layout(
setLayouts[VulkanGraphicsPipeline::kUniformBufferDescSetIndex],
sharedContext,
hasStepUniforms,
hasPaintUniforms,
hasGradientBuffer) ||
!texture_sampler_desc_set_layout(
setLayouts[VulkanGraphicsPipeline::kTextureBindDescSetIndex],
sharedContext,
numTextureSamplers,
immutableSamplers) ||
!input_attachment_desc_set_layout(
setLayouts[VulkanGraphicsPipeline::kLoadMsaaFromResolveInputDescSetIndex],
sharedContext,
/*mockOnly=*/!loadMsaaFromResolve)) { // Actual descriptor needed iff loading MSAA
destroy_desc_set_layouts(sharedContext, setLayouts);
return VK_NULL_HANDLE;
}
// Generate a pipeline layout using the now-populated descriptor set layout array
VkPushConstantRange pushConstantRange;
if (pushConstantSize) {
pushConstantRange.offset = 0;
pushConstantRange.size = pushConstantSize;
pushConstantRange.stageFlags = pushConstantPipelineStageFlags;
}
VkPipelineLayoutCreateInfo layoutCreateInfo = {};
layoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layoutCreateInfo.setLayoutCount = setLayouts.size();
layoutCreateInfo.pSetLayouts = setLayouts.begin();
layoutCreateInfo.pushConstantRangeCount = pushConstantSize ? 1 : 0;
layoutCreateInfo.pPushConstantRanges = pushConstantSize ? &pushConstantRange : nullptr;
VkResult result;
VkPipelineLayout layout;
VULKAN_CALL_RESULT(sharedContext,
result,
CreatePipelineLayout(sharedContext->device(),
&layoutCreateInfo,
/*const VkAllocationCallbacks*=*/nullptr,
&layout));
// DescriptorSetLayouts can be deleted after the pipeline layout is created.
destroy_desc_set_layouts(sharedContext, setLayouts);
return result == VK_SUCCESS ? layout : VK_NULL_HANDLE;
}
static VkResult create_shaders_pipeline(const VulkanSharedContext* sharedContext,
VkGraphicsPipelineCreateInfo& completePipelineInfo,
VkPipelineLibraryCreateInfoKHR& shadersLibraryInfo,
VkGraphicsPipelineLibraryCreateInfoEXT& libraryInfo,
VkPipeline* shadersPipeline) {
// Provide state that only pertains to the shaders subset to create the library.
VkGraphicsPipelineCreateInfo shadersPipelineCreateInfo = {};
shadersPipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
shadersPipelineCreateInfo.flags = 0;
shadersPipelineCreateInfo.stageCount = completePipelineInfo.stageCount;
shadersPipelineCreateInfo.pStages = completePipelineInfo.pStages;
shadersPipelineCreateInfo.pViewportState = completePipelineInfo.pViewportState;
shadersPipelineCreateInfo.pRasterizationState = completePipelineInfo.pRasterizationState;
shadersPipelineCreateInfo.pMultisampleState = completePipelineInfo.pMultisampleState;
shadersPipelineCreateInfo.pDepthStencilState = completePipelineInfo.pDepthStencilState;
shadersPipelineCreateInfo.pDynamicState = completePipelineInfo.pDynamicState;
shadersPipelineCreateInfo.layout = completePipelineInfo.layout;
shadersPipelineCreateInfo.renderPass = completePipelineInfo.renderPass;
shadersPipelineCreateInfo.subpass = completePipelineInfo.subpass;
// Specify that this is the shaders subset of the pipeline.
libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT |
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT;
shadersPipelineCreateInfo.flags |= VK_PIPELINE_CREATE_LIBRARY_BIT_KHR;
skgpu::AddToPNextChain(&shadersPipelineCreateInfo, &libraryInfo);
// Create the library.
VkResult result;
{
TRACE_EVENT0_ALWAYS("skia.shaders", "VkCreateGraphicsPipeline - shaders");
VULKAN_CALL_RESULT(sharedContext,
result,
CreateGraphicsPipelines(sharedContext->device(),
sharedContext->getPipelineCache(),
/*createInfoCount=*/1,
&shadersPipelineCreateInfo,
/*pAllocator=*/nullptr,
shadersPipeline));
}
if (result != VK_SUCCESS) {
return result;
}
// The complete pipeline doesn't need all the state anymore, it inherits them from the
// shaders library.
completePipelineInfo.stageCount = 0;
completePipelineInfo.pStages = nullptr;
completePipelineInfo.pViewportState = nullptr;
completePipelineInfo.pRasterizationState = nullptr;
completePipelineInfo.pDepthStencilState = nullptr;
// The complete pipeline provides the vertex input and fragment output interface state.
// It's important that these states are not built into a separate library, because some
// drivers can generate more efficient blend code if they have information about the
// fragment shader.
libraryInfo.flags = VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT |
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT;
skgpu::AddToPNextChain(&completePipelineInfo, &libraryInfo);
// Tell the complete pipeline to link with the shaders library:
shadersLibraryInfo.libraryCount = 1;
shadersLibraryInfo.pLibraries = shadersPipeline;
AddToPNextChain(&completePipelineInfo, &shadersLibraryInfo);
return VK_SUCCESS;
}
using VkDynamicStateList = std::array<VkDynamicState, 22>;
static void setup_dynamic_state(const Caps& caps,
VkPipelineDynamicStateCreateInfo* dynamicInfo,
VkDynamicStateList* dynamicStates) {
uint32_t count = 0;
// The following state is always dynamic in Graphite
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_VIEWPORT;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_SCISSOR;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_BLEND_CONSTANTS;
if (caps.useBasicDynamicState()) {
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_LINE_WIDTH;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BIAS;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BOUNDS;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_REFERENCE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_COMPARE_OP;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_OP;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_CULL_MODE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_FRONT_FACE;
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE;
}
if (caps.useVertexInputDynamicState()) {
(*dynamicStates)[count++] = VK_DYNAMIC_STATE_VERTEX_INPUT_EXT;
}
// VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT and VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT are not
// used because Graphite only sets one scissor and viewport.
//
// VK_DYNAMIC_STATE_LOGIC_OP_EXT and VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT are irrelevant to
// Graphite.
//
// VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE is not used because it will be eventually made
// obsolete with VK_EXT_vertex_input_dynamic_state and VK_EXT_graphics_pipeline_library.
//
// Dynamic state from VK_EXT_extended_dynamic_state3 is not yet used. They _could_ be useful,
// but very few bits are universal and lots of the interesting bits are covered by
// VK_EXT_graphics_pipeline_library already. Still, state like
// VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT or VK_DYNAMIC_STATE_POLYGON_MODE_EXT could be used in
// the future.
memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo));
dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicInfo->dynamicStateCount = count;
dynamicInfo->pDynamicStates = dynamicStates->data();
}
VulkanProgramInfo::~VulkanProgramInfo() {
if (fVS != VK_NULL_HANDLE) {
VULKAN_CALL(fSharedContext->interface(),
DestroyShaderModule(fSharedContext->device(), fVS, nullptr));
fVS = VK_NULL_HANDLE;
}
if (fFS != VK_NULL_HANDLE) {
VULKAN_CALL(fSharedContext->interface(),
DestroyShaderModule(fSharedContext->device(), fFS, nullptr));
fFS = VK_NULL_HANDLE;
}
if (fLayout != VK_NULL_HANDLE) {
VULKAN_CALL(fSharedContext->interface(),
DestroyPipelineLayout(fSharedContext->device(),
fLayout,
nullptr));
fLayout = VK_NULL_HANDLE;
}
}
sk_sp<VulkanGraphicsPipeline> VulkanGraphicsPipeline::Make(
const VulkanSharedContext* sharedContext,
VulkanResourceProvider* rsrcProvider,
const RuntimeEffectDictionary* runtimeDict,
const UniqueKey& pipelineKey,
const GraphicsPipelineDesc& pipelineDesc,
const RenderPassDesc& renderPassDesc,
SkEnumBitMask<PipelineCreationFlags> pipelineCreationFlags,
uint32_t compilationID) {
SkASSERT(rsrcProvider);
SkSL::ProgramSettings settings;
settings.fSharpenTextures = true;
settings.fForceNoRTFlip = true;
ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler();
const RenderStep* step = sharedContext->rendererProvider()->lookup(pipelineDesc.renderStepID());
const bool useStorageBuffers = sharedContext->caps()->storageBufferSupport();
if (step->staticAttributes().size() + step->appendAttributes().size() >
sharedContext->vulkanCaps().maxVertexAttributes()) {
SKGPU_LOG_W("Requested more than the supported number of vertex attributes");
return nullptr;
}
skia_private::TArray<SamplerDesc> descContainer {};
std::unique_ptr<ShaderInfo> shaderInfo =
ShaderInfo::Make(sharedContext->caps(),
sharedContext->shaderCodeDictionary(),
runtimeDict,
step,
pipelineDesc.paintParamsID(),
useStorageBuffers,
renderPassDesc.fColorAttachment.fFormat,
renderPassDesc.fWriteSwizzle,
renderPassDesc.fDstReadStrategy,
&descContainer);
// Populate an array of sampler ptrs where a sampler's index within the array indicates their
// binding index within the descriptor set. Initialize all values to nullptr, which represents a
// "regular", dynamic sampler at that index.
skia_private::TArray<sk_sp<VulkanSampler>> immutableSamplers;
immutableSamplers.push_back_n(shaderInfo->numFragmentTexturesAndSamplers());
// This logic relies upon Vulkan using combined texture/sampler bindings, which is necessary for
// ycbcr samplers per the Vulkan spec.
SkASSERT(!sharedContext->caps()->resourceBindingRequirements().fSeparateTextureAndSamplerBinding
&& shaderInfo->numFragmentTexturesAndSamplers() == descContainer.size());
for (int i = 0; i < descContainer.size(); i++) {
// If a SamplerDesc is not equivalent to the default-initialized SamplerDesc, that indicates
// the usage of an immutable sampler. That sampler desc should then be used to obtain an
// actual immutable sampler from the resource provider and added at the proper index within
// immutableSamplers for inclusion in the pipeline layout.
if (descContainer.at(i) != SamplerDesc()) {
sk_sp<Sampler> immutableSampler =
rsrcProvider->findOrCreateCompatibleSampler(descContainer.at(i));
sk_sp<VulkanSampler> vulkanSampler =
sk_ref_sp<VulkanSampler>(static_cast<VulkanSampler*>(immutableSampler.get()));
SkASSERT(vulkanSampler);
immutableSamplers[i] = std::move(vulkanSampler);
}
}
auto program = VulkanProgramInfo::Make(sharedContext);
const std::string& fsSkSL = shaderInfo->fragmentSkSL();
const bool hasFragmentSkSL = !fsSkSL.empty();
SkSL::NativeShader vsSPIRV, fsSPIRV;
SkSL::Program::Interface vsInterface, fsInterface;
if (hasFragmentSkSL) {
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
fsSkSL,
SkSL::ProgramKind::kGraphiteFragment,
settings,
&fsSPIRV,
&fsInterface,
errorHandler)) {
return nullptr;
}
// Apply transformations to the fragment shader SPIR-V if needed.
//
// SkSL->SPIR-V compilations are relatively costly. In anticipation of caching those
// operations, we allow certain transformations to be applied directly on to compiled
// SPIR-V. This allows the SkSL to be compiled only once, and the SPIR-V from the cache can
// simply be directly modified afterwards as needed. This is why transform options exist
// independently from flags used in SkSL->SPIRV compilation.
SPIRVTransformOptions options;
options.fMultisampleInputLoad =
renderPassDesc.fSampleCount > 1 &&
shaderInfo->dstReadStrategy() == DstReadStrategy::kReadFromInput;
if (options.fMultisampleInputLoad) {
fsSPIRV = TransformSPIRV(fsSPIRV, options);
}
if(!program->setFragmentShader(CreateVulkanShaderModule(
sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT))) {
return nullptr;
}
}
const std::string& vsSkSL = shaderInfo->vertexSkSL();
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
vsSkSL,
SkSL::ProgramKind::kGraphiteVertex,
settings,
&vsSPIRV,
&vsInterface,
errorHandler)) {
return nullptr;
}
if (!program->setVertexShader(CreateVulkanShaderModule(
sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT))) {
return nullptr;
}
// TODO: Query RenderPassDesc for input attachment information. For now, we only use one for
// loading MSAA from resolve so we can simply pass in 0 when not doing that.
if (!program->setLayout(setup_pipeline_layout(
sharedContext,
VulkanResourceProvider::kIntrinsicConstantSize,
VulkanResourceProvider::kIntrinsicConstantStageFlags,
!step->uniforms().empty(),
shaderInfo->hasPaintUniforms(),
shaderInfo->hasGradientBuffer(),
shaderInfo->numFragmentTexturesAndSamplers(),
/*loadMsaaFromResolve=*/false,
SkSpan<sk_sp<VulkanSampler>>(immutableSamplers)))) {
return nullptr;
}
// This pipeline factory is for regular pipelines that run in the main subpass. Depending on
// if there will be a load-MSAA subpass, the index changes. Ideally with
// VK_dynamic_rendering_local_read, we can reuse pipelines across subpasses for layer elision.
int subpassIndex = RenderPassDescWillLoadMSAAFromResolve(renderPassDesc) ? 1 : 0;
VertexInputBindingDescriptions vertexBindingDescriptions;
VertexInputAttributeDescriptions vertexAttributeDescriptions;
VkPipeline shadersPipeline = VK_NULL_HANDLE;
VkPipeline vkPipeline = MakePipeline(
sharedContext,
rsrcProvider,
*program,
subpassIndex,
step->primitiveType(),
step->appendsVertices() ? VK_VERTEX_INPUT_RATE_VERTEX : VK_VERTEX_INPUT_RATE_INSTANCE,
step->staticAttributes(),
step->appendAttributes(),
vertexBindingDescriptions,
vertexAttributeDescriptions,
step->depthStencilSettings(),
shaderInfo->blendInfo(),
renderPassDesc,
&shadersPipeline);
sk_sp<VulkanGraphicsPipeline> pipeline;
if (vkPipeline) {
PipelineInfo pipelineInfo{ *shaderInfo, pipelineCreationFlags,
pipelineKey.hash(), compilationID };
#if defined(GPU_TEST_UTILS)
pipelineInfo.fNativeVertexShader = SkShaderUtils::SpirvAsHexStream(vsSPIRV.fBinary);
pipelineInfo.fNativeFragmentShader = SkShaderUtils::SpirvAsHexStream(fsSPIRV.fBinary);
#endif
pipeline = sk_sp<VulkanGraphicsPipeline>(
new VulkanGraphicsPipeline(sharedContext,
pipelineInfo,
program->releaseLayout(),
vkPipeline,
shadersPipeline,
/*ownsPipelineLayout=*/true,
std::move(immutableSamplers),
step->renderStepID(),
step->primitiveType(),
step->depthStencilSettings(),
std::move(vertexBindingDescriptions),
std::move(vertexAttributeDescriptions)));
}
return pipeline;
}
VkPipeline VulkanGraphicsPipeline::MakePipeline(
const VulkanSharedContext* sharedContext,
VulkanResourceProvider* rsrcProvider,
const VulkanProgramInfo& program,
int subpassIndex,
PrimitiveType primitiveType,
VkVertexInputRate appendInputRate,
SkSpan<const Attribute> staticAttrs,
SkSpan<const Attribute> appendAttrs,
VertexInputBindingDescriptions& vertexBindingDescriptions,
VertexInputAttributeDescriptions& vertexAttributeDescriptions,
const DepthStencilSettings& depthStencilSettings,
const BlendInfo& blendInfo,
const RenderPassDesc& renderPassDesc,
VkPipeline* shadersPipeline) {
SkASSERT(program.layout() && program.vs()); // but a fragment shader isn't required
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
skia_private::STArray<2, VkVertexInputBindingDescription> bindingDescs;
skia_private::STArray<16, VkVertexInputAttributeDescription> attributeDescs;
if (sharedContext->caps()->useVertexInputDynamicState()) {
VkVertexInputBindingDescription2EXT defaultBindingDesc = {};
defaultBindingDesc.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT;
defaultBindingDesc.divisor = 1;
VkVertexInputAttributeDescription2EXT defaultAttributeDesc = {};
defaultAttributeDesc.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT;
get_vertex_input_state(appendInputRate,
staticAttrs,
appendAttrs,
vertexBindingDescriptions,
vertexAttributeDescriptions,
defaultBindingDesc,
defaultAttributeDesc);
} else {
setup_vertex_input_state(appendInputRate,
staticAttrs,
appendAttrs,
&vertexInputInfo,
bindingDescs,
attributeDescs);
}
VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo;
setup_input_assembly_state(*sharedContext->caps(), primitiveType, &inputAssemblyInfo);
VkPipelineDepthStencilStateCreateInfo depthStencilInfo;
setup_depth_stencil_state(*sharedContext->caps(), depthStencilSettings, &depthStencilInfo);
VkPipelineViewportStateCreateInfo viewportInfo;
setup_viewport_scissor_state(&viewportInfo);
VkPipelineMultisampleStateCreateInfo multisampleInfo;
setup_multisample_state(renderPassDesc.fSampleCount, &multisampleInfo);
// We will only have one color blend attachment per pipeline.
VkPipelineColorBlendAttachmentState attachmentStates[1];
VkPipelineColorBlendStateCreateInfo colorBlendInfo;
setup_color_blend_state(
sharedContext->vulkanCaps(), blendInfo, &colorBlendInfo, attachmentStates);
VkPipelineRasterizationStateCreateInfo rasterInfo;
// TODO: Check for wire frame mode once that is an available context option within graphite.
setup_raster_state(*sharedContext->caps(), /*isWireframe=*/false, &rasterInfo);
VkPipelineShaderStageCreateInfo pipelineShaderStages[2];
setup_shader_stage_info(VK_SHADER_STAGE_VERTEX_BIT,
program.vs(),
&pipelineShaderStages[0]);
if (program.fs()) {
setup_shader_stage_info(VK_SHADER_STAGE_FRAGMENT_BIT,
program.fs(),
&pipelineShaderStages[1]);
}
VkDynamicStateList dynamicStates;
VkPipelineDynamicStateCreateInfo dynamicInfo;
setup_dynamic_state(*sharedContext->caps(), &dynamicInfo, &dynamicStates);
sk_sp<VulkanRenderPass> compatibleRenderPass =
rsrcProvider->findOrCreateRenderPass(renderPassDesc, /*compatibleOnly=*/true);
if (!compatibleRenderPass) {
SKGPU_LOG_E("Failed to create compatible renderpass for pipeline");
return VK_NULL_HANDLE;
}
SkDEBUGCODE(int subpassCount = RenderPassDescWillLoadMSAAFromResolve(renderPassDesc) ? 2 : 1;)
SkASSERT(subpassIndex >= 0 && subpassIndex < subpassCount);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.stageCount = program.fs() ? 2 : 1;
pipelineCreateInfo.pStages = &pipelineShaderStages[0];
pipelineCreateInfo.pVertexInputState =
sharedContext->caps()->useVertexInputDynamicState() ? nullptr : &vertexInputInfo;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineCreateInfo.pTessellationState = nullptr;
pipelineCreateInfo.pViewportState = &viewportInfo;
pipelineCreateInfo.pRasterizationState = &rasterInfo;
pipelineCreateInfo.pMultisampleState = &multisampleInfo;
pipelineCreateInfo.pDepthStencilState = &depthStencilInfo;
pipelineCreateInfo.pColorBlendState = &colorBlendInfo;
pipelineCreateInfo.pDynamicState = &dynamicInfo;
pipelineCreateInfo.layout = program.layout();
pipelineCreateInfo.renderPass = compatibleRenderPass->renderPass();
pipelineCreateInfo.subpass = subpassIndex;
pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineCreateInfo.basePipelineIndex = -1;
VkPipelineLibraryCreateInfoKHR shadersLibraryInfo = {};
shadersLibraryInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR;
VkGraphicsPipelineLibraryCreateInfoEXT libraryInfo = {};
libraryInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT;
if (shadersPipeline && sharedContext->caps()->usePipelineLibraries()) {
// When using VK_EXT_graphics_pipeline_library, create the "shaders" subset of the pipeline,
// and then create the full pipeline (with the vertex input and fragment output state)
// immediately afterwards using the shaders library, which is a cheap operation.
// This is typically what vendors without dynamic blend state do in their GL drivers.
//
// This can be further optimized by the front-end creating fewer shaders pipelines, and only
// create multiple full pipelines out of them as needed.
VkResult result = create_shaders_pipeline(sharedContext,
pipelineCreateInfo,
shadersLibraryInfo,
libraryInfo,
shadersPipeline);
if (result != VK_SUCCESS) {
SKGPU_LOG_E("Failed to create pipeline library. Error: %d\n", result);
return VK_NULL_HANDLE;
}
}
VkPipeline vkPipeline;
VkResult result;
{
TRACE_EVENT0_ALWAYS("skia.shaders", "VkCreateGraphicsPipeline");
VULKAN_CALL_RESULT(sharedContext,
result,
CreateGraphicsPipelines(sharedContext->device(),
sharedContext->getPipelineCache(),
/*createInfoCount=*/1,
&pipelineCreateInfo,
/*pAllocator=*/nullptr,
&vkPipeline));
}
if (result != VK_SUCCESS) {
SKGPU_LOG_E("Failed to create pipeline. Error: %d\n", result);
return VK_NULL_HANDLE;
}
return vkPipeline;
}
std::unique_ptr<VulkanProgramInfo> VulkanGraphicsPipeline::CreateLoadMSAAProgram(
const VulkanSharedContext* sharedContext) {
SkSL::ProgramSettings settings;
settings.fForceNoRTFlip = true;
SkSL::NativeShader vsSPIRV, fsSPIRV;
ShaderErrorHandler* errorHandler = sharedContext->caps()->shaderErrorHandler();
std::string vertShaderText;
vertShaderText.append(
"layout(vulkan, push_constant) uniform vertexUniformBuffer {"
"half4 uPosXform;"
"};"
// MSAA Load Program VS
"void main() {"
"float2 position = float2(sk_VertexID >> 1, sk_VertexID & 1);"
"sk_Position.xy = position * uPosXform.xy + uPosXform.zw;"
"sk_Position.zw = half2(0, 1);"
"}");
std::string fragShaderText;
fragShaderText.append(
"layout(vulkan, input_attachment_index=0, set=" +
std::to_string(VulkanGraphicsPipeline::kLoadMsaaFromResolveInputDescSetIndex) +
", binding=0) subpassInput uInput;"
// MSAA Load Program FS
"void main() {"
"sk_FragColor = subpassLoad(uInput);"
"}");
auto program = VulkanProgramInfo::Make(sharedContext);
SkSL::Program::Interface vsInterface, fsInterface;
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
vertShaderText,
SkSL::ProgramKind::kGraphiteVertex,
settings,
&vsSPIRV,
&vsInterface,
errorHandler)) {
return nullptr;
}
if (!program->setVertexShader(CreateVulkanShaderModule(
sharedContext, vsSPIRV, VK_SHADER_STAGE_VERTEX_BIT))) {
return nullptr;
}
if (!skgpu::SkSLToSPIRV(sharedContext->caps()->shaderCaps(),
fragShaderText,
SkSL::ProgramKind::kGraphiteFragment,
settings,
&fsSPIRV,
&fsInterface,
errorHandler)) {
return nullptr;
}
if (!program->setFragmentShader(CreateVulkanShaderModule(
sharedContext, fsSPIRV, VK_SHADER_STAGE_FRAGMENT_BIT))) {
return nullptr;
}
// The load msaa pipeline takes no step or paint uniforms and no instance attributes. It only
// references one input attachment texture (which does not require a sampler) and one vertex
// attribute (NDC position)
skia_private::TArray<DescriptorData> inputAttachmentDescriptors(1);
inputAttachmentDescriptors.push_back(VulkanGraphicsPipeline::kInputAttachmentDescriptor);
// This pipeline is used to read from the resolve attachment to a color attachment. We should
// never require an immutable sampler for this, since that would imply that we are rendering to
// a surface with an external format.
if (!program->setLayout(setup_pipeline_layout(
sharedContext,
/*pushConstantSize=*/32,
(VkShaderStageFlagBits)VK_SHADER_STAGE_VERTEX_BIT,
/*hasStepUniforms=*/false,
/*hasPaintUniforms=*/false,
/*hasGradientBuffer=*/false,
/*numTextureSamplers=*/0,
/*loadMsaaFromResolve=*/true,
/*immutableSamplers=*/{}))) {
return nullptr;
}
return program;
}
sk_sp<VulkanGraphicsPipeline> VulkanGraphicsPipeline::MakeLoadMSAAPipeline(
const VulkanSharedContext* sharedContext,
VulkanResourceProvider* rsrcProvider,
const VulkanProgramInfo& loadMSAAProgram,
const RenderPassDesc& renderPassDesc) {
// The load MSAA pipeline does not have any vertex or instance attributes, does not use the
// depth or stencil attachments. Unlike the general Make factory, we do not destroy any of the
// shader modules or layout. The pipeline layout will not be owned by the created
// VulkanGraphicsPipeline either, as it's owned by the resource provider.
SkASSERT(RenderPassDescWillLoadMSAAFromResolve(renderPassDesc));
VertexInputBindingDescriptions vertexBindingDescriptions;
VertexInputAttributeDescriptions vertexAttributeDescriptions;
VkPipeline vkPipeline = MakePipeline(sharedContext,
rsrcProvider,
loadMSAAProgram,
/*subpassIndex=*/0, // loading to MSAA is always first
PrimitiveType::kTriangleStrip,
/*appendInputRate=*/{},
/*staticAttrs=*/{},
/*appendAttrs=*/{},
vertexBindingDescriptions,
vertexAttributeDescriptions,
/*depthStencilSettings=*/{},
/*blendInfo=*/{},
renderPassDesc,
/*shadersPipeline=*/nullptr);
if (!vkPipeline) {
return nullptr;
}
SkASSERT(vertexBindingDescriptions.empty());
SkASSERT(vertexAttributeDescriptions.empty());
return sk_sp<VulkanGraphicsPipeline>(
new VulkanGraphicsPipeline(sharedContext,
/*pipelineInfo=*/{}, // leave empty for an internal pipeline
loadMSAAProgram.layout(),
vkPipeline,
/*shadersPipeline=*/VK_NULL_HANDLE,
/*ownsPipelineLayout=*/false,
/*immutableSamplers=*/{},
RenderStep::RenderStepID::kInvalid,
PrimitiveType::kTriangleStrip,
/*depthStencilSettings=*/{},
/*vertexBindingDescriptions=*/{},
/*vertexAttributeDescriptions=*/{}));
}
VulkanGraphicsPipeline::VulkanGraphicsPipeline(
const VulkanSharedContext* sharedContext,
const PipelineInfo& pipelineInfo,
VkPipelineLayout pipelineLayout,
VkPipeline pipeline,
VkPipeline shadersPipeline,
bool ownsPipelineLayout,
skia_private::TArray<sk_sp<VulkanSampler>>&& immutableSamplers,
RenderStep::RenderStepID renderStepID,
PrimitiveType primitiveType,
const DepthStencilSettings& depthStencilSettings,
VertexInputBindingDescriptions&& vertexBindingDescriptions,
VertexInputAttributeDescriptions&& vertexAttributeDescriptions)
: GraphicsPipeline(sharedContext, pipelineInfo)
, fPipelineLayout(pipelineLayout)
, fPipeline(pipeline)
, fShadersPipeline(shadersPipeline)
, fOwnsPipelineLayout(ownsPipelineLayout)
, fImmutableSamplers(std::move(immutableSamplers))
, fPrimitiveType(primitiveType)
, fDepthStencilSettings(depthStencilSettings)
, fRenderStepID(renderStepID)
, fVertexBindingDescriptions(std::move(vertexBindingDescriptions))
, fVertexAttributeDescriptions(std::move(vertexAttributeDescriptions)) {}
void VulkanGraphicsPipeline::freeGpuData() {
auto sharedCtxt = static_cast<const VulkanSharedContext*>(this->sharedContext());
if (fShadersPipeline != VK_NULL_HANDLE) {
VULKAN_CALL(sharedCtxt->interface(),
DestroyPipeline(sharedCtxt->device(), fShadersPipeline, nullptr));
}
if (fPipeline != VK_NULL_HANDLE) {
VULKAN_CALL(sharedCtxt->interface(),
DestroyPipeline(sharedCtxt->device(), fPipeline, nullptr));
}
if (fOwnsPipelineLayout && fPipelineLayout != VK_NULL_HANDLE) {
VULKAN_CALL(sharedCtxt->interface(),
DestroyPipelineLayout(sharedCtxt->device(), fPipelineLayout, nullptr));
}
}
void VulkanGraphicsPipeline::updateDynamicState(const VulkanSharedContext* sharedContext,
VkCommandBuffer commandBuffer,
const VulkanGraphicsPipeline* previous) const {
// The front-end currently is unaware of dynamic state, so we have no choice but to calculate
// the diff between pipelines and update the state as needed. This is not quite so efficient,
// but will need awareness from the front-end to optimize.
if (sharedContext->caps()->useBasicDynamicState()) {
const DepthStencilSettings& depthStencil = fDepthStencilSettings;
const DepthStencilSettings::Face& frontStencil = depthStencil.fFrontStencil;
const DepthStencilSettings::Face& backStencil = depthStencil.fBackStencil;
const DepthStencilSettings* pastDepthStencil =
previous ? &previous->fDepthStencilSettings : nullptr;
const DepthStencilSettings::Face* pastFrontStencil =
previous ? &pastDepthStencil->fFrontStencil : nullptr;
const DepthStencilSettings::Face* pastBackStencil =
previous ? &pastDepthStencil->fBackStencil : nullptr;
const bool frontStencilReadMaskDirty =
previous == nullptr || pastFrontStencil->fReadMask != frontStencil.fReadMask;
if (frontStencilReadMaskDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetStencilCompareMask(
commandBuffer, VK_STENCIL_FACE_FRONT_BIT, frontStencil.fReadMask));
}
const bool backStencilReadMaskDirty =
previous == nullptr || pastBackStencil->fReadMask != backStencil.fReadMask;
if (backStencilReadMaskDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetStencilCompareMask(
commandBuffer, VK_STENCIL_FACE_BACK_BIT, backStencil.fReadMask));
}
const bool frontStencilWriteMaskDirty =
previous == nullptr || pastFrontStencil->fWriteMask != frontStencil.fWriteMask;
if (frontStencilWriteMaskDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetStencilWriteMask(
commandBuffer, VK_STENCIL_FACE_FRONT_BIT, frontStencil.fWriteMask));
}
const bool backStencilWriteMaskDirty =
previous == nullptr || pastBackStencil->fWriteMask != backStencil.fWriteMask;
if (backStencilWriteMaskDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetStencilWriteMask(
commandBuffer, VK_STENCIL_FACE_BACK_BIT, backStencil.fWriteMask));
}
const bool stencilReferenceDirty =
previous == nullptr ||
pastDepthStencil->fStencilReferenceValue != depthStencil.fStencilReferenceValue;
if (stencilReferenceDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetStencilReference(commandBuffer,
VK_STENCIL_FACE_FRONT_AND_BACK,
depthStencil.fStencilReferenceValue));
}
const bool depthCompareOpDirty =
previous == nullptr ||
pastDepthStencil->fDepthCompareOp != depthStencil.fDepthCompareOp;
if (depthCompareOpDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetDepthCompareOp(
commandBuffer,
compare_op_to_vk_compare_op(depthStencil.fDepthCompareOp)));
}
const bool depthTestEnabledDirty =
previous == nullptr ||
pastDepthStencil->fDepthTestEnabled != depthStencil.fDepthTestEnabled;
if (depthTestEnabledDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetDepthTestEnable(commandBuffer, depthStencil.fDepthTestEnabled));
}
const bool depthWriteEnabledDirty =
previous == nullptr ||
pastDepthStencil->fDepthWriteEnabled != depthStencil.fDepthWriteEnabled;
if (depthWriteEnabledDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetDepthWriteEnable(commandBuffer, depthStencil.fDepthWriteEnabled));
}
const bool stencilTestEnabledDirty =
previous == nullptr ||
pastDepthStencil->fStencilTestEnabled != depthStencil.fStencilTestEnabled;
if (stencilTestEnabledDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetStencilTestEnable(commandBuffer, depthStencil.fStencilTestEnabled));
}
const bool frontStencilOpsDirty =
previous == nullptr ||
pastFrontStencil->fDepthStencilPassOp != frontStencil.fDepthStencilPassOp ||
pastFrontStencil->fStencilFailOp != frontStencil.fStencilFailOp ||
pastFrontStencil->fDepthFailOp != frontStencil.fDepthFailOp ||
pastFrontStencil->fCompareOp != frontStencil.fCompareOp;
if (frontStencilOpsDirty) {
VULKAN_CALL(
sharedContext->interface(),
CmdSetStencilOp(commandBuffer,
VK_STENCIL_FACE_FRONT_BIT,
/*failOp=*/
stencil_op_to_vk_stencil_op(frontStencil.fStencilFailOp),
/*passOp=*/
stencil_op_to_vk_stencil_op(frontStencil.fDepthStencilPassOp),
/*depthFailOp=*/
stencil_op_to_vk_stencil_op(frontStencil.fDepthFailOp),
/*compareOp=*/
compare_op_to_vk_compare_op(frontStencil.fCompareOp)));
}
const bool backStencilOpsDirty =
previous == nullptr ||
pastBackStencil->fDepthStencilPassOp != backStencil.fDepthStencilPassOp ||
pastBackStencil->fStencilFailOp != backStencil.fStencilFailOp ||
pastBackStencil->fDepthFailOp != backStencil.fDepthFailOp ||
pastBackStencil->fCompareOp != backStencil.fCompareOp;
if (backStencilOpsDirty) {
VULKAN_CALL(
sharedContext->interface(),
CmdSetStencilOp(commandBuffer,
VK_STENCIL_FACE_BACK_BIT,
/*failOp=*/
stencil_op_to_vk_stencil_op(backStencil.fStencilFailOp),
/*passOp=*/
stencil_op_to_vk_stencil_op(backStencil.fDepthStencilPassOp),
/*depthFailOp=*/
stencil_op_to_vk_stencil_op(backStencil.fDepthFailOp),
/*compareOp=*/
compare_op_to_vk_compare_op(backStencil.fCompareOp)));
}
const bool primitiveTypeDirty =
previous == nullptr || previous->fPrimitiveType != fPrimitiveType;
if (primitiveTypeDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetPrimitiveTopology(commandBuffer,
primitive_type_to_vk_topology(fPrimitiveType)));
}
}
if (sharedContext->caps()->useVertexInputDynamicState()) {
const bool vertexInputDirty =
previous == nullptr || previous->fRenderStepID != fRenderStepID;
if (vertexInputDirty) {
VULKAN_CALL(sharedContext->interface(),
CmdSetVertexInput(commandBuffer,
fVertexBindingDescriptions.size(),
fVertexBindingDescriptions.begin(),
fVertexAttributeDescriptions.size(),
fVertexAttributeDescriptions.begin()));
}
}
}
} // namespace skgpu::graphite