|  | /* | 
|  | * Copyright 2015 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "src/pathops/SkOpCoincidence.h" | 
|  | #include "src/pathops/SkOpSegment.h" | 
|  | #include "src/pathops/SkPathOpsTSect.h" | 
|  |  | 
|  | #include <utility> | 
|  |  | 
|  | // returns true if coincident span's start and end are the same | 
|  | bool SkCoincidentSpans::collapsed(const SkOpPtT* test) const { | 
|  | return (fCoinPtTStart == test && fCoinPtTEnd->contains(test)) | 
|  | || (fCoinPtTEnd == test && fCoinPtTStart->contains(test)) | 
|  | || (fOppPtTStart == test && fOppPtTEnd->contains(test)) | 
|  | || (fOppPtTEnd == test && fOppPtTStart->contains(test)); | 
|  | } | 
|  |  | 
|  | // out of line since this function is referenced by address | 
|  | const SkOpPtT* SkCoincidentSpans::coinPtTEnd() const { | 
|  | return fCoinPtTEnd; | 
|  | } | 
|  |  | 
|  | // out of line since this function is referenced by address | 
|  | const SkOpPtT* SkCoincidentSpans::coinPtTStart() const { | 
|  | return fCoinPtTStart; | 
|  | } | 
|  |  | 
|  | // sets the span's end to the ptT referenced by the previous-next | 
|  | void SkCoincidentSpans::correctOneEnd( | 
|  | const SkOpPtT* (SkCoincidentSpans::* getEnd)() const, | 
|  | void (SkCoincidentSpans::*setEnd)(const SkOpPtT* ptT) ) { | 
|  | const SkOpPtT* origPtT = (this->*getEnd)(); | 
|  | const SkOpSpanBase* origSpan = origPtT->span(); | 
|  | const SkOpSpan* prev = origSpan->prev(); | 
|  | const SkOpPtT* testPtT = prev ? prev->next()->ptT() | 
|  | : origSpan->upCast()->next()->prev()->ptT(); | 
|  | if (origPtT != testPtT) { | 
|  | (this->*setEnd)(testPtT); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Please keep this in sync with debugCorrectEnds */ | 
|  | // FIXME: member pointers have fallen out of favor and can be replaced with | 
|  | // an alternative approach. | 
|  | // makes all span ends agree with the segment's spans that define them | 
|  | void SkCoincidentSpans::correctEnds() { | 
|  | this->correctOneEnd(&SkCoincidentSpans::coinPtTStart, &SkCoincidentSpans::setCoinPtTStart); | 
|  | this->correctOneEnd(&SkCoincidentSpans::coinPtTEnd, &SkCoincidentSpans::setCoinPtTEnd); | 
|  | this->correctOneEnd(&SkCoincidentSpans::oppPtTStart, &SkCoincidentSpans::setOppPtTStart); | 
|  | this->correctOneEnd(&SkCoincidentSpans::oppPtTEnd, &SkCoincidentSpans::setOppPtTEnd); | 
|  | } | 
|  |  | 
|  | /* Please keep this in sync with debugExpand */ | 
|  | // expand the range by checking adjacent spans for coincidence | 
|  | bool SkCoincidentSpans::expand() { | 
|  | bool expanded = false; | 
|  | const SkOpSegment* segment = coinPtTStart()->segment(); | 
|  | const SkOpSegment* oppSegment = oppPtTStart()->segment(); | 
|  | do { | 
|  | const SkOpSpan* start = coinPtTStart()->span()->upCast(); | 
|  | const SkOpSpan* prev = start->prev(); | 
|  | const SkOpPtT* oppPtT; | 
|  | if (!prev || !(oppPtT = prev->contains(oppSegment))) { | 
|  | break; | 
|  | } | 
|  | double midT = (prev->t() + start->t()) / 2; | 
|  | if (!segment->isClose(midT, oppSegment)) { | 
|  | break; | 
|  | } | 
|  | setStarts(prev->ptT(), oppPtT); | 
|  | expanded = true; | 
|  | } while (true); | 
|  | do { | 
|  | const SkOpSpanBase* end = coinPtTEnd()->span(); | 
|  | SkOpSpanBase* next = end->final() ? nullptr : end->upCast()->next(); | 
|  | if (next && next->deleted()) { | 
|  | break; | 
|  | } | 
|  | const SkOpPtT* oppPtT; | 
|  | if (!next || !(oppPtT = next->contains(oppSegment))) { | 
|  | break; | 
|  | } | 
|  | double midT = (end->t() + next->t()) / 2; | 
|  | if (!segment->isClose(midT, oppSegment)) { | 
|  | break; | 
|  | } | 
|  | setEnds(next->ptT(), oppPtT); | 
|  | expanded = true; | 
|  | } while (true); | 
|  | return expanded; | 
|  | } | 
|  |  | 
|  | // increase the range of this span | 
|  | bool SkCoincidentSpans::extend(const SkOpPtT* coinPtTStart, const SkOpPtT* coinPtTEnd, | 
|  | const SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd) { | 
|  | bool result = false; | 
|  | if (fCoinPtTStart->fT > coinPtTStart->fT || (this->flipped() | 
|  | ? fOppPtTStart->fT < oppPtTStart->fT : fOppPtTStart->fT > oppPtTStart->fT)) { | 
|  | this->setStarts(coinPtTStart, oppPtTStart); | 
|  | result = true; | 
|  | } | 
|  | if (fCoinPtTEnd->fT < coinPtTEnd->fT || (this->flipped() | 
|  | ? fOppPtTEnd->fT > oppPtTEnd->fT : fOppPtTEnd->fT < oppPtTEnd->fT)) { | 
|  | this->setEnds(coinPtTEnd, oppPtTEnd); | 
|  | result = true; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // set the range of this span | 
|  | void SkCoincidentSpans::set(SkCoincidentSpans* next, const SkOpPtT* coinPtTStart, | 
|  | const SkOpPtT* coinPtTEnd, const SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd) { | 
|  | SkASSERT(SkOpCoincidence::Ordered(coinPtTStart, oppPtTStart)); | 
|  | fNext = next; | 
|  | this->setStarts(coinPtTStart, oppPtTStart); | 
|  | this->setEnds(coinPtTEnd, oppPtTEnd); | 
|  | } | 
|  |  | 
|  | // returns true if both points are inside this | 
|  | bool SkCoincidentSpans::contains(const SkOpPtT* s, const SkOpPtT* e) const { | 
|  | if (s->fT > e->fT) { | 
|  | using std::swap; | 
|  | swap(s, e); | 
|  | } | 
|  | if (s->segment() == fCoinPtTStart->segment()) { | 
|  | return fCoinPtTStart->fT <= s->fT && e->fT <= fCoinPtTEnd->fT; | 
|  | } else { | 
|  | SkASSERT(s->segment() == fOppPtTStart->segment()); | 
|  | double oppTs = fOppPtTStart->fT; | 
|  | double oppTe = fOppPtTEnd->fT; | 
|  | if (oppTs > oppTe) { | 
|  | using std::swap; | 
|  | swap(oppTs, oppTe); | 
|  | } | 
|  | return oppTs <= s->fT && e->fT <= oppTe; | 
|  | } | 
|  | } | 
|  |  | 
|  | // out of line since this function is referenced by address | 
|  | const SkOpPtT* SkCoincidentSpans::oppPtTStart() const { | 
|  | return fOppPtTStart; | 
|  | } | 
|  |  | 
|  | // out of line since this function is referenced by address | 
|  | const SkOpPtT* SkCoincidentSpans::oppPtTEnd() const { | 
|  | return fOppPtTEnd; | 
|  | } | 
|  |  | 
|  | // A coincident span is unordered if the pairs of points in the main and opposite curves' | 
|  | // t values do not ascend or descend. For instance, if a tightly arced quadratic is | 
|  | // coincident with another curve, it may intersect it out of order. | 
|  | bool SkCoincidentSpans::ordered(bool* result) const { | 
|  | const SkOpSpanBase* start = this->coinPtTStart()->span(); | 
|  | const SkOpSpanBase* end = this->coinPtTEnd()->span(); | 
|  | const SkOpSpanBase* next = start->upCast()->next(); | 
|  | if (next == end) { | 
|  | *result = true; | 
|  | return true; | 
|  | } | 
|  | bool flipped = this->flipped(); | 
|  | const SkOpSegment* oppSeg = this->oppPtTStart()->segment(); | 
|  | double oppLastT = fOppPtTStart->fT; | 
|  | do { | 
|  | const SkOpPtT* opp = next->contains(oppSeg); | 
|  | if (!opp) { | 
|  | //            SkOPOBJASSERT(start, 0);  // may assert if coincident span isn't fully processed | 
|  | return false; | 
|  | } | 
|  | if ((oppLastT > opp->fT) != flipped) { | 
|  | *result = false; | 
|  | return true; | 
|  | } | 
|  | oppLastT = opp->fT; | 
|  | if (next == end) { | 
|  | break; | 
|  | } | 
|  | if (!next->upCastable()) { | 
|  | *result = false; | 
|  | return true; | 
|  | } | 
|  | next = next->upCast()->next(); | 
|  | } while (true); | 
|  | *result = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // if there is an existing pair that overlaps the addition, extend it | 
|  | bool SkOpCoincidence::extend(const SkOpPtT* coinPtTStart, const SkOpPtT* coinPtTEnd, | 
|  | const SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd) { | 
|  | SkCoincidentSpans* test = fHead; | 
|  | if (!test) { | 
|  | return false; | 
|  | } | 
|  | const SkOpSegment* coinSeg = coinPtTStart->segment(); | 
|  | const SkOpSegment* oppSeg = oppPtTStart->segment(); | 
|  | if (!Ordered(coinPtTStart, oppPtTStart)) { | 
|  | using std::swap; | 
|  | swap(coinSeg, oppSeg); | 
|  | swap(coinPtTStart, oppPtTStart); | 
|  | swap(coinPtTEnd, oppPtTEnd); | 
|  | if (coinPtTStart->fT > coinPtTEnd->fT) { | 
|  | swap(coinPtTStart, coinPtTEnd); | 
|  | swap(oppPtTStart, oppPtTEnd); | 
|  | } | 
|  | } | 
|  | double oppMinT = std::min(oppPtTStart->fT, oppPtTEnd->fT); | 
|  | SkDEBUGCODE(double oppMaxT = std::max(oppPtTStart->fT, oppPtTEnd->fT)); | 
|  | do { | 
|  | if (coinSeg != test->coinPtTStart()->segment()) { | 
|  | continue; | 
|  | } | 
|  | if (oppSeg != test->oppPtTStart()->segment()) { | 
|  | continue; | 
|  | } | 
|  | double oTestMinT = std::min(test->oppPtTStart()->fT, test->oppPtTEnd()->fT); | 
|  | double oTestMaxT = std::max(test->oppPtTStart()->fT, test->oppPtTEnd()->fT); | 
|  | // if debug check triggers, caller failed to check if extended already exists | 
|  | SkASSERT(test->coinPtTStart()->fT > coinPtTStart->fT | 
|  | || coinPtTEnd->fT > test->coinPtTEnd()->fT | 
|  | || oTestMinT > oppMinT || oppMaxT > oTestMaxT); | 
|  | if ((test->coinPtTStart()->fT <= coinPtTEnd->fT | 
|  | && coinPtTStart->fT <= test->coinPtTEnd()->fT) | 
|  | || (oTestMinT <= oTestMaxT && oppMinT <= oTestMaxT)) { | 
|  | test->extend(coinPtTStart, coinPtTEnd, oppPtTStart, oppPtTEnd); | 
|  | return true; | 
|  | } | 
|  | } while ((test = test->next())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // verifies that the coincidence hasn't already been added | 
|  | static void DebugCheckAdd(const SkCoincidentSpans* check, const SkOpPtT* coinPtTStart, | 
|  | const SkOpPtT* coinPtTEnd, const SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd) { | 
|  | #if DEBUG_COINCIDENCE | 
|  | while (check) { | 
|  | SkASSERT(check->coinPtTStart() != coinPtTStart || check->coinPtTEnd() != coinPtTEnd | 
|  | || check->oppPtTStart() != oppPtTStart || check->oppPtTEnd() != oppPtTEnd); | 
|  | SkASSERT(check->coinPtTStart() != oppPtTStart || check->coinPtTEnd() != oppPtTEnd | 
|  | || check->oppPtTStart() != coinPtTStart || check->oppPtTEnd() != coinPtTEnd); | 
|  | check = check->next(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // adds a new coincident pair | 
|  | void SkOpCoincidence::add(SkOpPtT* coinPtTStart, SkOpPtT* coinPtTEnd, SkOpPtT* oppPtTStart, | 
|  | SkOpPtT* oppPtTEnd) { | 
|  | // OPTIMIZE: caller should have already sorted | 
|  | if (!Ordered(coinPtTStart, oppPtTStart)) { | 
|  | if (oppPtTStart->fT < oppPtTEnd->fT) { | 
|  | this->add(oppPtTStart, oppPtTEnd, coinPtTStart, coinPtTEnd); | 
|  | } else { | 
|  | this->add(oppPtTEnd, oppPtTStart, coinPtTEnd, coinPtTStart); | 
|  | } | 
|  | return; | 
|  | } | 
|  | SkASSERT(Ordered(coinPtTStart, oppPtTStart)); | 
|  | // choose the ptT at the front of the list to track | 
|  | coinPtTStart = coinPtTStart->span()->ptT(); | 
|  | coinPtTEnd = coinPtTEnd->span()->ptT(); | 
|  | oppPtTStart = oppPtTStart->span()->ptT(); | 
|  | oppPtTEnd = oppPtTEnd->span()->ptT(); | 
|  | SkOPASSERT(coinPtTStart->fT < coinPtTEnd->fT); | 
|  | SkOPASSERT(oppPtTStart->fT != oppPtTEnd->fT); | 
|  | SkOPASSERT(!coinPtTStart->deleted()); | 
|  | SkOPASSERT(!coinPtTEnd->deleted()); | 
|  | SkOPASSERT(!oppPtTStart->deleted()); | 
|  | SkOPASSERT(!oppPtTEnd->deleted()); | 
|  | DebugCheckAdd(fHead, coinPtTStart, coinPtTEnd, oppPtTStart, oppPtTEnd); | 
|  | DebugCheckAdd(fTop, coinPtTStart, coinPtTEnd, oppPtTStart, oppPtTEnd); | 
|  | SkCoincidentSpans* coinRec = this->globalState()->allocator()->make<SkCoincidentSpans>(); | 
|  | coinRec->init(SkDEBUGCODE(fGlobalState)); | 
|  | coinRec->set(this->fHead, coinPtTStart, coinPtTEnd, oppPtTStart, oppPtTEnd); | 
|  | fHead = coinRec; | 
|  | } | 
|  |  | 
|  | // description below | 
|  | bool SkOpCoincidence::addEndMovedSpans(const SkOpSpan* base, const SkOpSpanBase* testSpan) { | 
|  | const SkOpPtT* testPtT = testSpan->ptT(); | 
|  | const SkOpPtT* stopPtT = testPtT; | 
|  | const SkOpSegment* baseSeg = base->segment(); | 
|  | int escapeHatch = 100000;  // this is 100 times larger than the debugLoopLimit test | 
|  | while ((testPtT = testPtT->next()) != stopPtT) { | 
|  | if (--escapeHatch <= 0) { | 
|  | return false;  // if triggered (likely by a fuzz-generated test) too complex to succeed | 
|  | } | 
|  | const SkOpSegment* testSeg = testPtT->segment(); | 
|  | if (testPtT->deleted()) { | 
|  | continue; | 
|  | } | 
|  | if (testSeg == baseSeg) { | 
|  | continue; | 
|  | } | 
|  | if (testPtT->span()->ptT() != testPtT) { | 
|  | continue; | 
|  | } | 
|  | if (this->contains(baseSeg, testSeg, testPtT->fT)) { | 
|  | continue; | 
|  | } | 
|  | // intersect perp with base->ptT() with testPtT->segment() | 
|  | SkDVector dxdy = baseSeg->dSlopeAtT(base->t()); | 
|  | const SkPoint& pt = base->pt(); | 
|  | SkDLine ray = {{{pt.fX, pt.fY}, {pt.fX + dxdy.fY, pt.fY - dxdy.fX}}}; | 
|  | SkIntersections i  SkDEBUGCODE((this->globalState())); | 
|  | (*CurveIntersectRay[testSeg->verb()])(testSeg->pts(), testSeg->weight(), ray, &i); | 
|  | for (int index = 0; index < i.used(); ++index) { | 
|  | double t = i[0][index]; | 
|  | if (!between(0, t, 1)) { | 
|  | continue; | 
|  | } | 
|  | SkDPoint oppPt = i.pt(index); | 
|  | if (!oppPt.approximatelyEqual(pt)) { | 
|  | continue; | 
|  | } | 
|  | SkOpSegment* writableSeg = const_cast<SkOpSegment*>(testSeg); | 
|  | SkOpPtT* oppStart = writableSeg->addT(t); | 
|  | if (oppStart == testPtT) { | 
|  | continue; | 
|  | } | 
|  | SkOpSpan* writableBase = const_cast<SkOpSpan*>(base); | 
|  | oppStart->span()->addOpp(writableBase); | 
|  | if (oppStart->deleted()) { | 
|  | continue; | 
|  | } | 
|  | SkOpSegment* coinSeg = base->segment(); | 
|  | SkOpSegment* oppSeg = oppStart->segment(); | 
|  | double coinTs, coinTe, oppTs, oppTe; | 
|  | if (Ordered(coinSeg, oppSeg)) { | 
|  | coinTs = base->t(); | 
|  | coinTe = testSpan->t(); | 
|  | oppTs = oppStart->fT; | 
|  | oppTe = testPtT->fT; | 
|  | } else { | 
|  | using std::swap; | 
|  | swap(coinSeg, oppSeg); | 
|  | coinTs = oppStart->fT; | 
|  | coinTe = testPtT->fT; | 
|  | oppTs = base->t(); | 
|  | oppTe = testSpan->t(); | 
|  | } | 
|  | if (coinTs > coinTe) { | 
|  | using std::swap; | 
|  | swap(coinTs, coinTe); | 
|  | swap(oppTs, oppTe); | 
|  | } | 
|  | bool added; | 
|  | FAIL_IF(!this->addOrOverlap(coinSeg, oppSeg, coinTs, coinTe, oppTs, oppTe, &added)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // description below | 
|  | bool SkOpCoincidence::addEndMovedSpans(const SkOpPtT* ptT) { | 
|  | FAIL_IF(!ptT->span()->upCastable()); | 
|  | const SkOpSpan* base = ptT->span()->upCast(); | 
|  | const SkOpSpan* prev = base->prev(); | 
|  | FAIL_IF(!prev); | 
|  | if (!prev->isCanceled()) { | 
|  | if (!this->addEndMovedSpans(base, base->prev())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!base->isCanceled()) { | 
|  | if (!this->addEndMovedSpans(base, base->next())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /*  If A is coincident with B and B includes an endpoint, and A's matching point | 
|  | is not the endpoint (i.e., there's an implied line connecting B-end and A) | 
|  | then assume that the same implied line may intersect another curve close to B. | 
|  | Since we only care about coincidence that was undetected, look at the | 
|  | ptT list on B-segment adjacent to the B-end/A ptT loop (not in the loop, but | 
|  | next door) and see if the A matching point is close enough to form another | 
|  | coincident pair. If so, check for a new coincident span between B-end/A ptT loop | 
|  | and the adjacent ptT loop. | 
|  | */ | 
|  | bool SkOpCoincidence::addEndMovedSpans(DEBUG_COIN_DECLARE_ONLY_PARAMS()) { | 
|  | DEBUG_SET_PHASE(); | 
|  | SkCoincidentSpans* span = fHead; | 
|  | if (!span) { | 
|  | return true; | 
|  | } | 
|  | fTop = span; | 
|  | fHead = nullptr; | 
|  | do { | 
|  | if (span->coinPtTStart()->fPt != span->oppPtTStart()->fPt) { | 
|  | FAIL_IF(1 == span->coinPtTStart()->fT); | 
|  | bool onEnd = span->coinPtTStart()->fT == 0; | 
|  | bool oOnEnd = zero_or_one(span->oppPtTStart()->fT); | 
|  | if (onEnd) { | 
|  | if (!oOnEnd) {  // if both are on end, any nearby intersect was already found | 
|  | if (!this->addEndMovedSpans(span->oppPtTStart())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else if (oOnEnd) { | 
|  | if (!this->addEndMovedSpans(span->coinPtTStart())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (span->coinPtTEnd()->fPt != span->oppPtTEnd()->fPt) { | 
|  | bool onEnd = span->coinPtTEnd()->fT == 1; | 
|  | bool oOnEnd = zero_or_one(span->oppPtTEnd()->fT); | 
|  | if (onEnd) { | 
|  | if (!oOnEnd) { | 
|  | if (!this->addEndMovedSpans(span->oppPtTEnd())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else if (oOnEnd) { | 
|  | if (!this->addEndMovedSpans(span->coinPtTEnd())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while ((span = span->next())); | 
|  | this->restoreHead(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Please keep this in sync with debugAddExpanded */ | 
|  | // for each coincident pair, match the spans | 
|  | // if the spans don't match, add the missing pt to the segment and loop it in the opposite span | 
|  | bool SkOpCoincidence::addExpanded(DEBUG_COIN_DECLARE_ONLY_PARAMS()) { | 
|  | DEBUG_SET_PHASE(); | 
|  | SkCoincidentSpans* coin = this->fHead; | 
|  | if (!coin) { | 
|  | return true; | 
|  | } | 
|  | do { | 
|  | const SkOpPtT* startPtT = coin->coinPtTStart(); | 
|  | const SkOpPtT* oStartPtT = coin->oppPtTStart(); | 
|  | double priorT = startPtT->fT; | 
|  | double oPriorT = oStartPtT->fT; | 
|  | FAIL_IF(!startPtT->contains(oStartPtT)); | 
|  | SkOPASSERT(coin->coinPtTEnd()->contains(coin->oppPtTEnd())); | 
|  | const SkOpSpanBase* start = startPtT->span(); | 
|  | const SkOpSpanBase* oStart = oStartPtT->span(); | 
|  | const SkOpSpanBase* end = coin->coinPtTEnd()->span(); | 
|  | const SkOpSpanBase* oEnd = coin->oppPtTEnd()->span(); | 
|  | FAIL_IF(oEnd->deleted()); | 
|  | FAIL_IF(!start->upCastable()); | 
|  | const SkOpSpanBase* test = start->upCast()->next(); | 
|  | FAIL_IF(!coin->flipped() && !oStart->upCastable()); | 
|  | const SkOpSpanBase* oTest = coin->flipped() ? oStart->prev() : oStart->upCast()->next(); | 
|  | FAIL_IF(!oTest); | 
|  | SkOpSegment* seg = start->segment(); | 
|  | SkOpSegment* oSeg = oStart->segment(); | 
|  | while (test != end || oTest != oEnd) { | 
|  | const SkOpPtT* containedOpp = test->ptT()->contains(oSeg); | 
|  | const SkOpPtT* containedThis = oTest->ptT()->contains(seg); | 
|  | if (!containedOpp || !containedThis) { | 
|  | // choose the ends, or the first common pt-t list shared by both | 
|  | double nextT, oNextT; | 
|  | if (containedOpp) { | 
|  | nextT = test->t(); | 
|  | oNextT = containedOpp->fT; | 
|  | } else if (containedThis) { | 
|  | nextT = containedThis->fT; | 
|  | oNextT = oTest->t(); | 
|  | } else { | 
|  | // iterate through until a pt-t list found that contains the other | 
|  | const SkOpSpanBase* walk = test; | 
|  | const SkOpPtT* walkOpp; | 
|  | do { | 
|  | FAIL_IF(!walk->upCastable()); | 
|  | walk = walk->upCast()->next(); | 
|  | } while (!(walkOpp = walk->ptT()->contains(oSeg)) | 
|  | && walk != coin->coinPtTEnd()->span()); | 
|  | FAIL_IF(!walkOpp); | 
|  | nextT = walk->t(); | 
|  | oNextT = walkOpp->fT; | 
|  | } | 
|  | // use t ranges to guess which one is missing | 
|  | double startRange = nextT - priorT; | 
|  | FAIL_IF(!startRange); | 
|  | double startPart = (test->t() - priorT) / startRange; | 
|  | double oStartRange = oNextT - oPriorT; | 
|  | FAIL_IF(!oStartRange); | 
|  | double oStartPart = (oTest->t() - oPriorT) / oStartRange; | 
|  | FAIL_IF(startPart == oStartPart); | 
|  | bool addToOpp = !containedOpp && !containedThis ? startPart < oStartPart | 
|  | : !!containedThis; | 
|  | bool startOver = false; | 
|  | bool success = addToOpp ? oSeg->addExpanded( | 
|  | oPriorT + oStartRange * startPart, test, &startOver) | 
|  | : seg->addExpanded( | 
|  | priorT + startRange * oStartPart, oTest, &startOver); | 
|  | FAIL_IF(!success); | 
|  | if (startOver) { | 
|  | test = start; | 
|  | oTest = oStart; | 
|  | } | 
|  | end = coin->coinPtTEnd()->span(); | 
|  | oEnd = coin->oppPtTEnd()->span(); | 
|  | } | 
|  | if (test != end) { | 
|  | FAIL_IF(!test->upCastable()); | 
|  | priorT = test->t(); | 
|  | test = test->upCast()->next(); | 
|  | } | 
|  | if (oTest != oEnd) { | 
|  | oPriorT = oTest->t(); | 
|  | if (coin->flipped()) { | 
|  | oTest = oTest->prev(); | 
|  | } else { | 
|  | FAIL_IF(!oTest->upCastable()); | 
|  | oTest = oTest->upCast()->next(); | 
|  | } | 
|  | FAIL_IF(!oTest); | 
|  | } | 
|  |  | 
|  | } | 
|  | } while ((coin = coin->next())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // given a t span, map the same range on the coincident span | 
|  | /* | 
|  | the curves may not scale linearly, so interpolation may only happen within known points | 
|  | remap over1s, over1e, cointPtTStart, coinPtTEnd to smallest range that captures over1s | 
|  | then repeat to capture over1e | 
|  | */ | 
|  | double SkOpCoincidence::TRange(const SkOpPtT* overS, double t, | 
|  | const SkOpSegment* coinSeg  SkDEBUGPARAMS(const SkOpPtT* overE)) { | 
|  | const SkOpSpanBase* work = overS->span(); | 
|  | const SkOpPtT* foundStart = nullptr; | 
|  | const SkOpPtT* foundEnd = nullptr; | 
|  | const SkOpPtT* coinStart = nullptr; | 
|  | const SkOpPtT* coinEnd = nullptr; | 
|  | do { | 
|  | const SkOpPtT* contained = work->contains(coinSeg); | 
|  | if (!contained) { | 
|  | if (work->final()) { | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (work->t() <= t) { | 
|  | coinStart = contained; | 
|  | foundStart = work->ptT(); | 
|  | } | 
|  | if (work->t() >= t) { | 
|  | coinEnd = contained; | 
|  | foundEnd = work->ptT(); | 
|  | break; | 
|  | } | 
|  | SkASSERT(work->ptT() != overE); | 
|  | } while ((work = work->upCast()->next())); | 
|  | if (!coinStart || !coinEnd) { | 
|  | return 1; | 
|  | } | 
|  | // while overS->fT <=t and overS contains coinSeg | 
|  | double denom = foundEnd->fT - foundStart->fT; | 
|  | double sRatio = denom ? (t - foundStart->fT) / denom : 1; | 
|  | return coinStart->fT + (coinEnd->fT - coinStart->fT) * sRatio; | 
|  | } | 
|  |  | 
|  | // return true if span overlaps existing and needs to adjust the coincident list | 
|  | bool SkOpCoincidence::checkOverlap(SkCoincidentSpans* check, | 
|  | const SkOpSegment* coinSeg, const SkOpSegment* oppSeg, | 
|  | double coinTs, double coinTe, double oppTs, double oppTe, | 
|  | SkTDArray<SkCoincidentSpans*>* overlaps) const { | 
|  | if (!Ordered(coinSeg, oppSeg)) { | 
|  | if (oppTs < oppTe) { | 
|  | return this->checkOverlap(check, oppSeg, coinSeg, oppTs, oppTe, coinTs, coinTe, | 
|  | overlaps); | 
|  | } | 
|  | return this->checkOverlap(check, oppSeg, coinSeg, oppTe, oppTs, coinTe, coinTs, overlaps); | 
|  | } | 
|  | bool swapOpp = oppTs > oppTe; | 
|  | if (swapOpp) { | 
|  | using std::swap; | 
|  | swap(oppTs, oppTe); | 
|  | } | 
|  | do { | 
|  | if (check->coinPtTStart()->segment() != coinSeg) { | 
|  | continue; | 
|  | } | 
|  | if (check->oppPtTStart()->segment() != oppSeg) { | 
|  | continue; | 
|  | } | 
|  | double checkTs = check->coinPtTStart()->fT; | 
|  | double checkTe = check->coinPtTEnd()->fT; | 
|  | bool coinOutside = coinTe < checkTs || coinTs > checkTe; | 
|  | double oCheckTs = check->oppPtTStart()->fT; | 
|  | double oCheckTe = check->oppPtTEnd()->fT; | 
|  | if (swapOpp) { | 
|  | if (oCheckTs <= oCheckTe) { | 
|  | return false; | 
|  | } | 
|  | using std::swap; | 
|  | swap(oCheckTs, oCheckTe); | 
|  | } | 
|  | bool oppOutside = oppTe < oCheckTs || oppTs > oCheckTe; | 
|  | if (coinOutside && oppOutside) { | 
|  | continue; | 
|  | } | 
|  | bool coinInside = coinTe <= checkTe && coinTs >= checkTs; | 
|  | bool oppInside = oppTe <= oCheckTe && oppTs >= oCheckTs; | 
|  | if (coinInside && oppInside) {  // already included, do nothing | 
|  | return false; | 
|  | } | 
|  | *overlaps->append() = check; // partial overlap, extend existing entry | 
|  | } while ((check = check->next())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Please keep this in sync with debugAddIfMissing() */ | 
|  | // note that over1s, over1e, over2s, over2e are ordered | 
|  | bool SkOpCoincidence::addIfMissing(const SkOpPtT* over1s, const SkOpPtT* over2s, | 
|  | double tStart, double tEnd, SkOpSegment* coinSeg, SkOpSegment* oppSeg, bool* added | 
|  | SkDEBUGPARAMS(const SkOpPtT* over1e) SkDEBUGPARAMS(const SkOpPtT* over2e)) { | 
|  | SkASSERT(tStart < tEnd); | 
|  | SkASSERT(over1s->fT < over1e->fT); | 
|  | SkASSERT(between(over1s->fT, tStart, over1e->fT)); | 
|  | SkASSERT(between(over1s->fT, tEnd, over1e->fT)); | 
|  | SkASSERT(over2s->fT < over2e->fT); | 
|  | SkASSERT(between(over2s->fT, tStart, over2e->fT)); | 
|  | SkASSERT(between(over2s->fT, tEnd, over2e->fT)); | 
|  | SkASSERT(over1s->segment() == over1e->segment()); | 
|  | SkASSERT(over2s->segment() == over2e->segment()); | 
|  | SkASSERT(over1s->segment() == over2s->segment()); | 
|  | SkASSERT(over1s->segment() != coinSeg); | 
|  | SkASSERT(over1s->segment() != oppSeg); | 
|  | SkASSERT(coinSeg != oppSeg); | 
|  | double coinTs, coinTe, oppTs, oppTe; | 
|  | coinTs = TRange(over1s, tStart, coinSeg  SkDEBUGPARAMS(over1e)); | 
|  | coinTe = TRange(over1s, tEnd, coinSeg  SkDEBUGPARAMS(over1e)); | 
|  | SkOpSpanBase::Collapsed result = coinSeg->collapsed(coinTs, coinTe); | 
|  | if (SkOpSpanBase::Collapsed::kNo != result) { | 
|  | return SkOpSpanBase::Collapsed::kYes == result; | 
|  | } | 
|  | oppTs = TRange(over2s, tStart, oppSeg  SkDEBUGPARAMS(over2e)); | 
|  | oppTe = TRange(over2s, tEnd, oppSeg  SkDEBUGPARAMS(over2e)); | 
|  | result = oppSeg->collapsed(oppTs, oppTe); | 
|  | if (SkOpSpanBase::Collapsed::kNo != result) { | 
|  | return SkOpSpanBase::Collapsed::kYes == result; | 
|  | } | 
|  | if (coinTs > coinTe) { | 
|  | using std::swap; | 
|  | swap(coinTs, coinTe); | 
|  | swap(oppTs, oppTe); | 
|  | } | 
|  | (void) this->addOrOverlap(coinSeg, oppSeg, coinTs, coinTe, oppTs, oppTe, added); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Please keep this in sync with debugAddOrOverlap() */ | 
|  | // If this is called by addEndMovedSpans(), a returned false propogates out to an abort. | 
|  | // If this is called by AddIfMissing(), a returned false indicates there was nothing to add | 
|  | bool SkOpCoincidence::addOrOverlap(SkOpSegment* coinSeg, SkOpSegment* oppSeg, | 
|  | double coinTs, double coinTe, double oppTs, double oppTe, bool* added) { | 
|  | SkTDArray<SkCoincidentSpans*> overlaps; | 
|  | FAIL_IF(!fTop); | 
|  | if (!this->checkOverlap(fTop, coinSeg, oppSeg, coinTs, coinTe, oppTs, oppTe, &overlaps)) { | 
|  | return true; | 
|  | } | 
|  | if (fHead && !this->checkOverlap(fHead, coinSeg, oppSeg, coinTs, | 
|  | coinTe, oppTs, oppTe, &overlaps)) { | 
|  | return true; | 
|  | } | 
|  | SkCoincidentSpans* overlap = overlaps.count() ? overlaps[0] : nullptr; | 
|  | for (int index = 1; index < overlaps.count(); ++index) { // combine overlaps before continuing | 
|  | SkCoincidentSpans* test = overlaps[index]; | 
|  | if (overlap->coinPtTStart()->fT > test->coinPtTStart()->fT) { | 
|  | overlap->setCoinPtTStart(test->coinPtTStart()); | 
|  | } | 
|  | if (overlap->coinPtTEnd()->fT < test->coinPtTEnd()->fT) { | 
|  | overlap->setCoinPtTEnd(test->coinPtTEnd()); | 
|  | } | 
|  | if (overlap->flipped() | 
|  | ? overlap->oppPtTStart()->fT < test->oppPtTStart()->fT | 
|  | : overlap->oppPtTStart()->fT > test->oppPtTStart()->fT) { | 
|  | overlap->setOppPtTStart(test->oppPtTStart()); | 
|  | } | 
|  | if (overlap->flipped() | 
|  | ? overlap->oppPtTEnd()->fT > test->oppPtTEnd()->fT | 
|  | : overlap->oppPtTEnd()->fT < test->oppPtTEnd()->fT) { | 
|  | overlap->setOppPtTEnd(test->oppPtTEnd()); | 
|  | } | 
|  | if (!fHead || !this->release(fHead, test)) { | 
|  | SkAssertResult(this->release(fTop, test)); | 
|  | } | 
|  | } | 
|  | const SkOpPtT* cs = coinSeg->existing(coinTs, oppSeg); | 
|  | const SkOpPtT* ce = coinSeg->existing(coinTe, oppSeg); | 
|  | if (overlap && cs && ce && overlap->contains(cs, ce)) { | 
|  | return true; | 
|  | } | 
|  | FAIL_IF(cs == ce && cs); | 
|  | const SkOpPtT* os = oppSeg->existing(oppTs, coinSeg); | 
|  | const SkOpPtT* oe = oppSeg->existing(oppTe, coinSeg); | 
|  | if (overlap && os && oe && overlap->contains(os, oe)) { | 
|  | return true; | 
|  | } | 
|  | FAIL_IF(cs && cs->deleted()); | 
|  | FAIL_IF(os && os->deleted()); | 
|  | FAIL_IF(ce && ce->deleted()); | 
|  | FAIL_IF(oe && oe->deleted()); | 
|  | const SkOpPtT* csExisting = !cs ? coinSeg->existing(coinTs, nullptr) : nullptr; | 
|  | const SkOpPtT* ceExisting = !ce ? coinSeg->existing(coinTe, nullptr) : nullptr; | 
|  | FAIL_IF(csExisting && csExisting == ceExisting); | 
|  | //    FAIL_IF(csExisting && (csExisting == ce || | 
|  | //            csExisting->contains(ceExisting ? ceExisting : ce))); | 
|  | FAIL_IF(ceExisting && (ceExisting == cs || | 
|  | ceExisting->contains(csExisting ? csExisting : cs))); | 
|  | const SkOpPtT* osExisting = !os ? oppSeg->existing(oppTs, nullptr) : nullptr; | 
|  | const SkOpPtT* oeExisting = !oe ? oppSeg->existing(oppTe, nullptr) : nullptr; | 
|  | FAIL_IF(osExisting && osExisting == oeExisting); | 
|  | FAIL_IF(osExisting && (osExisting == oe || | 
|  | osExisting->contains(oeExisting ? oeExisting : oe))); | 
|  | FAIL_IF(oeExisting && (oeExisting == os || | 
|  | oeExisting->contains(osExisting ? osExisting : os))); | 
|  | // extra line in debug code | 
|  | this->debugValidate(); | 
|  | if (!cs || !os) { | 
|  | SkOpPtT* csWritable = cs ? const_cast<SkOpPtT*>(cs) | 
|  | : coinSeg->addT(coinTs); | 
|  | if (csWritable == ce) { | 
|  | return true; | 
|  | } | 
|  | SkOpPtT* osWritable = os ? const_cast<SkOpPtT*>(os) | 
|  | : oppSeg->addT(oppTs); | 
|  | FAIL_IF(!csWritable || !osWritable); | 
|  | csWritable->span()->addOpp(osWritable->span()); | 
|  | cs = csWritable; | 
|  | os = osWritable->active(); | 
|  | FAIL_IF(!os); | 
|  | FAIL_IF((ce && ce->deleted()) || (oe && oe->deleted())); | 
|  | } | 
|  | if (!ce || !oe) { | 
|  | SkOpPtT* ceWritable = ce ? const_cast<SkOpPtT*>(ce) | 
|  | : coinSeg->addT(coinTe); | 
|  | SkOpPtT* oeWritable = oe ? const_cast<SkOpPtT*>(oe) | 
|  | : oppSeg->addT(oppTe); | 
|  | FAIL_IF(!ceWritable->span()->addOpp(oeWritable->span())); | 
|  | ce = ceWritable; | 
|  | oe = oeWritable; | 
|  | } | 
|  | this->debugValidate(); | 
|  | FAIL_IF(cs->deleted()); | 
|  | FAIL_IF(os->deleted()); | 
|  | FAIL_IF(ce->deleted()); | 
|  | FAIL_IF(oe->deleted()); | 
|  | FAIL_IF(cs->contains(ce) || os->contains(oe)); | 
|  | bool result = true; | 
|  | if (overlap) { | 
|  | if (overlap->coinPtTStart()->segment() == coinSeg) { | 
|  | result = overlap->extend(cs, ce, os, oe); | 
|  | } else { | 
|  | if (os->fT > oe->fT) { | 
|  | using std::swap; | 
|  | swap(cs, ce); | 
|  | swap(os, oe); | 
|  | } | 
|  | result = overlap->extend(os, oe, cs, ce); | 
|  | } | 
|  | #if DEBUG_COINCIDENCE_VERBOSE | 
|  | if (result) { | 
|  | overlaps[0]->debugShow(); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | this->add(cs, ce, os, oe); | 
|  | #if DEBUG_COINCIDENCE_VERBOSE | 
|  | fHead->debugShow(); | 
|  | #endif | 
|  | } | 
|  | this->debugValidate(); | 
|  | if (result) { | 
|  | *added = true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Please keep this in sync with debugAddMissing() | 
|  | /* detects overlaps of different coincident runs on same segment */ | 
|  | /* does not detect overlaps for pairs without any segments in common */ | 
|  | // returns true if caller should loop again | 
|  | bool SkOpCoincidence::addMissing(bool* added  DEBUG_COIN_DECLARE_PARAMS()) { | 
|  | SkCoincidentSpans* outer = fHead; | 
|  | *added = false; | 
|  | if (!outer) { | 
|  | return true; | 
|  | } | 
|  | fTop = outer; | 
|  | fHead = nullptr; | 
|  | do { | 
|  | // addifmissing can modify the list that this is walking | 
|  | // save head so that walker can iterate over old data unperturbed | 
|  | // addifmissing adds to head freely then add saved head in the end | 
|  | const SkOpPtT* ocs = outer->coinPtTStart(); | 
|  | FAIL_IF(ocs->deleted()); | 
|  | const SkOpSegment* outerCoin = ocs->segment(); | 
|  | FAIL_IF(outerCoin->done()); | 
|  | const SkOpPtT* oos = outer->oppPtTStart(); | 
|  | if (oos->deleted()) { | 
|  | return true; | 
|  | } | 
|  | const SkOpSegment* outerOpp = oos->segment(); | 
|  | SkOPASSERT(!outerOpp->done()); | 
|  | SkOpSegment* outerCoinWritable = const_cast<SkOpSegment*>(outerCoin); | 
|  | SkOpSegment* outerOppWritable = const_cast<SkOpSegment*>(outerOpp); | 
|  | SkCoincidentSpans* inner = outer; | 
|  | #ifdef SK_BUILD_FOR_FUZZER | 
|  | int safetyNet = 1000; | 
|  | #endif | 
|  | while ((inner = inner->next())) { | 
|  | #ifdef SK_BUILD_FOR_FUZZER | 
|  | if (!--safetyNet) { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | this->debugValidate(); | 
|  | double overS, overE; | 
|  | const SkOpPtT* ics = inner->coinPtTStart(); | 
|  | FAIL_IF(ics->deleted()); | 
|  | const SkOpSegment* innerCoin = ics->segment(); | 
|  | FAIL_IF(innerCoin->done()); | 
|  | const SkOpPtT* ios = inner->oppPtTStart(); | 
|  | FAIL_IF(ios->deleted()); | 
|  | const SkOpSegment* innerOpp = ios->segment(); | 
|  | SkOPASSERT(!innerOpp->done()); | 
|  | SkOpSegment* innerCoinWritable = const_cast<SkOpSegment*>(innerCoin); | 
|  | SkOpSegment* innerOppWritable = const_cast<SkOpSegment*>(innerOpp); | 
|  | if (outerCoin == innerCoin) { | 
|  | const SkOpPtT* oce = outer->coinPtTEnd(); | 
|  | if (oce->deleted()) { | 
|  | return true; | 
|  | } | 
|  | const SkOpPtT* ice = inner->coinPtTEnd(); | 
|  | FAIL_IF(ice->deleted()); | 
|  | if (outerOpp != innerOpp && this->overlap(ocs, oce, ics, ice, &overS, &overE)) { | 
|  | FAIL_IF(!this->addIfMissing(ocs->starter(oce), ics->starter(ice), | 
|  | overS, overE, outerOppWritable, innerOppWritable, added | 
|  | SkDEBUGPARAMS(ocs->debugEnder(oce)) | 
|  | SkDEBUGPARAMS(ics->debugEnder(ice)))); | 
|  | } | 
|  | } else if (outerCoin == innerOpp) { | 
|  | const SkOpPtT* oce = outer->coinPtTEnd(); | 
|  | FAIL_IF(oce->deleted()); | 
|  | const SkOpPtT* ioe = inner->oppPtTEnd(); | 
|  | FAIL_IF(ioe->deleted()); | 
|  | if (outerOpp != innerCoin && this->overlap(ocs, oce, ios, ioe, &overS, &overE)) { | 
|  | FAIL_IF(!this->addIfMissing(ocs->starter(oce), ios->starter(ioe), | 
|  | overS, overE, outerOppWritable, innerCoinWritable, added | 
|  | SkDEBUGPARAMS(ocs->debugEnder(oce)) | 
|  | SkDEBUGPARAMS(ios->debugEnder(ioe)))); | 
|  | } | 
|  | } else if (outerOpp == innerCoin) { | 
|  | const SkOpPtT* ooe = outer->oppPtTEnd(); | 
|  | FAIL_IF(ooe->deleted()); | 
|  | const SkOpPtT* ice = inner->coinPtTEnd(); | 
|  | FAIL_IF(ice->deleted()); | 
|  | SkASSERT(outerCoin != innerOpp); | 
|  | if (this->overlap(oos, ooe, ics, ice, &overS, &overE)) { | 
|  | FAIL_IF(!this->addIfMissing(oos->starter(ooe), ics->starter(ice), | 
|  | overS, overE, outerCoinWritable, innerOppWritable, added | 
|  | SkDEBUGPARAMS(oos->debugEnder(ooe)) | 
|  | SkDEBUGPARAMS(ics->debugEnder(ice)))); | 
|  | } | 
|  | } else if (outerOpp == innerOpp) { | 
|  | const SkOpPtT* ooe = outer->oppPtTEnd(); | 
|  | FAIL_IF(ooe->deleted()); | 
|  | const SkOpPtT* ioe = inner->oppPtTEnd(); | 
|  | if (ioe->deleted()) { | 
|  | return true; | 
|  | } | 
|  | SkASSERT(outerCoin != innerCoin); | 
|  | if (this->overlap(oos, ooe, ios, ioe, &overS, &overE)) { | 
|  | FAIL_IF(!this->addIfMissing(oos->starter(ooe), ios->starter(ioe), | 
|  | overS, overE, outerCoinWritable, innerCoinWritable, added | 
|  | SkDEBUGPARAMS(oos->debugEnder(ooe)) | 
|  | SkDEBUGPARAMS(ios->debugEnder(ioe)))); | 
|  | } | 
|  | } | 
|  | this->debugValidate(); | 
|  | } | 
|  | } while ((outer = outer->next())); | 
|  | this->restoreHead(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::addOverlap(const SkOpSegment* seg1, const SkOpSegment* seg1o, | 
|  | const SkOpSegment* seg2, const SkOpSegment* seg2o, | 
|  | const SkOpPtT* overS, const SkOpPtT* overE) { | 
|  | const SkOpPtT* s1 = overS->find(seg1); | 
|  | const SkOpPtT* e1 = overE->find(seg1); | 
|  | FAIL_IF(!s1); | 
|  | FAIL_IF(!e1); | 
|  | if (!s1->starter(e1)->span()->upCast()->windValue()) { | 
|  | s1 = overS->find(seg1o); | 
|  | e1 = overE->find(seg1o); | 
|  | FAIL_IF(!s1); | 
|  | FAIL_IF(!e1); | 
|  | if (!s1->starter(e1)->span()->upCast()->windValue()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | const SkOpPtT* s2 = overS->find(seg2); | 
|  | const SkOpPtT* e2 = overE->find(seg2); | 
|  | FAIL_IF(!s2); | 
|  | FAIL_IF(!e2); | 
|  | if (!s2->starter(e2)->span()->upCast()->windValue()) { | 
|  | s2 = overS->find(seg2o); | 
|  | e2 = overE->find(seg2o); | 
|  | FAIL_IF(!s2); | 
|  | FAIL_IF(!e2); | 
|  | if (!s2->starter(e2)->span()->upCast()->windValue()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (s1->segment() == s2->segment()) { | 
|  | return true; | 
|  | } | 
|  | if (s1->fT > e1->fT) { | 
|  | using std::swap; | 
|  | swap(s1, e1); | 
|  | swap(s2, e2); | 
|  | } | 
|  | this->add(s1, e1, s2, e2); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::contains(const SkOpSegment* seg, const SkOpSegment* opp, double oppT) const { | 
|  | if (this->contains(fHead, seg, opp, oppT)) { | 
|  | return true; | 
|  | } | 
|  | if (this->contains(fTop, seg, opp, oppT)) { | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::contains(const SkCoincidentSpans* coin, const SkOpSegment* seg, | 
|  | const SkOpSegment* opp, double oppT) const { | 
|  | if (!coin) { | 
|  | return false; | 
|  | } | 
|  | do { | 
|  | if (coin->coinPtTStart()->segment() == seg && coin->oppPtTStart()->segment() == opp | 
|  | && between(coin->oppPtTStart()->fT, oppT, coin->oppPtTEnd()->fT)) { | 
|  | return true; | 
|  | } | 
|  | if (coin->oppPtTStart()->segment() == seg && coin->coinPtTStart()->segment() == opp | 
|  | && between(coin->coinPtTStart()->fT, oppT, coin->coinPtTEnd()->fT)) { | 
|  | return true; | 
|  | } | 
|  | } while ((coin = coin->next())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::contains(const SkOpPtT* coinPtTStart, const SkOpPtT* coinPtTEnd, | 
|  | const SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd) const { | 
|  | const SkCoincidentSpans* test = fHead; | 
|  | if (!test) { | 
|  | return false; | 
|  | } | 
|  | const SkOpSegment* coinSeg = coinPtTStart->segment(); | 
|  | const SkOpSegment* oppSeg = oppPtTStart->segment(); | 
|  | if (!Ordered(coinPtTStart, oppPtTStart)) { | 
|  | using std::swap; | 
|  | swap(coinSeg, oppSeg); | 
|  | swap(coinPtTStart, oppPtTStart); | 
|  | swap(coinPtTEnd, oppPtTEnd); | 
|  | if (coinPtTStart->fT > coinPtTEnd->fT) { | 
|  | swap(coinPtTStart, coinPtTEnd); | 
|  | swap(oppPtTStart, oppPtTEnd); | 
|  | } | 
|  | } | 
|  | double oppMinT = std::min(oppPtTStart->fT, oppPtTEnd->fT); | 
|  | double oppMaxT = std::max(oppPtTStart->fT, oppPtTEnd->fT); | 
|  | do { | 
|  | if (coinSeg != test->coinPtTStart()->segment()) { | 
|  | continue; | 
|  | } | 
|  | if (coinPtTStart->fT < test->coinPtTStart()->fT) { | 
|  | continue; | 
|  | } | 
|  | if (coinPtTEnd->fT > test->coinPtTEnd()->fT) { | 
|  | continue; | 
|  | } | 
|  | if (oppSeg != test->oppPtTStart()->segment()) { | 
|  | continue; | 
|  | } | 
|  | if (oppMinT < std::min(test->oppPtTStart()->fT, test->oppPtTEnd()->fT)) { | 
|  | continue; | 
|  | } | 
|  | if (oppMaxT > std::max(test->oppPtTStart()->fT, test->oppPtTEnd()->fT)) { | 
|  | continue; | 
|  | } | 
|  | return true; | 
|  | } while ((test = test->next())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SkOpCoincidence::correctEnds(DEBUG_COIN_DECLARE_ONLY_PARAMS()) { | 
|  | DEBUG_SET_PHASE(); | 
|  | SkCoincidentSpans* coin = fHead; | 
|  | if (!coin) { | 
|  | return; | 
|  | } | 
|  | do { | 
|  | coin->correctEnds(); | 
|  | } while ((coin = coin->next())); | 
|  | } | 
|  |  | 
|  | // walk span sets in parallel, moving winding from one to the other | 
|  | bool SkOpCoincidence::apply(DEBUG_COIN_DECLARE_ONLY_PARAMS()) { | 
|  | DEBUG_SET_PHASE(); | 
|  | SkCoincidentSpans* coin = fHead; | 
|  | if (!coin) { | 
|  | return true; | 
|  | } | 
|  | do { | 
|  | SkOpSpanBase* startSpan = coin->coinPtTStartWritable()->span(); | 
|  | FAIL_IF(!startSpan->upCastable()); | 
|  | SkOpSpan* start = startSpan->upCast(); | 
|  | if (start->deleted()) { | 
|  | continue; | 
|  | } | 
|  | const SkOpSpanBase* end = coin->coinPtTEnd()->span(); | 
|  | FAIL_IF(start != start->starter(end)); | 
|  | bool flipped = coin->flipped(); | 
|  | SkOpSpanBase* oStartBase = (flipped ? coin->oppPtTEndWritable() | 
|  | : coin->oppPtTStartWritable())->span(); | 
|  | FAIL_IF(!oStartBase->upCastable()); | 
|  | SkOpSpan* oStart = oStartBase->upCast(); | 
|  | if (oStart->deleted()) { | 
|  | continue; | 
|  | } | 
|  | const SkOpSpanBase* oEnd = (flipped ? coin->oppPtTStart() : coin->oppPtTEnd())->span(); | 
|  | SkASSERT(oStart == oStart->starter(oEnd)); | 
|  | SkOpSegment* segment = start->segment(); | 
|  | SkOpSegment* oSegment = oStart->segment(); | 
|  | bool operandSwap = segment->operand() != oSegment->operand(); | 
|  | if (flipped) { | 
|  | if (oEnd->deleted()) { | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | SkOpSpanBase* oNext = oStart->next(); | 
|  | if (oNext == oEnd) { | 
|  | break; | 
|  | } | 
|  | FAIL_IF(!oNext->upCastable()); | 
|  | oStart = oNext->upCast(); | 
|  | } while (true); | 
|  | } | 
|  | do { | 
|  | int windValue = start->windValue(); | 
|  | int oppValue = start->oppValue(); | 
|  | int oWindValue = oStart->windValue(); | 
|  | int oOppValue = oStart->oppValue(); | 
|  | // winding values are added or subtracted depending on direction and wind type | 
|  | // same or opposite values are summed depending on the operand value | 
|  | int windDiff = operandSwap ? oOppValue : oWindValue; | 
|  | int oWindDiff = operandSwap ? oppValue : windValue; | 
|  | if (!flipped) { | 
|  | windDiff = -windDiff; | 
|  | oWindDiff = -oWindDiff; | 
|  | } | 
|  | bool addToStart = windValue && (windValue > windDiff || (windValue == windDiff | 
|  | && oWindValue <= oWindDiff)); | 
|  | if (addToStart ? start->done() : oStart->done()) { | 
|  | addToStart ^= true; | 
|  | } | 
|  | if (addToStart) { | 
|  | if (operandSwap) { | 
|  | using std::swap; | 
|  | swap(oWindValue, oOppValue); | 
|  | } | 
|  | if (flipped) { | 
|  | windValue -= oWindValue; | 
|  | oppValue -= oOppValue; | 
|  | } else { | 
|  | windValue += oWindValue; | 
|  | oppValue += oOppValue; | 
|  | } | 
|  | if (segment->isXor()) { | 
|  | windValue &= 1; | 
|  | } | 
|  | if (segment->oppXor()) { | 
|  | oppValue &= 1; | 
|  | } | 
|  | oWindValue = oOppValue = 0; | 
|  | } else { | 
|  | if (operandSwap) { | 
|  | using std::swap; | 
|  | swap(windValue, oppValue); | 
|  | } | 
|  | if (flipped) { | 
|  | oWindValue -= windValue; | 
|  | oOppValue -= oppValue; | 
|  | } else { | 
|  | oWindValue += windValue; | 
|  | oOppValue += oppValue; | 
|  | } | 
|  | if (oSegment->isXor()) { | 
|  | oWindValue &= 1; | 
|  | } | 
|  | if (oSegment->oppXor()) { | 
|  | oOppValue &= 1; | 
|  | } | 
|  | windValue = oppValue = 0; | 
|  | } | 
|  | #if 0 && DEBUG_COINCIDENCE | 
|  | SkDebugf("seg=%d span=%d windValue=%d oppValue=%d\n", segment->debugID(), | 
|  | start->debugID(), windValue, oppValue); | 
|  | SkDebugf("seg=%d span=%d windValue=%d oppValue=%d\n", oSegment->debugID(), | 
|  | oStart->debugID(), oWindValue, oOppValue); | 
|  | #endif | 
|  | FAIL_IF(windValue <= -1); | 
|  | start->setWindValue(windValue); | 
|  | start->setOppValue(oppValue); | 
|  | FAIL_IF(oWindValue <= -1); | 
|  | oStart->setWindValue(oWindValue); | 
|  | oStart->setOppValue(oOppValue); | 
|  | if (!windValue && !oppValue) { | 
|  | segment->markDone(start); | 
|  | } | 
|  | if (!oWindValue && !oOppValue) { | 
|  | oSegment->markDone(oStart); | 
|  | } | 
|  | SkOpSpanBase* next = start->next(); | 
|  | SkOpSpanBase* oNext = flipped ? oStart->prev() : oStart->next(); | 
|  | if (next == end) { | 
|  | break; | 
|  | } | 
|  | FAIL_IF(!next->upCastable()); | 
|  | start = next->upCast(); | 
|  | // if the opposite ran out too soon, just reuse the last span | 
|  | if (!oNext || !oNext->upCastable()) { | 
|  | oNext = oStart; | 
|  | } | 
|  | oStart = oNext->upCast(); | 
|  | } while (true); | 
|  | } while ((coin = coin->next())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Please keep this in sync with debugRelease() | 
|  | bool SkOpCoincidence::release(SkCoincidentSpans* coin, SkCoincidentSpans* remove)  { | 
|  | SkCoincidentSpans* head = coin; | 
|  | SkCoincidentSpans* prev = nullptr; | 
|  | SkCoincidentSpans* next; | 
|  | do { | 
|  | next = coin->next(); | 
|  | if (coin == remove) { | 
|  | if (prev) { | 
|  | prev->setNext(next); | 
|  | } else if (head == fHead) { | 
|  | fHead = next; | 
|  | } else { | 
|  | fTop = next; | 
|  | } | 
|  | break; | 
|  | } | 
|  | prev = coin; | 
|  | } while ((coin = next)); | 
|  | return coin != nullptr; | 
|  | } | 
|  |  | 
|  | void SkOpCoincidence::releaseDeleted(SkCoincidentSpans* coin) { | 
|  | if (!coin) { | 
|  | return; | 
|  | } | 
|  | SkCoincidentSpans* head = coin; | 
|  | SkCoincidentSpans* prev = nullptr; | 
|  | SkCoincidentSpans* next; | 
|  | do { | 
|  | next = coin->next(); | 
|  | if (coin->coinPtTStart()->deleted()) { | 
|  | SkOPASSERT(coin->flipped() ? coin->oppPtTEnd()->deleted() : | 
|  | coin->oppPtTStart()->deleted()); | 
|  | if (prev) { | 
|  | prev->setNext(next); | 
|  | } else if (head == fHead) { | 
|  | fHead = next; | 
|  | } else { | 
|  | fTop = next; | 
|  | } | 
|  | } else { | 
|  | SkOPASSERT(coin->flipped() ? !coin->oppPtTEnd()->deleted() : | 
|  | !coin->oppPtTStart()->deleted()); | 
|  | prev = coin; | 
|  | } | 
|  | } while ((coin = next)); | 
|  | } | 
|  |  | 
|  | void SkOpCoincidence::releaseDeleted() { | 
|  | this->releaseDeleted(fHead); | 
|  | this->releaseDeleted(fTop); | 
|  | } | 
|  |  | 
|  | void SkOpCoincidence::restoreHead() { | 
|  | SkCoincidentSpans** headPtr = &fHead; | 
|  | while (*headPtr) { | 
|  | headPtr = (*headPtr)->nextPtr(); | 
|  | } | 
|  | *headPtr = fTop; | 
|  | fTop = nullptr; | 
|  | // segments may have collapsed in the meantime; remove empty referenced segments | 
|  | headPtr = &fHead; | 
|  | while (*headPtr) { | 
|  | SkCoincidentSpans* test = *headPtr; | 
|  | if (test->coinPtTStart()->segment()->done() || test->oppPtTStart()->segment()->done()) { | 
|  | *headPtr = test->next(); | 
|  | continue; | 
|  | } | 
|  | headPtr = (*headPtr)->nextPtr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Please keep this in sync with debugExpand() | 
|  | // expand the range by checking adjacent spans for coincidence | 
|  | bool SkOpCoincidence::expand(DEBUG_COIN_DECLARE_ONLY_PARAMS()) { | 
|  | DEBUG_SET_PHASE(); | 
|  | SkCoincidentSpans* coin = fHead; | 
|  | if (!coin) { | 
|  | return false; | 
|  | } | 
|  | bool expanded = false; | 
|  | do { | 
|  | if (coin->expand()) { | 
|  | // check to see if multiple spans expanded so they are now identical | 
|  | SkCoincidentSpans* test = fHead; | 
|  | do { | 
|  | if (coin == test) { | 
|  | continue; | 
|  | } | 
|  | if (coin->coinPtTStart() == test->coinPtTStart() | 
|  | && coin->oppPtTStart() == test->oppPtTStart()) { | 
|  | this->release(fHead, test); | 
|  | break; | 
|  | } | 
|  | } while ((test = test->next())); | 
|  | expanded = true; | 
|  | } | 
|  | } while ((coin = coin->next())); | 
|  | return expanded; | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::findOverlaps(SkOpCoincidence* overlaps  DEBUG_COIN_DECLARE_PARAMS()) const { | 
|  | DEBUG_SET_PHASE(); | 
|  | overlaps->fHead = overlaps->fTop = nullptr; | 
|  | SkCoincidentSpans* outer = fHead; | 
|  | while (outer) { | 
|  | const SkOpSegment* outerCoin = outer->coinPtTStart()->segment(); | 
|  | const SkOpSegment* outerOpp = outer->oppPtTStart()->segment(); | 
|  | SkCoincidentSpans* inner = outer; | 
|  | while ((inner = inner->next())) { | 
|  | const SkOpSegment* innerCoin = inner->coinPtTStart()->segment(); | 
|  | if (outerCoin == innerCoin) { | 
|  | continue;  // both winners are the same segment, so there's no additional overlap | 
|  | } | 
|  | const SkOpSegment* innerOpp = inner->oppPtTStart()->segment(); | 
|  | const SkOpPtT* overlapS; | 
|  | const SkOpPtT* overlapE; | 
|  | if ((outerOpp == innerCoin && SkOpPtT::Overlaps(outer->oppPtTStart(), | 
|  | outer->oppPtTEnd(),inner->coinPtTStart(), inner->coinPtTEnd(), &overlapS, | 
|  | &overlapE)) | 
|  | || (outerCoin == innerOpp && SkOpPtT::Overlaps(outer->coinPtTStart(), | 
|  | outer->coinPtTEnd(), inner->oppPtTStart(), inner->oppPtTEnd(), | 
|  | &overlapS, &overlapE)) | 
|  | || (outerOpp == innerOpp && SkOpPtT::Overlaps(outer->oppPtTStart(), | 
|  | outer->oppPtTEnd(), inner->oppPtTStart(), inner->oppPtTEnd(), | 
|  | &overlapS, &overlapE))) { | 
|  | if (!overlaps->addOverlap(outerCoin, outerOpp, innerCoin, innerOpp, | 
|  | overlapS, overlapE)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | outer = outer->next(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SkOpCoincidence::fixUp(SkOpPtT* deleted, const SkOpPtT* kept) { | 
|  | SkOPASSERT(deleted != kept); | 
|  | if (fHead) { | 
|  | this->fixUp(fHead, deleted, kept); | 
|  | } | 
|  | if (fTop) { | 
|  | this->fixUp(fTop, deleted, kept); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkOpCoincidence::fixUp(SkCoincidentSpans* coin, SkOpPtT* deleted, const SkOpPtT* kept) { | 
|  | SkCoincidentSpans* head = coin; | 
|  | do { | 
|  | if (coin->coinPtTStart() == deleted) { | 
|  | if (coin->coinPtTEnd()->span() == kept->span()) { | 
|  | this->release(head, coin); | 
|  | continue; | 
|  | } | 
|  | coin->setCoinPtTStart(kept); | 
|  | } | 
|  | if (coin->coinPtTEnd() == deleted) { | 
|  | if (coin->coinPtTStart()->span() == kept->span()) { | 
|  | this->release(head, coin); | 
|  | continue; | 
|  | } | 
|  | coin->setCoinPtTEnd(kept); | 
|  | } | 
|  | if (coin->oppPtTStart() == deleted) { | 
|  | if (coin->oppPtTEnd()->span() == kept->span()) { | 
|  | this->release(head, coin); | 
|  | continue; | 
|  | } | 
|  | coin->setOppPtTStart(kept); | 
|  | } | 
|  | if (coin->oppPtTEnd() == deleted) { | 
|  | if (coin->oppPtTStart()->span() == kept->span()) { | 
|  | this->release(head, coin); | 
|  | continue; | 
|  | } | 
|  | coin->setOppPtTEnd(kept); | 
|  | } | 
|  | } while ((coin = coin->next())); | 
|  | } | 
|  |  | 
|  | // Please keep this in sync with debugMark() | 
|  | /* this sets up the coincidence links in the segments when the coincidence crosses multiple spans */ | 
|  | bool SkOpCoincidence::mark(DEBUG_COIN_DECLARE_ONLY_PARAMS()) { | 
|  | DEBUG_SET_PHASE(); | 
|  | SkCoincidentSpans* coin = fHead; | 
|  | if (!coin) { | 
|  | return true; | 
|  | } | 
|  | do { | 
|  | SkOpSpanBase* startBase = coin->coinPtTStartWritable()->span(); | 
|  | FAIL_IF(!startBase->upCastable()); | 
|  | SkOpSpan* start = startBase->upCast(); | 
|  | FAIL_IF(start->deleted()); | 
|  | SkOpSpanBase* end = coin->coinPtTEndWritable()->span(); | 
|  | SkOPASSERT(!end->deleted()); | 
|  | SkOpSpanBase* oStart = coin->oppPtTStartWritable()->span(); | 
|  | SkOPASSERT(!oStart->deleted()); | 
|  | SkOpSpanBase* oEnd = coin->oppPtTEndWritable()->span(); | 
|  | FAIL_IF(oEnd->deleted()); | 
|  | bool flipped = coin->flipped(); | 
|  | if (flipped) { | 
|  | using std::swap; | 
|  | swap(oStart, oEnd); | 
|  | } | 
|  | /* coin and opp spans may not match up. Mark the ends, and then let the interior | 
|  | get marked as many times as the spans allow */ | 
|  | FAIL_IF(!oStart->upCastable()); | 
|  | start->insertCoincidence(oStart->upCast()); | 
|  | end->insertCoinEnd(oEnd); | 
|  | const SkOpSegment* segment = start->segment(); | 
|  | const SkOpSegment* oSegment = oStart->segment(); | 
|  | SkOpSpanBase* next = start; | 
|  | SkOpSpanBase* oNext = oStart; | 
|  | bool ordered; | 
|  | FAIL_IF(!coin->ordered(&ordered)); | 
|  | while ((next = next->upCast()->next()) != end) { | 
|  | FAIL_IF(!next->upCastable()); | 
|  | FAIL_IF(!next->upCast()->insertCoincidence(oSegment, flipped, ordered)); | 
|  | } | 
|  | while ((oNext = oNext->upCast()->next()) != oEnd) { | 
|  | FAIL_IF(!oNext->upCastable()); | 
|  | FAIL_IF(!oNext->upCast()->insertCoincidence(segment, flipped, ordered)); | 
|  | } | 
|  | } while ((coin = coin->next())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Please keep in sync with debugMarkCollapsed() | 
|  | void SkOpCoincidence::markCollapsed(SkCoincidentSpans* coin, SkOpPtT* test) { | 
|  | SkCoincidentSpans* head = coin; | 
|  | while (coin) { | 
|  | if (coin->collapsed(test)) { | 
|  | if (zero_or_one(coin->coinPtTStart()->fT) && zero_or_one(coin->coinPtTEnd()->fT)) { | 
|  | coin->coinPtTStartWritable()->segment()->markAllDone(); | 
|  | } | 
|  | if (zero_or_one(coin->oppPtTStart()->fT) && zero_or_one(coin->oppPtTEnd()->fT)) { | 
|  | coin->oppPtTStartWritable()->segment()->markAllDone(); | 
|  | } | 
|  | this->release(head, coin); | 
|  | } | 
|  | coin = coin->next(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Please keep in sync with debugMarkCollapsed() | 
|  | void SkOpCoincidence::markCollapsed(SkOpPtT* test) { | 
|  | markCollapsed(fHead, test); | 
|  | markCollapsed(fTop, test); | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::Ordered(const SkOpSegment* coinSeg, const SkOpSegment* oppSeg) { | 
|  | if (coinSeg->verb() < oppSeg->verb()) { | 
|  | return true; | 
|  | } | 
|  | if (coinSeg->verb() > oppSeg->verb()) { | 
|  | return false; | 
|  | } | 
|  | int count = (SkPathOpsVerbToPoints(coinSeg->verb()) + 1) * 2; | 
|  | const SkScalar* cPt = &coinSeg->pts()[0].fX; | 
|  | const SkScalar* oPt = &oppSeg->pts()[0].fX; | 
|  | for (int index = 0; index < count; ++index) { | 
|  | if (*cPt < *oPt) { | 
|  | return true; | 
|  | } | 
|  | if (*cPt > *oPt) { | 
|  | return false; | 
|  | } | 
|  | ++cPt; | 
|  | ++oPt; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SkOpCoincidence::overlap(const SkOpPtT* coin1s, const SkOpPtT* coin1e, | 
|  | const SkOpPtT* coin2s, const SkOpPtT* coin2e, double* overS, double* overE) const { | 
|  | SkASSERT(coin1s->segment() == coin2s->segment()); | 
|  | *overS = std::max(std::min(coin1s->fT, coin1e->fT), std::min(coin2s->fT, coin2e->fT)); | 
|  | *overE = std::min(std::max(coin1s->fT, coin1e->fT), std::max(coin2s->fT, coin2e->fT)); | 
|  | return *overS < *overE; | 
|  | } | 
|  |  | 
|  | // Commented-out lines keep this in sync with debugRelease() | 
|  | void SkOpCoincidence::release(const SkOpSegment* deleted) { | 
|  | SkCoincidentSpans* coin = fHead; | 
|  | if (!coin) { | 
|  | return; | 
|  | } | 
|  | do { | 
|  | if (coin->coinPtTStart()->segment() == deleted | 
|  | || coin->coinPtTEnd()->segment() == deleted | 
|  | || coin->oppPtTStart()->segment() == deleted | 
|  | || coin->oppPtTEnd()->segment() == deleted) { | 
|  | this->release(fHead, coin); | 
|  | } | 
|  | } while ((coin = coin->next())); | 
|  | } |