| /* |
| * Copyright 2012 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/effects/SkImageFilters.h" |
| |
| #if defined(SK_USE_LEGACY_CONVOLUTION_IMAGEFILTER) |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorPriv.h" |
| #include "include/core/SkColorSpace.h" |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkFlattenable.h" |
| #include "include/core/SkImageFilter.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/core/SkTypes.h" |
| #include "include/effects/SkImageFilters.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkTPin.h" |
| #include "include/private/base/SkTemplates.h" |
| #include "src/core/SkImageFilterTypes.h" |
| #include "src/core/SkImageFilter_Base.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkSpecialImage.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <memory> |
| #include <utility> |
| |
| class SkMatrix; |
| class SkSurfaceProps; |
| |
| #if defined(SK_GANESH) |
| #include "include/gpu/GpuTypes.h" |
| #include "include/gpu/GrRecordingContext.h" |
| #include "include/gpu/GrTypes.h" |
| #include "include/private/gpu/ganesh/GrTypesPriv.h" |
| #include "src/gpu/SkBackingFit.h" |
| #include "src/gpu/ganesh/GrFragmentProcessor.h" |
| #include "src/gpu/ganesh/GrImageInfo.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/GrSurfaceProxy.h" |
| #include "src/gpu/ganesh/GrSurfaceProxyView.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/SurfaceFillContext.h" |
| #include "src/gpu/ganesh/effects/GrMatrixConvolutionEffect.h" |
| #include "src/gpu/ganesh/image/SkSpecialImage_Ganesh.h" |
| #endif |
| |
| using namespace skia_private; |
| |
| namespace { |
| |
| class SkMatrixConvolutionImageFilter final : public SkImageFilter_Base { |
| public: |
| SkMatrixConvolutionImageFilter(const SkISize& kernelSize, const SkScalar* kernel, |
| SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, |
| SkTileMode tileMode, bool convolveAlpha, |
| sk_sp<SkImageFilter> input, const SkRect* cropRect) |
| : INHERITED(&input, 1, cropRect) |
| , fKernelSize(kernelSize) |
| , fGain(gain) |
| , fBias(bias) |
| , fKernelOffset(kernelOffset) |
| , fTileMode(tileMode) |
| , fConvolveAlpha(convolveAlpha) { |
| size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height()); |
| fKernel = new SkScalar[size]; |
| memcpy(fKernel, kernel, size * sizeof(SkScalar)); |
| SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); |
| SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth); |
| SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight); |
| } |
| |
| ~SkMatrixConvolutionImageFilter() override { |
| delete[] fKernel; |
| } |
| |
| protected: |
| |
| void flatten(SkWriteBuffer&) const override; |
| |
| sk_sp<SkSpecialImage> onFilterImage(const skif::Context&, SkIPoint* offset) const override; |
| SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix& ctm, |
| MapDirection, const SkIRect* inputRect) const override; |
| bool onAffectsTransparentBlack() const override; |
| |
| private: |
| friend void ::SkRegisterMatrixConvolutionImageFilterFlattenable(); |
| SK_FLATTENABLE_HOOKS(SkMatrixConvolutionImageFilter) |
| |
| SkISize fKernelSize; |
| SkScalar* fKernel; |
| SkScalar fGain; |
| SkScalar fBias; |
| SkIPoint fKernelOffset; |
| SkTileMode fTileMode; |
| bool fConvolveAlpha; |
| |
| template <class PixelFetcher, bool convolveAlpha> |
| void filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| SkIRect rect, |
| const SkIRect& bounds) const; |
| template <class PixelFetcher> |
| void filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const; |
| void filterInteriorPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const; |
| void filterBorderPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const; |
| |
| using INHERITED = SkImageFilter_Base; |
| }; |
| |
| class UncheckedPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class ClampPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| x = SkTPin(x, bounds.fLeft, bounds.fRight - 1); |
| y = SkTPin(y, bounds.fTop, bounds.fBottom - 1); |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class RepeatPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| x = (x - bounds.left()) % bounds.width() + bounds.left(); |
| y = (y - bounds.top()) % bounds.height() + bounds.top(); |
| if (x < bounds.left()) { |
| x += bounds.width(); |
| } |
| if (y < bounds.top()) { |
| y += bounds.height(); |
| } |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class ClampToBlackPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) { |
| return 0; |
| } else { |
| return *src.getAddr32(x, y); |
| } |
| } |
| }; |
| |
| } // end namespace |
| |
| sk_sp<SkImageFilter> SkImageFilters::MatrixConvolution(const SkISize& kernelSize, |
| const SkScalar kernel[], |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| SkTileMode tileMode, |
| bool convolveAlpha, |
| sk_sp<SkImageFilter> input, |
| const CropRect& cropRect) { |
| // We need to be able to read at most SK_MaxS32 bytes, so divide that |
| // by the size of a scalar to know how many scalars we can read. |
| static constexpr int32_t kMaxKernelSize = SK_MaxS32 / sizeof(SkScalar); |
| |
| if (kernelSize.width() < 1 || kernelSize.height() < 1) { |
| return nullptr; |
| } |
| if (kMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) { |
| return nullptr; |
| } |
| if (!kernel) { |
| return nullptr; |
| } |
| if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) || |
| (kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) { |
| return nullptr; |
| } |
| return sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilter( |
| kernelSize, kernel, gain, bias, kernelOffset, tileMode, convolveAlpha, |
| std::move(input), cropRect)); |
| } |
| |
| void SkRegisterMatrixConvolutionImageFilterFlattenable() { |
| SK_REGISTER_FLATTENABLE(SkMatrixConvolutionImageFilter); |
| // TODO (michaelludwig) - Remove after grace period for SKPs to stop using old name |
| SkFlattenable::Register("SkMatrixConvolutionImageFilterImpl", |
| SkMatrixConvolutionImageFilter::CreateProc); |
| } |
| |
| sk_sp<SkFlattenable> SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) { |
| SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); |
| |
| SkISize kernelSize; |
| kernelSize.fWidth = buffer.readInt(); |
| kernelSize.fHeight = buffer.readInt(); |
| const int count = buffer.getArrayCount(); |
| |
| const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height()); |
| if (!buffer.validate(kernelArea == count)) { |
| return nullptr; |
| } |
| if (!buffer.validateCanReadN<SkScalar>(count)) { |
| return nullptr; |
| } |
| AutoSTArray<16, SkScalar> kernel(count); |
| if (!buffer.readScalarArray(kernel.get(), count)) { |
| return nullptr; |
| } |
| SkScalar gain = buffer.readScalar(); |
| SkScalar bias = buffer.readScalar(); |
| SkIPoint kernelOffset; |
| kernelOffset.fX = buffer.readInt(); |
| kernelOffset.fY = buffer.readInt(); |
| |
| SkTileMode tileMode = buffer.read32LE(SkTileMode::kLastTileMode); |
| bool convolveAlpha = buffer.readBool(); |
| |
| if (!buffer.isValid()) { |
| return nullptr; |
| } |
| return SkImageFilters::MatrixConvolution( |
| kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, |
| convolveAlpha, common.getInput(0), common.cropRect()); |
| } |
| |
| void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const { |
| this->INHERITED::flatten(buffer); |
| buffer.writeInt(fKernelSize.fWidth); |
| buffer.writeInt(fKernelSize.fHeight); |
| buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight); |
| buffer.writeScalar(fGain); |
| buffer.writeScalar(fBias); |
| buffer.writeInt(fKernelOffset.fX); |
| buffer.writeInt(fKernelOffset.fY); |
| buffer.writeInt((int) fTileMode); |
| buffer.writeBool(fConvolveAlpha); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| template<class PixelFetcher, bool convolveAlpha> |
| void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| SkIRect rect, |
| const SkIRect& bounds) const { |
| if (!rect.intersect(bounds)) { |
| return; |
| } |
| for (int y = rect.fTop; y < rect.fBottom; ++y) { |
| SkPMColor* dptr = result->getAddr32(rect.fLeft - offset.fX, y - offset.fY); |
| for (int x = rect.fLeft; x < rect.fRight; ++x) { |
| SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0; |
| for (int cy = 0; cy < fKernelSize.fHeight; cy++) { |
| for (int cx = 0; cx < fKernelSize.fWidth; cx++) { |
| SkPMColor s = PixelFetcher::fetch(src, |
| x + cx - fKernelOffset.fX, |
| y + cy - fKernelOffset.fY, |
| bounds); |
| SkScalar k = fKernel[cy * fKernelSize.fWidth + cx]; |
| if (convolveAlpha) { |
| sumA += SkGetPackedA32(s) * k; |
| } |
| sumR += SkGetPackedR32(s) * k; |
| sumG += SkGetPackedG32(s) * k; |
| sumB += SkGetPackedB32(s) * k; |
| } |
| } |
| int a = convolveAlpha |
| ? SkTPin(SkScalarFloorToInt(sumA * fGain + fBias), 0, 255) |
| : 255; |
| int r = SkTPin(SkScalarFloorToInt(sumR * fGain + fBias), 0, a); |
| int g = SkTPin(SkScalarFloorToInt(sumG * fGain + fBias), 0, a); |
| int b = SkTPin(SkScalarFloorToInt(sumB * fGain + fBias), 0, a); |
| if (!convolveAlpha) { |
| a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds)); |
| *dptr++ = SkPreMultiplyARGB(a, r, g, b); |
| } else { |
| *dptr++ = SkPackARGB32(a, r, g, b); |
| } |
| } |
| } |
| } |
| |
| template<class PixelFetcher> |
| void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| if (fConvolveAlpha) { |
| filterPixels<PixelFetcher, true>(src, result, offset, rect, bounds); |
| } else { |
| filterPixels<PixelFetcher, false>(src, result, offset, rect, bounds); |
| } |
| } |
| |
| void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| switch (fTileMode) { |
| case SkTileMode::kMirror: |
| // TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now. |
| case SkTileMode::kRepeat: |
| // In repeat mode, we still need to wrap the samples around the src |
| filterPixels<RepeatPixelFetcher>(src, result, offset, rect, bounds); |
| break; |
| case SkTileMode::kClamp: |
| // Fall through |
| case SkTileMode::kDecal: |
| filterPixels<UncheckedPixelFetcher>(src, result, offset, rect, bounds); |
| break; |
| } |
| } |
| |
| void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, |
| SkBitmap* result, |
| SkIVector& offset, |
| const SkIRect& rect, |
| const SkIRect& srcBounds) const { |
| switch (fTileMode) { |
| case SkTileMode::kClamp: |
| filterPixels<ClampPixelFetcher>(src, result, offset, rect, srcBounds); |
| break; |
| case SkTileMode::kMirror: |
| // TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now. |
| case SkTileMode::kRepeat: |
| filterPixels<RepeatPixelFetcher>(src, result, offset, rect, srcBounds); |
| break; |
| case SkTileMode::kDecal: |
| filterPixels<ClampToBlackPixelFetcher>(src, result, offset, rect, srcBounds); |
| break; |
| } |
| } |
| |
| #if defined(SK_GANESH) |
| static sk_sp<SkSpecialImage> draw_with_fp(GrRecordingContext* rContext, |
| std::unique_ptr<GrFragmentProcessor> fp, |
| const SkIRect& bounds, |
| SkColorType colorType, |
| const SkColorSpace* colorSpace, |
| const SkSurfaceProps& surfaceProps, |
| GrSurfaceOrigin surfaceOrigin, |
| GrProtected isProtected) { |
| GrImageInfo info(SkColorTypeToGrColorType(colorType), |
| kPremul_SkAlphaType, |
| sk_ref_sp(colorSpace), |
| bounds.size()); |
| |
| auto sfc = rContext->priv().makeSFC(info, |
| "ImageFilterBase_DrawWithFP", |
| SkBackingFit::kApprox, |
| 1, |
| GrMipmapped::kNo, |
| isProtected, |
| surfaceOrigin); |
| if (!sfc) { |
| return nullptr; |
| } |
| |
| SkIRect dstIRect = SkIRect::MakeWH(bounds.width(), bounds.height()); |
| SkRect srcRect = SkRect::Make(bounds); |
| sfc->fillRectToRectWithFP(srcRect, dstIRect, std::move(fp)); |
| |
| return SkSpecialImages::MakeDeferredFromGpu(rContext, |
| dstIRect, |
| kNeedNewImageUniqueID_SpecialImage, |
| sfc->readSurfaceView(), |
| sfc->colorInfo(), |
| surfaceProps); |
| } |
| #endif |
| |
| sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilter::onFilterImage(const skif::Context& ctx, |
| SkIPoint* offset) const { |
| SkIPoint inputOffset = SkIPoint::Make(0, 0); |
| sk_sp<SkSpecialImage> input(this->filterInput(0, ctx, &inputOffset)); |
| if (!input) { |
| return nullptr; |
| } |
| |
| SkIRect dstBounds; |
| input = this->applyCropRectAndPad(this->mapContext(ctx), input.get(), &inputOffset, &dstBounds); |
| if (!input) { |
| return nullptr; |
| } |
| |
| const SkIRect originalSrcBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY, |
| input->width(), input->height()); |
| |
| SkIRect srcBounds = this->onFilterNodeBounds(dstBounds, ctx.ctm(), kReverse_MapDirection, |
| &originalSrcBounds); |
| |
| if (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode) { |
| srcBounds = DetermineRepeatedSrcBound(srcBounds, fKernelOffset, |
| fKernelSize, originalSrcBounds); |
| } else { |
| if (!srcBounds.intersect(dstBounds)) { |
| return nullptr; |
| } |
| } |
| |
| #if defined(SK_GANESH) |
| if (ctx.gpuBacked()) { |
| auto context = ctx.getContext(); |
| |
| // Ensure the input is in the destination color space. Typically applyCropRect will have |
| // called pad_image to account for our dilation of bounds, so the result will already be |
| // moved to the destination color space. If a filter DAG avoids that, then we use this |
| // fall-back, which saves us from having to do the xform during the filter itself. |
| input = SkSpecialImages::ImageToColorSpace(ctx, input.get()); |
| |
| GrSurfaceProxyView inputView = SkSpecialImages::AsView(context, input); |
| SkASSERT(inputView.asTextureProxy()); |
| |
| const auto isProtected = inputView.proxy()->isProtected(); |
| const auto origin = inputView.origin(); |
| |
| offset->fX = dstBounds.left(); |
| offset->fY = dstBounds.top(); |
| dstBounds.offset(-inputOffset); |
| srcBounds.offset(-inputOffset); |
| // Map srcBounds from input's logical image domain to that of the proxy |
| srcBounds.offset(input->subset().x(), input->subset().y()); |
| |
| auto fp = GrMatrixConvolutionEffect::Make(context, |
| std::move(inputView), |
| srcBounds, |
| fKernelSize, |
| fKernel, |
| fGain, |
| fBias, |
| fKernelOffset, |
| SkTileModeToWrapMode(fTileMode), |
| fConvolveAlpha, |
| *ctx.getContext()->priv().caps()); |
| if (!fp) { |
| return nullptr; |
| } |
| |
| // FIXME (michaelludwig) - Clean this up as part of the imagefilter refactor, some filters |
| // instead require a coord transform on the FP. At very least, be consistent, at best make |
| // it so that filter impls don't need to worry about the subset origin. |
| |
| // Must also map the dstBounds since it is used as the src rect in DrawWithFP when |
| // evaluating the FP, and the dst rect just uses the size of dstBounds. |
| dstBounds.offset(input->subset().x(), input->subset().y()); |
| return draw_with_fp(context, std::move(fp), dstBounds, ctx.colorType(), ctx.colorSpace(), |
| ctx.surfaceProps(), origin, isProtected); |
| } |
| #endif |
| |
| SkBitmap inputBM; |
| if (!input->getROPixels(&inputBM)) { |
| return nullptr; |
| } |
| |
| if (inputBM.colorType() != kN32_SkColorType) { |
| return nullptr; |
| } |
| |
| if (!fConvolveAlpha && !inputBM.isOpaque()) { |
| // This leaves the bitmap tagged as premul, which seems weird to me, |
| // but is consistent with old behavior. |
| inputBM.readPixels(inputBM.info().makeAlphaType(kUnpremul_SkAlphaType), |
| inputBM.getPixels(), inputBM.rowBytes(), 0,0); |
| } |
| |
| if (!inputBM.getPixels()) { |
| return nullptr; |
| } |
| |
| const SkImageInfo info = SkImageInfo::MakeN32(dstBounds.width(), dstBounds.height(), |
| inputBM.alphaType()); |
| |
| SkBitmap dst; |
| if (!dst.tryAllocPixels(info)) { |
| return nullptr; |
| } |
| |
| offset->fX = dstBounds.fLeft; |
| offset->fY = dstBounds.fTop; |
| dstBounds.offset(-inputOffset); |
| srcBounds.offset(-inputOffset); |
| |
| SkIRect interior; |
| if (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode) { |
| // In repeat mode, the filterPixels calls will wrap around |
| // so we just need to render 'dstBounds' |
| interior = dstBounds; |
| } else { |
| interior = SkIRect::MakeXYWH(dstBounds.left() + fKernelOffset.fX, |
| dstBounds.top() + fKernelOffset.fY, |
| dstBounds.width() - fKernelSize.fWidth + 1, |
| dstBounds.height() - fKernelSize.fHeight + 1); |
| } |
| |
| SkIRect top = SkIRect::MakeLTRB(dstBounds.left(), dstBounds.top(), |
| dstBounds.right(), interior.top()); |
| SkIRect bottom = SkIRect::MakeLTRB(dstBounds.left(), interior.bottom(), |
| dstBounds.right(), dstBounds.bottom()); |
| SkIRect left = SkIRect::MakeLTRB(dstBounds.left(), interior.top(), |
| interior.left(), interior.bottom()); |
| SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(), |
| dstBounds.right(), interior.bottom()); |
| |
| SkIVector dstContentOffset = { offset->fX - inputOffset.fX, offset->fY - inputOffset.fY }; |
| |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, top, srcBounds); |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, left, srcBounds); |
| this->filterInteriorPixels(inputBM, &dst, dstContentOffset, interior, srcBounds); |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, right, srcBounds); |
| this->filterBorderPixels(inputBM, &dst, dstContentOffset, bottom, srcBounds); |
| |
| return SkSpecialImages::MakeFromRaster( |
| SkIRect::MakeWH(dstBounds.width(), dstBounds.height()), dst, ctx.surfaceProps()); |
| } |
| |
| SkIRect SkMatrixConvolutionImageFilter::onFilterNodeBounds( |
| const SkIRect& src, const SkMatrix& ctm, MapDirection dir, const SkIRect* inputRect) const { |
| if (kReverse_MapDirection == dir && inputRect && |
| (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode)) { |
| SkASSERT(inputRect); |
| return DetermineRepeatedSrcBound(src, fKernelOffset, fKernelSize, *inputRect); |
| } |
| |
| SkIRect dst = src; |
| int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1; |
| |
| if (kReverse_MapDirection == dir) { |
| dst.adjust(-fKernelOffset.fX, -fKernelOffset.fY, |
| w - fKernelOffset.fX, h - fKernelOffset.fY); |
| } else { |
| dst.adjust(fKernelOffset.fX - w, fKernelOffset.fY - h, fKernelOffset.fX, fKernelOffset.fY); |
| } |
| return dst; |
| } |
| |
| bool SkMatrixConvolutionImageFilter::onAffectsTransparentBlack() const { |
| // It seems that the only rational way for repeat sample mode to work is if the caller |
| // explicitly restricts the input in which case the input range is explicitly known and |
| // specified. |
| // TODO: is seems that this should be true for clamp mode too. |
| |
| // For the other modes, because the kernel is applied in device-space, we have no idea what |
| // pixels it will affect in object-space. |
| return SkTileMode::kRepeat != fTileMode && SkTileMode::kMirror != fTileMode; |
| } |
| |
| #else |
| |
| #include "src/effects/imagefilters/SkCropImageFilter.h" |
| |
| #ifdef SK_ENABLE_SKSL |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkFlattenable.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkImageFilter.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkM44.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkSamplingOptions.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkShader.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkTileMode.h" |
| #include "include/core/SkTypes.h" |
| #include "include/effects/SkRuntimeEffect.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkSpan_impl.h" |
| #include "include/private/base/SkTArray.h" |
| #include "include/private/base/SkTemplates.h" |
| #include "src/core/SkImageFilterTypes.h" |
| #include "src/core/SkImageFilter_Base.h" |
| #include "src/core/SkPicturePriv.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkRuntimeEffectPriv.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <utility> |
| |
| using namespace skia_private; |
| |
| namespace { |
| |
| // The matrix convolution image filter applies the convolution naively, it does not use any DFT to |
| // convert the input images into the frequency domain. As such, kernels can quickly become too |
| // slow to run in a reasonable amount of time (and anyone using a kernel that large should not be |
| // relying on Skia to perform the calculations). 2048 is somewhat arbitrary since smaller square |
| // kernels are likely excessive (e.g. 256x256 is still 65k operations per pixel), but this should |
| // hopefully not cause existing clients/websites to fail when historically there was no upper limit. |
| static constexpr int kMaxKernelDimension = 2048; |
| // The uniform-based kernel shader can store 28 values in any order layout (28x1, 1x25, 5x5, and |
| // smaller orders like 3x3 or 5x4, etc.), but must be a multiple of 4 for better packing in std140. |
| static constexpr int kMaxUniformKernelSize = 28; |
| |
| // TODO: This replicates a lot of the logic in GrMatrixConvolutionEffect::KernelWrapper. Once |
| // fully landed, GrMatrixConvolutionEffect will only be used for 2D Gaussian blurs, in which case |
| // its support for texture-backed kernels can be removed. It may also be fully removed if the 2D |
| // logic can be folded into GrGaussianConvolutionFragmentProcessor. |
| SkBitmap create_kernel_bitmap(const SkISize& kernelSize, const float* kernel, |
| float* innerGain, float* innerBias); |
| |
| class SkMatrixConvolutionImageFilter final : public SkImageFilter_Base { |
| public: |
| SkMatrixConvolutionImageFilter(const SkISize& kernelSize, const SkScalar* kernel, |
| SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, |
| bool convolveAlpha, sk_sp<SkImageFilter> input) |
| : SkImageFilter_Base(&input, 1, /*cropRect=*/nullptr) |
| , fKernel(kernel, kernelSize.width() * kernelSize.height()) |
| , fKernelSize(kernelSize) |
| , fKernelOffset({kernelOffset.fX, kernelOffset.fY}) |
| , fGain(gain) |
| , fBias(bias) |
| , fConvolveAlpha(convolveAlpha) { |
| // The public factory should have ensured these before creating this object. |
| SkASSERT(kernelSize.fWidth <= kMaxKernelDimension && |
| kernelSize.fHeight <= kMaxKernelDimension); |
| SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); |
| SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth); |
| SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight); |
| |
| // Does nothing for small kernels, otherwise encodes kernel into an A8 image. |
| fKernelBitmap = create_kernel_bitmap(kernelSize, kernel, &fInnerGain, &fInnerBias); |
| } |
| |
| SkRect computeFastBounds(const SkRect& bounds) const override; |
| |
| protected: |
| void flatten(SkWriteBuffer&) const override; |
| |
| private: |
| friend void ::SkRegisterMatrixConvolutionImageFilterFlattenable(); |
| SK_FLATTENABLE_HOOKS(SkMatrixConvolutionImageFilter) |
| |
| bool onAffectsTransparentBlack() const override { |
| // affectsTransparentBlack() is conflated with "canComputeFastBounds" and MatrixConvolution |
| // is unique in that it might not produce unbounded output, but we can't calculate the |
| // fast bounds because the kernel is applied in device space and no transform is provided |
| // with that API. |
| // TODO(skbug.com/14617): Accept a matrix in computeFastBounds() so that we can handle the |
| // layer-space kernel case. |
| |
| // That issue aside, a matrix convolution can affect transparent black when it has a |
| // non-zero bias and convolves alpha (if it doesn't convolve the alpha channel then the bias |
| // applied to RGB doesn't matter for transparent black pixels). |
| // NOTE: The crop image filters that wrap the matrix convolution to apply tile modes will |
| // reset this property when possible. |
| return true; |
| } |
| |
| skif::FilterResult onFilterImage(const skif::Context& context) const override; |
| |
| skif::LayerSpace<SkIRect> onGetInputLayerBounds( |
| const skif::Mapping& mapping, |
| const skif::LayerSpace<SkIRect>& desiredOutput, |
| const skif::LayerSpace<SkIRect>& contentBounds) const override; |
| |
| skif::LayerSpace<SkIRect> onGetOutputLayerBounds( |
| const skif::Mapping& mapping, |
| const skif::LayerSpace<SkIRect>& contentBounds) const override; |
| |
| // Helper functions to adjust 'bounds' by the kernel size and offset, either for what would be |
| // sampled when covering 'bounds', or what could produce values when applied to 'bounds'. |
| skif::LayerSpace<SkIRect> boundsSampledByKernel(const skif::LayerSpace<SkIRect>& bounds) const; |
| skif::LayerSpace<SkIRect> boundsAffectedByKernel(const skif::LayerSpace<SkIRect>& bounds) const; |
| |
| sk_sp<SkShader> createShader(const skif::Context& ctx, sk_sp<SkShader> input) const; |
| |
| // Original kernel data, preserved for serialization even if it was encoded into fKernelBitmap |
| TArray<float> fKernel; |
| |
| // Unlike the majority of image filters, the kernel is applied as-is to the layer-space pixels. |
| // This means that the kernel size and offset are always in the layer coordinate system. |
| skif::LayerSpace<SkISize> fKernelSize; |
| skif::LayerSpace<skif::IVector> fKernelOffset; |
| |
| float fGain; |
| float fBias; // NOTE: This is assumed to be in [0-255] for historical reasons |
| bool fConvolveAlpha; |
| |
| // Derived from fKernel when larger than what we will upload as uniforms; fInnerBias and |
| // fInnerGain reconstruct the original coefficient from unorm8 data as (a+innerBias)*innerGain |
| // Since these are derived, they are not serialized. |
| SkBitmap fKernelBitmap; |
| float fInnerBias; |
| float fInnerGain; |
| }; |
| |
| // LayerSpace doesn't have a clean type to represent 4 separate edge deltas, but the result |
| // is a valid layer-space rectangle, so just go back to the underlying SkIRect temporarily. |
| skif::LayerSpace<SkIRect> adjust(const skif::LayerSpace<SkIRect>& rect, |
| int dl, int dt, int dr, int db) { |
| SkIRect adjusted = SkIRect(rect); |
| adjusted.adjust(dl, dt, dr, db); |
| return skif::LayerSpace<SkIRect>(adjusted); |
| } |
| |
| SkBitmap create_kernel_bitmap(const SkISize& kernelSize, const float* kernel, |
| float* innerGain, float* innerBias) { |
| int length = kernelSize.fWidth * kernelSize.fHeight; |
| if (length <= kMaxUniformKernelSize) { |
| // No bitmap is needed to store the kernel on the GPU |
| *innerGain = 1.f; |
| *innerBias = 0.f; |
| return {}; |
| } |
| |
| // The convolution kernel is "big". The SVG spec has no upper limit on what's supported so |
| // store the kernel in a SkBitmap that will be uploaded to a data texture. We could |
| // implement a more straight forward evaluation loop for the CPU backend, but kernels of |
| // this size are already going to be very slow so we accept the extra indirection to |
| // keep the code paths consolidated. |
| // |
| // We store the data in A8 for universal support, but this requires normalizing the values |
| // and adding an extra inner bias operation to the shader. We could store values in A16 or |
| // A32 for improved accuracy but that would require querying GPU capabilities, which |
| // prevents creating the bitmap once during initialization. Even on the GPU, kernels larger |
| // than 5x5 quickly exceed realtime capabilities, so the loss of precision isn't a great |
| // concern either. |
| float min = kernel[0]; |
| float max = kernel[0]; |
| for (int i = 1; i < length; ++i) { |
| if (kernel[i] < min) { |
| min = kernel[i]; |
| } |
| if (kernel[i] > max) { |
| max = kernel[i]; |
| } |
| } |
| |
| *innerGain = max - min; |
| *innerBias = min; |
| // Treat a near-0 gain (i.e. box blur) as 1 and let innerBias move everything to final value. |
| if (SkScalarNearlyZero(*innerGain)) { |
| *innerGain = 1.f; |
| } |
| |
| SkBitmap kernelBM; |
| if (!kernelBM.tryAllocPixels(SkImageInfo::Make(kernelSize, |
| kAlpha_8_SkColorType, |
| kPremul_SkAlphaType))) { |
| // OOM so return an empty bitmap, which will be detected later on in onFilterImage(). |
| return {}; |
| } |
| |
| for (int y = 0; y < kernelSize.fHeight; ++y) { |
| for (int x = 0; x < kernelSize.fWidth; ++x) { |
| int i = y * kernelSize.fWidth + x; |
| *kernelBM.getAddr8(x, y) = SkScalarRoundToInt(255 * (kernel[i] - min) / *innerGain); |
| } |
| } |
| |
| kernelBM.setImmutable(); |
| return kernelBM; |
| } |
| |
| } // end namespace |
| |
| sk_sp<SkImageFilter> SkImageFilters::MatrixConvolution(const SkISize& kernelSize, |
| const SkScalar kernel[], |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| SkTileMode tileMode, |
| bool convolveAlpha, |
| sk_sp<SkImageFilter> input, |
| const CropRect& cropRect) { |
| if (kernelSize.width() < 1 || kernelSize.height() < 1) { |
| return nullptr; |
| } |
| if (kernelSize.width() > kMaxKernelDimension || kernelSize.height() > kMaxKernelDimension) { |
| return nullptr; |
| } |
| if (!kernel) { |
| return nullptr; |
| } |
| if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) || |
| (kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) { |
| return nullptr; |
| } |
| |
| // The 'tileMode' behavior is not well-defined if there is no crop, so we only apply it if |
| // there is a provided 'cropRect'. |
| sk_sp<SkImageFilter> filter = std::move(input); |
| if (cropRect && tileMode != SkTileMode::kDecal) { |
| // Historically the input image was restricted to the cropRect when tiling was not kDecal |
| // so that the kernel evaluated the tiled edge conditions, while a kDecal crop only affected |
| // the output. |
| filter = SkMakeCropImageFilter(*cropRect, tileMode, std::move(filter)); |
| } |
| filter = sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilter( |
| kernelSize, kernel, gain, bias, kernelOffset, convolveAlpha, std::move(filter))); |
| if (cropRect) { |
| // But regardless of the tileMode, the output is decal cropped. |
| filter = SkMakeCropImageFilter(*cropRect, SkTileMode::kDecal, std::move(filter)); |
| } |
| return filter; |
| } |
| |
| void SkRegisterMatrixConvolutionImageFilterFlattenable() { |
| SK_REGISTER_FLATTENABLE(SkMatrixConvolutionImageFilter); |
| // TODO (michaelludwig) - Remove after grace period for SKPs to stop using old name |
| SkFlattenable::Register("SkMatrixConvolutionImageFilterImpl", |
| SkMatrixConvolutionImageFilter::CreateProc); |
| } |
| |
| sk_sp<SkFlattenable> SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) { |
| SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); |
| |
| SkISize kernelSize; |
| kernelSize.fWidth = buffer.readInt(); |
| kernelSize.fHeight = buffer.readInt(); |
| const int count = buffer.getArrayCount(); |
| |
| const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height()); |
| if (!buffer.validate(kernelArea == count)) { |
| return nullptr; |
| } |
| if (!buffer.validateCanReadN<SkScalar>(count)) { |
| return nullptr; |
| } |
| AutoSTArray<16, SkScalar> kernel(count); |
| if (!buffer.readScalarArray(kernel.get(), count)) { |
| return nullptr; |
| } |
| SkScalar gain = buffer.readScalar(); |
| SkScalar bias = buffer.readScalar(); |
| SkIPoint kernelOffset; |
| kernelOffset.fX = buffer.readInt(); |
| kernelOffset.fY = buffer.readInt(); |
| |
| SkTileMode tileMode = SkTileMode::kDecal; |
| if (buffer.isVersionLT(SkPicturePriv::kConvolutionImageFilterTilingUpdate)) { |
| tileMode = buffer.read32LE(SkTileMode::kLastTileMode); |
| } // else SkCropImageFilter handles the tile mode (if any) |
| |
| bool convolveAlpha = buffer.readBool(); |
| |
| if (!buffer.isValid()) { |
| return nullptr; |
| } |
| // NOTE: For SKPs with version >= kConvolutionImageFilterTilingUpdate, tileMode will be kDecal |
| // and common.cropRect() will be null (so the factory also ignores tileMode). Any |
| // cropping/tiling will have been handled by the deserialized input/output Crop image filters. |
| return SkImageFilters::MatrixConvolution( |
| kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, |
| convolveAlpha, common.getInput(0), common.cropRect()); |
| } |
| |
| void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const { |
| this->SkImageFilter_Base::flatten(buffer); |
| buffer.writeInt(fKernelSize.width()); |
| buffer.writeInt(fKernelSize.height()); |
| buffer.writeScalarArray(fKernel.data(), fKernel.size()); |
| buffer.writeScalar(fGain); |
| buffer.writeScalar(fBias); |
| buffer.writeInt(fKernelOffset.x()); |
| buffer.writeInt(fKernelOffset.y()); |
| buffer.writeBool(fConvolveAlpha); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| skif::LayerSpace<SkIRect> SkMatrixConvolutionImageFilter::boundsSampledByKernel( |
| const skif::LayerSpace<SkIRect>& bounds) const { |
| return adjust(bounds, |
| -fKernelOffset.x(), |
| -fKernelOffset.y(), |
| fKernelSize.width() - fKernelOffset.x() - 1, |
| fKernelSize.height() - fKernelOffset.y() - 1); |
| } |
| |
| skif::LayerSpace<SkIRect> SkMatrixConvolutionImageFilter::boundsAffectedByKernel( |
| const skif::LayerSpace<SkIRect>& bounds) const { |
| return adjust(bounds, |
| fKernelOffset.x() - fKernelSize.width() + 1, |
| fKernelOffset.y() - fKernelSize.height() + 1, |
| fKernelOffset.x(), |
| fKernelOffset.y()); |
| } |
| |
| sk_sp<SkShader> SkMatrixConvolutionImageFilter::createShader(const skif::Context& ctx, |
| sk_sp<SkShader> input) const { |
| // There are two shader variants: a small kernel version that stores the matrix in uniforms |
| // and iterates in 1D to only rely on ES2 features; a large kernel version that stores the |
| // matrix in a texture and relies on ES3 features to have non-constant for loops. This means |
| // that large convolutions will be discarded on ES2-only hardware but they likely wouldn't |
| // run well anyway. |
| // |
| // While the loop structure and uniforms are different, pieces of the algorithm are common and |
| // defined statically for re-use in the two shaders: |
| static const char* kHeaderSkSL = |
| "uniform int2 size;" |
| "uniform int2 offset;" |
| "uniform half2 gainAndBias;" |
| "uniform int convolveAlpha;" // FIXME not a full int? |
| |
| "uniform shader child;" |
| |
| "half4 main(float2 coord) {" |
| "half4 sum = half4(0);" |
| "half origAlpha = 0;"; |
| |
| // Used in the inner loop to accumulate convolution sum |
| static const char* kAccumulateSkSL = |
| "half4 c = child.eval(coord + half2(kernelPos) - half2(offset));" |
| "if (convolveAlpha == 0) {" |
| // When not convolving alpha, remember the original alpha for actual sample |
| // coord, and perform accumulation on unpremul colors. |
| "if (kernelPos == offset) {" |
| "origAlpha = c.a;" |
| "}" |
| "c = unpremul(c);" |
| "}" |
| "sum += c*k;"; |
| |
| // Used after the loop to calculate final color |
| static const char* kFooterSkSL = |
| "half4 color = sum*gainAndBias.x + gainAndBias.y;" |
| "if (convolveAlpha == 0) {" |
| // Reset the alpha to the original and convert to premul RGB |
| "color = half4(color.rgb*origAlpha, origAlpha);" |
| "} else {" |
| // Ensure convolved alpha is within [0, 1] |
| "color.a = saturate(color.a);" |
| "}" |
| // Make RGB valid premul w/ respect to the alpha (either original or convolved) |
| "color.rgb = clamp(color.rgb, 0, color.a);" |
| "return color;" |
| "}"; |
| |
| // The uniform array storing the kernel is packed into half4's so that we don't waste space |
| // forcing array elements out to 16-byte alignment when using std140. |
| static_assert(kMaxUniformKernelSize % 4 == 0, "Must be a multiple of 4"); |
| static SkRuntimeEffect* uniformEffect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, |
| SkStringPrintf("const int kMaxUniformKernelSize = %d / 4;" |
| "uniform half4 kernel[kMaxUniformKernelSize];" |
| "%s" // kHeaderSkSL |
| "int2 kernelPos = int2(0);" |
| "for (int i = 0; i < kMaxUniformKernelSize; ++i) {" |
| "if (kernelPos.y >= size.y) { break; }" |
| |
| "half4 k4 = kernel[i];" |
| "for (int j = 0; j < 4; ++j) {" |
| "if (kernelPos.y >= size.y) { break; }" |
| "half k = k4[j];" |
| "%s" // kAccumulateSkSL |
| |
| // The 1D index has to be "constant", so reconstruct 2D coords |
| // instead of a more conventional double for-loop and i=y*w+x |
| "kernelPos.x += 1;" |
| "if (kernelPos.x >= size.x) {" |
| "kernelPos.x = 0;" |
| "kernelPos.y += 1;" |
| "}" |
| "}" |
| "}" |
| "%s", // kFooterSkSL |
| kMaxUniformKernelSize, kHeaderSkSL, kAccumulateSkSL, kFooterSkSL).c_str()); |
| |
| static const SkRuntimeEffect* texEffect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, |
| SkStringPrintf("uniform shader kernel;" |
| "uniform half2 innerGainAndBias;" |
| "%s" // kHeaderSkSL |
| "for (int y = 0; y < size.y; ++y) {" |
| "for (int x = 0; x < size.x; ++x) {" |
| "int2 kernelPos = int2(x,y);" |
| "half k = kernel.eval(half2(kernelPos) + 0.5).a;" |
| "k = k * innerGainAndBias.x + innerGainAndBias.y;" |
| "%s" // kAccumulateSkSL |
| "}" |
| "}" |
| "%s", // kFooterSkSL |
| kHeaderSkSL, kAccumulateSkSL, kFooterSkSL).c_str(), |
| SkRuntimeEffectPriv::ES3Options()); |
| |
| const int kernelLength = fKernelSize.width() * fKernelSize.height(); |
| const bool useTextureShader = kernelLength > kMaxUniformKernelSize; |
| if (useTextureShader && fKernelBitmap.empty()) { |
| return nullptr; // No actual kernel data to work with from a prior OOM |
| } |
| |
| SkRuntimeShaderBuilder builder(sk_ref_sp(useTextureShader ? texEffect : uniformEffect)); |
| builder.child("child") = std::move(input); |
| |
| if (useTextureShader) { |
| sk_sp<SkImage> cachedKernel = ctx.getCachedBitmap(fKernelBitmap); |
| if (!cachedKernel) { |
| return nullptr; |
| } |
| builder.child("kernel") = cachedKernel->makeRawShader(SkFilterMode::kNearest); |
| builder.uniform("innerGainAndBias") = SkV2{fInnerGain, fInnerBias}; |
| } else { |
| float paddedKernel[kMaxUniformKernelSize]; |
| memcpy(paddedKernel, fKernel.data(), kernelLength*sizeof(float)); |
| memset(paddedKernel+kernelLength, 0, (kMaxUniformKernelSize - kernelLength)*sizeof(float)); |
| |
| builder.uniform("kernel").set(paddedKernel, kMaxUniformKernelSize); |
| } |
| |
| builder.uniform("size") = SkISize(fKernelSize); |
| builder.uniform("offset") = skif::IVector(fKernelOffset); |
| // Scale the user-provided bias by 1/255 to match the [0,1] color channel range |
| builder.uniform("gainAndBias") = SkV2{fGain, fBias / 255.f}; |
| builder.uniform("convolveAlpha") = fConvolveAlpha ? 1 : 0; |
| |
| return builder.makeShader(); |
| } |
| |
| skif::FilterResult SkMatrixConvolutionImageFilter::onFilterImage( |
| const skif::Context& context) const { |
| using ShaderFlags = skif::FilterResult::ShaderFlags; |
| |
| skif::LayerSpace<SkIRect> requiredInput = this->boundsSampledByKernel(context.desiredOutput()); |
| skif::FilterResult childOutput = |
| this->getChildOutput(0, context.withNewDesiredOutput(requiredInput)); |
| |
| skif::LayerSpace<SkIRect> outputBounds; |
| if (fConvolveAlpha && fBias != 0.f) { |
| // The convolution will produce a non-trivial value for every pixel so fill desired output. |
| outputBounds = context.desiredOutput(); |
| } else { |
| // Calculate the possible extent of the convolution given what was actually produced by the |
| // child filter and then intersect that with the desired output. |
| outputBounds = this->boundsAffectedByKernel(childOutput.layerBounds()); |
| if (!outputBounds.intersect(context.desiredOutput())) { |
| return {}; |
| } |
| } |
| |
| skif::FilterResult::Builder builder{context}; |
| builder.add(childOutput, this->boundsSampledByKernel(outputBounds)); |
| return builder.eval([&](SkSpan<sk_sp<SkShader>> inputs) { |
| return this->createShader(context, inputs[0]); |
| }, ShaderFlags::kExplicitOutputBounds, outputBounds); |
| } |
| |
| skif::LayerSpace<SkIRect> SkMatrixConvolutionImageFilter::onGetInputLayerBounds( |
| const skif::Mapping& mapping, |
| const skif::LayerSpace<SkIRect>& desiredOutput, |
| const skif::LayerSpace<SkIRect>& contentBounds) const { |
| // Adjust the desired output bounds by the kernel size to avoid evaluating edge conditions, and |
| // then recurse to the child filter. |
| skif::LayerSpace<SkIRect> requiredInput = this->boundsSampledByKernel(desiredOutput); |
| return this->getChildInputLayerBounds(0, mapping, requiredInput, contentBounds); |
| } |
| |
| skif::LayerSpace<SkIRect> SkMatrixConvolutionImageFilter::onGetOutputLayerBounds( |
| const skif::Mapping& mapping, |
| const skif::LayerSpace<SkIRect>& contentBounds) const { |
| if (fConvolveAlpha && fBias != 0.f) { |
| // Applying the kernel as a convolution to fully transparent black will result in 0 for |
| // each channel, unless the bias itself shifts this "zero-point". However, when the alpha |
| // channel is not convolved, the original a=0 is preserved and producing a premul color |
| // discards the non-zero bias. Convolving the alpha channel and a non-zero bias can mean |
| // the transparent black pixels outside of any input image become non-transparent black. |
| return skif::LayerSpace<SkIRect>(SkRectPriv::MakeILarge()); |
| } |
| |
| // Otherwise apply the kernel to the output bounds of the child filter. |
| skif::LayerSpace<SkIRect> outputBounds = |
| this->getChildOutputLayerBounds(0, mapping, contentBounds); |
| return this->boundsAffectedByKernel(outputBounds); |
| } |
| |
| SkRect SkMatrixConvolutionImageFilter::computeFastBounds(const SkRect& bounds) const { |
| // See onAffectsTransparentBlack(), but without knowing the local-to-device transform, we don't |
| // know how many pixels will be sampled by the kernel. Return unbounded to match the |
| // expectations of an image filter that "affects" transparent black. |
| return SkRectPriv::MakeLargeS32(); |
| } |
| |
| #else |
| |
| // The matrix convolution effect requires SkSL, just return the input, possibly cropped |
| sk_sp<SkImageFilter> SkImageFilters::MatrixConvolution(const SkISize& kernelSize, |
| const SkScalar kernel[], |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| SkTileMode tileMode, |
| bool convolveAlpha, |
| sk_sp<SkImageFilter> input, |
| const CropRect& cropRect) { |
| return cropRect ? SkMakeCropImageFilter(*cropRect, std::move(input)) : input; |
| } |
| |
| void SkRegisterMatrixConvolutionImageFilterFlattenable() {} |
| |
| #endif |
| |
| #endif // SK_USE_LEGACY_CONVOLUTION_IMAGEFILTER |