blob: 899916a4fc09cd36faf3e98b2e31895c07dcaa47 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "include/core/SkData.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkMalloc.h"
#include "modules/skcms/skcms.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkUtils.h" // unaligned_{load,store}
#include <cstdint>
// Every function in this file should be marked static and inline using SI.
#if defined(__clang__)
#define SI __attribute__((always_inline)) static inline
#else
#define SI static inline
#endif
template <typename Dst, typename Src>
SI Dst widen_cast(const Src& src) {
static_assert(sizeof(Dst) > sizeof(Src));
static_assert(std::is_trivially_copyable<Dst>::value);
static_assert(std::is_trivially_copyable<Src>::value);
Dst dst;
memcpy(&dst, &src, sizeof(Src));
return dst;
}
struct Ctx {
SkRasterPipelineStage* fStage;
template <typename T>
operator T*() {
return (T*)fStage->ctx;
}
};
using NoCtx = const void*;
#if !defined(__clang__)
#define JUMPER_IS_SCALAR
#elif defined(SK_ARM_HAS_NEON)
#define JUMPER_IS_NEON
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
#define JUMPER_IS_SKX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
#define JUMPER_IS_HSW
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
#define JUMPER_IS_AVX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#define JUMPER_IS_SSE41
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define JUMPER_IS_SSE2
#else
#define JUMPER_IS_SCALAR
#endif
// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
// Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
#if defined(__apple_build_version__) && __clang_major__ < 9
#define JUMPER_IS_SCALAR
#elif __clang_major__ < 5
#define JUMPER_IS_SCALAR
#endif
#if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
#undef JUMPER_IS_NEON
#endif
#endif
#if defined(JUMPER_IS_SCALAR)
#include <math.h>
#elif defined(JUMPER_IS_NEON)
#include <arm_neon.h>
#else
#include <immintrin.h>
#endif
// Notes:
// * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
// 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
// requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
// Intel this requires one additional step because its estimate has 12 bit precision.
namespace SK_OPTS_NS {
#if defined(JUMPER_IS_SCALAR)
// This path should lead to portable scalar code.
using F = float ;
using I32 = int32_t;
using U64 = uint64_t;
using U32 = uint32_t;
using U16 = uint16_t;
using U8 = uint8_t ;
SI F min(F a, F b) { return fminf(a,b); }
SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
SI F max(F a, F b) { return fmaxf(a,b); }
SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
SI F mad(F f, F m, F a) { return f*m+a; }
SI F abs_ (F v) { return fabsf(v); }
SI I32 abs_ (I32 v) { return v < 0 ? -v : v; }
SI F floor_(F v) { return floorf(v); }
SI F ceil_(F v) { return ceilf(v); }
SI F rcp_fast(F v) { return 1.0f / v; }
SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
SI F sqrt_ (F v) { return sqrtf(v); }
SI F rcp_precise (F v) { return 1.0f / v; }
SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
SI U16 pack(U32 v) { return (U16)v; }
SI U8 pack(U16 v) { return (U8)v; }
SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
SI bool any(I32 c) { return c != 0; }
SI bool all(I32 c) { return c != 0; }
template <typename T>
SI T gather(const T* p, U32 ix) { return p[ix]; }
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
*r = ptr[0];
*g = ptr[1];
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
ptr[0] = r;
ptr[1] = g;
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
*r = ptr[0];
*g = ptr[1];
}
SI void store2(float* ptr, size_t tail, F r, F g) {
ptr[0] = r;
ptr[1] = g;
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
#elif defined(JUMPER_IS_NEON)
// Since we know we're using Clang, we can use its vector extensions.
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
// We polyfill a few routines that Clang doesn't build into ext_vector_types.
SI F min(F a, F b) { return vminq_f32(a,b); }
SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
SI F max(F a, F b) { return vmaxq_f32(a,b); }
SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
SI F abs_ (F v) { return vabsq_f32(v); }
SI I32 abs_ (I32 v) { return vabsq_s32(v); }
SI F rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
SI F rcp_precise (F v) { auto e = rcp_fast(v); return vrecpsq_f32 (v,e ) * e; }
SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
#if defined(SK_CPU_ARM64)
SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
SI F floor_(F v) { return vrndmq_f32(v); }
SI F ceil_(F v) { return vrndpq_f32(v); }
SI F sqrt_(F v) { return vsqrtq_f32(v); }
SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
#else
SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
SI F floor_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
}
SI F ceil_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip + if_then_else(roundtrip < v, 1, 0);
}
SI F sqrt_(F v) {
auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
e *= vrsqrtsq_f32(v,e*e);
e *= vrsqrtsq_f32(v,e*e);
return v*e; // sqrt(v) == v*rsqrt(v).
}
SI U32 round(F v, F scale) {
return vcvtq_u32_f32(mad(v,scale,0.5f));
}
#endif
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
uint16x4x2_t rg;
if (__builtin_expect(tail,0)) {
if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); }
if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); }
if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); }
} else {
rg = vld2_u16(ptr);
}
*r = rg.val[0];
*g = rg.val[1];
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); }
if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); }
if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); }
} else {
vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
}
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
uint16x4x3_t rgb;
if (__builtin_expect(tail,0)) {
if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
} else {
rgb = vld3_u16(ptr);
}
*r = rgb.val[0];
*g = rgb.val[1];
*b = rgb.val[2];
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
uint16x4x4_t rgba;
if (__builtin_expect(tail,0)) {
if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
} else {
rgba = vld4_u16(ptr);
}
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
} else {
vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
}
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
float32x4x2_t rg;
if (__builtin_expect(tail,0)) {
if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); }
if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); }
if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); }
} else {
rg = vld2q_f32(ptr);
}
*r = rg.val[0];
*g = rg.val[1];
}
SI void store2(float* ptr, size_t tail, F r, F g) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); }
if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); }
if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); }
} else {
vst2q_f32(ptr, (float32x4x2_t{{r,g}}));
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
float32x4x4_t rgba;
if (__builtin_expect(tail,0)) {
if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
} else {
rgba = vld4q_f32(ptr);
}
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
} else {
vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
}
}
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
// These are __m256 and __m256i, but friendlier and strongly-typed.
template <typename T> using V = T __attribute__((ext_vector_type(8)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) {
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
return _mm256_fmadd_ps(f,m,a);
#else
return f*m+a;
#endif
}
SI F min(F a, F b) { return _mm256_min_ps(a,b); }
SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); }
SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); }
SI F max(F a, F b) { return _mm256_max_ps(a,b); }
SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); }
SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); }
SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
SI I32 abs_ (I32 v) { return _mm256_abs_epi32(v); }
SI F floor_(F v) { return _mm256_floor_ps(v); }
SI F ceil_(F v) { return _mm256_ceil_ps(v); }
SI F rcp_fast(F v) { return _mm256_rcp_ps (v); }
SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); }
SI F rcp_precise (F v) {
F e = rcp_fast(v);
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
#else
return e * (2.0f - v * e);
#endif
}
SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
_mm256_extractf128_si256(v, 1));
}
SI U8 pack(U16 v) {
auto r = _mm_packus_epi16(v,v);
return sk_unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
// NOTE: This version of 'all' only works with mask values (true == all bits set)
SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); }
SI bool all(I32 c) { return _mm256_testc_si256(c, _mm256_set1_epi32(-1)); }
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
}
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
SI U64 gather(const uint64_t* p, U32 ix) {
__m256i parts[] = {
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
};
return sk_bit_cast<U64>(parts);
}
#endif
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
U16 _0123, _4567;
if (__builtin_expect(tail,0)) {
_0123 = _4567 = _mm_setzero_si128();
auto* d = &_0123;
if (tail > 3) {
*d = _mm_loadu_si128(((__m128i*)ptr) + 0);
tail -= 4;
ptr += 8;
d = &_4567;
}
bool high = false;
if (tail > 1) {
*d = _mm_loadu_si64(ptr);
tail -= 2;
ptr += 4;
high = true;
}
if (tail > 0) {
(*d)[high ? 4 : 0] = *(ptr + 0);
(*d)[high ? 5 : 1] = *(ptr + 1);
}
} else {
_0123 = _mm_loadu_si128(((__m128i*)ptr) + 0);
_4567 = _mm_loadu_si128(((__m128i*)ptr) + 1);
}
*r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
_mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
*g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16),
_mm_srai_epi32(_4567, 16));
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
auto _0123 = _mm_unpacklo_epi16(r, g),
_4567 = _mm_unpackhi_epi16(r, g);
if (__builtin_expect(tail,0)) {
const auto* s = &_0123;
if (tail > 3) {
_mm_storeu_si128((__m128i*)ptr, *s);
s = &_4567;
tail -= 4;
ptr += 8;
}
bool high = false;
if (tail > 1) {
_mm_storel_epi64((__m128i*)ptr, *s);
ptr += 4;
tail -= 2;
high = true;
}
if (tail > 0) {
if (high) {
*(int32_t*)ptr = _mm_extract_epi32(*s, 2);
} else {
*(int32_t*)ptr = _mm_cvtsi128_si32(*s);
}
}
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _0123);
_mm_storeu_si128((__m128i*)ptr + 1, _4567);
}
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
__m128i _0,_1,_2,_3,_4,_5,_6,_7;
if (__builtin_expect(tail,0)) {
auto load_rgb = [](const uint16_t* src) {
auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
return _mm_insert_epi16(v, src[2], 2);
};
_1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
if ( true ) { _0 = load_rgb(ptr + 0); }
if (tail > 1) { _1 = load_rgb(ptr + 3); }
if (tail > 2) { _2 = load_rgb(ptr + 6); }
if (tail > 3) { _3 = load_rgb(ptr + 9); }
if (tail > 4) { _4 = load_rgb(ptr + 12); }
if (tail > 5) { _5 = load_rgb(ptr + 15); }
if (tail > 6) { _6 = load_rgb(ptr + 18); }
} else {
// Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
_0 = _01; _1 = _mm_srli_si128(_01, 6);
_2 = _23; _3 = _mm_srli_si128(_23, 6);
_4 = _45; _5 = _mm_srli_si128(_45, 6);
_6 = _67; _7 = _mm_srli_si128(_67, 6);
}
auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
_13 = _mm_unpacklo_epi16(_1, _3),
_46 = _mm_unpacklo_epi16(_4, _6),
_57 = _mm_unpacklo_epi16(_5, _7);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
rg4567 = _mm_unpacklo_epi16(_46, _57),
bx4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(bx0123, bx4567);
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
__m128i _01, _23, _45, _67;
if (__builtin_expect(tail,0)) {
auto src = (const double*)ptr;
_01 = _23 = _45 = _67 = _mm_setzero_si128();
if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
_45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
_67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
}
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
_46 = _mm_unpacklo_epi16(_45, _67),
_57 = _mm_unpackhi_epi16(_45, _67);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
rg4567 = _mm_unpacklo_epi16(_46, _57),
ba4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(ba0123, ba4567);
*a = _mm_unpackhi_epi64(ba0123, ba4567);
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
ba0123 = _mm_unpacklo_epi16(b, a),
ba4567 = _mm_unpackhi_epi16(b, a);
auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
_23 = _mm_unpackhi_epi32(rg0123, ba0123),
_45 = _mm_unpacklo_epi32(rg4567, ba4567),
_67 = _mm_unpackhi_epi32(rg4567, ba4567);
if (__builtin_expect(tail,0)) {
auto dst = (double*)ptr;
if (tail > 0) { _mm_storel_pd(dst+0, _01); }
if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
if (tail > 2) { _mm_storel_pd(dst+2, _23); }
if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
if (tail > 4) { _mm_storel_pd(dst+4, _45); }
if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
if (tail > 6) { _mm_storel_pd(dst+6, _67); }
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _01);
_mm_storeu_si128((__m128i*)ptr + 1, _23);
_mm_storeu_si128((__m128i*)ptr + 2, _45);
_mm_storeu_si128((__m128i*)ptr + 3, _67);
}
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
F _0123, _4567;
if (__builtin_expect(tail, 0)) {
_0123 = _4567 = _mm256_setzero_ps();
F* d = &_0123;
if (tail > 3) {
*d = _mm256_loadu_ps(ptr);
ptr += 8;
tail -= 4;
d = &_4567;
}
bool high = false;
if (tail > 1) {
*d = _mm256_castps128_ps256(_mm_loadu_ps(ptr));
ptr += 4;
tail -= 2;
high = true;
}
if (tail > 0) {
*d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1)
: _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0);
}
} else {
_0123 = _mm256_loadu_ps(ptr + 0);
_4567 = _mm256_loadu_ps(ptr + 8);
}
F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20),
_2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31);
*r = _mm256_shuffle_ps(_0145, _2367, 0x88);
*g = _mm256_shuffle_ps(_0145, _2367, 0xDD);
}
SI void store2(float* ptr, size_t tail, F r, F g) {
F _0145 = _mm256_unpacklo_ps(r, g),
_2367 = _mm256_unpackhi_ps(r, g);
F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20),
_4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31);
if (__builtin_expect(tail, 0)) {
const __m256* s = &_0123;
if (tail > 3) {
_mm256_storeu_ps(ptr, *s);
s = &_4567;
tail -= 4;
ptr += 8;
}
bool high = false;
if (tail > 1) {
_mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0));
ptr += 4;
tail -= 2;
high = true;
}
if (tail > 0) {
*(ptr + 0) = (*s)[ high ? 4 : 0];
*(ptr + 1) = (*s)[ high ? 5 : 1];
}
} else {
_mm256_storeu_ps(ptr + 0, _0123);
_mm256_storeu_ps(ptr + 8, _4567);
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
F _04, _15, _26, _37;
_04 = _15 = _26 = _37 = 0;
switch (tail) {
case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]];
case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]];
case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]];
case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]];
case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]];
case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]];
case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]];
case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
}
F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
ba0145 = _mm256_unpackhi_ps(_04,_15),
rg2367 = _mm256_unpacklo_ps(_26,_37),
ba2367 = _mm256_unpackhi_ps(_26,_37);
*r = _mm256_unpacklo_pd(rg0145, rg2367);
*g = _mm256_unpackhi_pd(rg0145, rg2367);
*b = _mm256_unpacklo_pd(ba0145, ba2367);
*a = _mm256_unpackhi_pd(ba0145, ba2367);
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
_15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
_26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
_37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
if (__builtin_expect(tail, 0)) {
if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
} else {
F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
_23 = _mm256_permute2f128_ps(_26, _37, 32),
_45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
_67 = _mm256_permute2f128_ps(_26, _37, 49);
_mm256_storeu_ps(ptr+ 0, _01);
_mm256_storeu_ps(ptr+ 8, _23);
_mm256_storeu_ps(ptr+16, _45);
_mm256_storeu_ps(ptr+24, _67);
}
}
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F if_then_else(I32 c, F t, F e) {
return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
}
SI F min(F a, F b) { return _mm_min_ps(a,b); }
SI F max(F a, F b) { return _mm_max_ps(a,b); }
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); }
SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); }
SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); }
SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); }
#else
SI I32 min(I32 a, I32 b) {
return sk_bit_cast<I32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
SI U32 min(U32 a, U32 b) {
return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
SI I32 max(I32 a, I32 b) {
return sk_bit_cast<I32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
SI U32 max(U32 a, U32 b) {
return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
#endif
SI F mad(F f, F m, F a) { return f*m+a; }
SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
SI I32 abs_(I32 v) { return _mm_abs_epi32(v); }
#else
SI I32 abs_(I32 v) { return max(v, -v); }
#endif
SI F rcp_fast(F v) { return _mm_rcp_ps (v); }
SI F rcp_precise (F v) { F e = rcp_fast(v); return e * (2.0f - v * e); }
SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
auto p = _mm_packus_epi32(v,v);
#else
// Sign extend so that _mm_packs_epi32() does the pack we want.
auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
p = _mm_packs_epi32(p,p);
#endif
return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
}
SI U8 pack(U16 v) {
auto r = widen_cast<__m128i>(v);
r = _mm_packus_epi16(r,r);
return sk_unaligned_load<U8>(&r);
}
// NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
SI bool any(I32 c) { return _mm_movemask_ps(c) != 0b0000; }
SI bool all(I32 c) { return _mm_movemask_ps(c) == 0b1111; }
SI F floor_(F v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_floor_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
#endif
}
SI F ceil_(F v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_ceil_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip + if_then_else(roundtrip < v, 1, 0);
#endif
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
__m128i _01;
if (__builtin_expect(tail,0)) {
_01 = _mm_setzero_si128();
if (tail > 1) {
_01 = _mm_loadl_pd(_01, (const double*)ptr); // r0 g0 r1 g1 00 00 00 00
if (tail > 2) {
_01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00
_01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00
}
} else {
_01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00
}
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
}
auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
if (__builtin_expect(tail, 0)) {
if (tail > 1) {
_mm_storel_epi64((__m128i*)ptr, rg);
if (tail > 2) {
int32_t rgpair = rg[2];
memcpy(ptr + 4, &rgpair, sizeof(rgpair));
}
} else {
int32_t rgpair = rg[0];
memcpy(ptr, &rgpair, sizeof(rgpair));
}
} else {
_mm_storeu_si128((__m128i*)ptr + 0, rg);
}
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
__m128i _0, _1, _2, _3;
if (__builtin_expect(tail,0)) {
_1 = _2 = _3 = _mm_setzero_si128();
auto load_rgb = [](const uint16_t* src) {
auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
return _mm_insert_epi16(v, src[2], 2);
};
if ( true ) { _0 = load_rgb(ptr + 0); }
if (tail > 1) { _1 = load_rgb(ptr + 3); }
if (tail > 2) { _2 = load_rgb(ptr + 6); }
} else {
// Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
_23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
// Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
_0 = _01;
_1 = _mm_srli_si128(_01, 6);
_2 = _23;
_3 = _mm_srli_si128(_23, 6);
}
// De-interlace to R,G,B.
auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
_13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
G = _mm_srli_si128(R, 8),
B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
*b = sk_unaligned_load<U16>(&B);
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
__m128i _01, _23;
if (__builtin_expect(tail,0)) {
_01 = _23 = _mm_setzero_si128();
auto src = (const double*)ptr;
if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
}
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
*r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
*g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
*b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
*a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
if (__builtin_expect(tail, 0)) {
auto dst = (double*)ptr;
if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
_mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
}
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
F _01, _23;
if (__builtin_expect(tail, 0)) {
_01 = _23 = _mm_setzero_si128();
if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); }
if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); }
if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); }
} else {
_01 = _mm_loadu_ps(ptr + 0);
_23 = _mm_loadu_ps(ptr + 4);
}
*r = _mm_shuffle_ps(_01, _23, 0x88);
*g = _mm_shuffle_ps(_01, _23, 0xDD);
}
SI void store2(float* ptr, size_t tail, F r, F g) {
F _01 = _mm_unpacklo_ps(r, g),
_23 = _mm_unpackhi_ps(r, g);
if (__builtin_expect(tail, 0)) {
if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); }
if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); }
if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); }
} else {
_mm_storeu_ps(ptr + 0, _01);
_mm_storeu_ps(ptr + 4, _23);
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
F _0, _1, _2, _3;
if (__builtin_expect(tail, 0)) {
_1 = _2 = _3 = _mm_setzero_si128();
if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
} else {
_0 = _mm_loadu_ps(ptr + 0);
_1 = _mm_loadu_ps(ptr + 4);
_2 = _mm_loadu_ps(ptr + 8);
_3 = _mm_loadu_ps(ptr +12);
}
_MM_TRANSPOSE4_PS(_0,_1,_2,_3);
*r = _0;
*g = _1;
*b = _2;
*a = _3;
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
_MM_TRANSPOSE4_PS(r,g,b,a);
if (__builtin_expect(tail, 0)) {
if ( true ) { _mm_storeu_ps(ptr + 0, r); }
if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
} else {
_mm_storeu_ps(ptr + 0, r);
_mm_storeu_ps(ptr + 4, g);
_mm_storeu_ps(ptr + 8, b);
_mm_storeu_ps(ptr +12, a);
}
}
#endif
// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER_IS_SCALAR)
SI F cast (U32 v) { return (F)v; }
SI F cast64(U64 v) { return (F)v; }
SI U32 trunc_(F v) { return (U32)v; }
SI U32 expand(U16 v) { return (U32)v; }
SI U32 expand(U8 v) { return (U32)v; }
#else
SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
#endif
template <typename V>
SI V if_then_else(I32 c, V t, V e) {
return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e)));
}
SI U16 bswap(U16 x) {
#if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
// Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
// when generating code for SSE2 and SSE4.1. We'll do it manually...
auto v = widen_cast<__m128i>(x);
v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
return sk_unaligned_load<U16>(&v);
#else
return (x<<8) | (x>>8);
#endif
}
SI F fract(F v) { return v - floor_(v); }
// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
SI F approx_log2(F x) {
// e - 127 is a fair approximation of log2(x) in its own right...
F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
// ... but using the mantissa to refine its error is _much_ better.
F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
return e
- 124.225514990f
- 1.498030302f * m
- 1.725879990f / (0.3520887068f + m);
}
SI F approx_log(F x) {
const float ln2 = 0.69314718f;
return ln2 * approx_log2(x);
}
SI F approx_pow2(F x) {
F f = fract(x);
return sk_bit_cast<F>(round(1.0f * (1<<23),
x + 121.274057500f
- 1.490129070f * f
+ 27.728023300f / (4.84252568f - f)));
}
SI F approx_exp(F x) {
const float log2_e = 1.4426950408889634074f;
return approx_pow2(log2_e * x);
}
SI F approx_powf(F x, F y) {
return if_then_else((x == 0)|(x == 1), x
, approx_pow2(approx_log2(x) * y));
}
SI F from_half(U16 h) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
&& !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f32_f16(h);
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
return _mm256_cvtph_ps(h);
#else
// Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
U32 sem = expand(h),
s = sem & 0x8000,
em = sem ^ s;
// Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
return if_then_else(denorm, F(0)
, sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
#endif
}
SI U16 to_half(F f) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
&& !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f16_f32(f);
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
#else
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
U32 sem = sk_bit_cast<U32>(f),
s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
return pack(if_then_else(denorm, U32(0)
, (s>>16) + (em>>13) - ((127-15)<<10)));
#endif
}
// Our fundamental vector depth is our pixel stride.
static const size_t N = sizeof(F) / sizeof(float);
// We're finally going to get to what a Stage function looks like!
// tail == 0 ~~> work on a full N pixels
// tail != 0 ~~> work on only the first tail pixels
// tail is always < N.
// Any custom ABI to use for all (non-externally-facing) stage functions?
// Also decide here whether to use narrow (compromise) or wide (ideal) stages.
#if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
// This lets us pass vectors more efficiently on 32-bit ARM.
// We can still only pass 16 floats, so best as 4x {r,g,b,a}.
#define ABI __attribute__((pcs("aapcs-vfp")))
#define JUMPER_NARROW_STAGES 1
#elif defined(_MSC_VER)
// Even if not vectorized, this lets us pass {r,g,b,a} as registers,
// instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
#define ABI __vectorcall
#define JUMPER_NARROW_STAGES 1
#elif defined(__x86_64__) || defined(SK_CPU_ARM64)
// These platforms are ideal for wider stages, and their default ABI is ideal.
#define ABI
#define JUMPER_NARROW_STAGES 0
#else
// 32-bit or unknown... shunt them down the narrow path.
// Odds are these have few registers and are better off there.
#define ABI
#define JUMPER_NARROW_STAGES 1
#endif
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy, tail;
F dr,dg,db,da;
};
using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
#else
using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy,
F,F,F,F, F,F,F,F);
#endif
static void start_pipeline(size_t dx, size_t dy,
size_t xlimit, size_t ylimit,
SkRasterPipelineStage* program) {
auto start = (Stage)program->fn;
const size_t x0 = dx;
for (; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,0, 0,0,0,0 };
while (params.dx + N <= xlimit) {
start(&params,program, 0,0,0,0);
params.dx += N;
}
if (size_t tail = xlimit - params.dx) {
params.tail = tail;
start(&params,program, 0,0,0,0);
}
#else
dx = x0;
while (dx + N <= xlimit) {
start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
dx += N;
}
if (size_t tail = xlimit - dx) {
start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
}
#endif
}
}
#if SK_HAS_MUSTTAIL
#define JUMPER_MUSTTAIL [[clang::musttail]]
#else
#define JUMPER_MUSTTAIL
#endif
#if JUMPER_NARROW_STAGES
#define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(Params* params, SkRasterPipelineStage* program, \
F r, F g, F b, F a) { \
OFFSET name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a,\
params->dr, params->dg, params->db, params->da); \
INC; \
auto fn = (Stage)program->fn; \
MUSTTAIL return fn(params, program, r,g,b,a); \
} \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
#define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
OFFSET name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
INC; \
auto fn = (Stage)program->fn; \
MUSTTAIL return fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// A typical stage returns void, always increments the program counter by 1, and lets the optimizer
// decide whether or not tail-calling is appropriate.
#define STAGE(name, arg) \
DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
// A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
// Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
// could overflow the stack (particularly in debug).
#define STAGE_TAIL(name, arg) \
DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL)
// A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
#define STAGE_BRANCH(name, arg) \
DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL)
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
#else
static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, F,F,F,F, F,F,F,F) {}
#endif
// Note that in release builds, most stages consume no stack (thanks to tail call optimization).
// However: certain builds (especially with non-clang compilers) may fail to optimize tail
// calls, resulting in actual stack frames being generated.
//
// stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
// If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
// the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
//
// All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
// a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
// full state of the mutable registers that are normally passed to the next stage in the program.
//
// stack_rewind is the only stage other than just_return that actually returns (rather than jumping
// to the next stage in the program). Before it does so, it stashes all of the registers in the
// context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
// stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
// context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
// rather than a just_return).
//
// Normally, just_return is the only stage that returns, and no other stage does anything after a
// subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
// With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
// stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
// context), and continues the linear execution of stages, but has reclaimed all of the stack frames
// pushed before the stack_rewind before doing so.
#if JUMPER_NARROW_STAGES
static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
F r, F g, F b, F a) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
while (program) {
auto next = (Stage)(++program)->fn;
ctx->stage = nullptr;
next(params, program, r, g, b, a);
program = ctx->stage;
if (program) {
r = sk_unaligned_load<F>(ctx->r );
g = sk_unaligned_load<F>(ctx->g );
b = sk_unaligned_load<F>(ctx->b );
a = sk_unaligned_load<F>(ctx->a );
params->dr = sk_unaligned_load<F>(ctx->dr);
params->dg = sk_unaligned_load<F>(ctx->dg);
params->db = sk_unaligned_load<F>(ctx->db);
params->da = sk_unaligned_load<F>(ctx->da);
}
}
}
static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
F r, F g, F b, F a) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
sk_unaligned_store(ctx->r , r );
sk_unaligned_store(ctx->g , g );
sk_unaligned_store(ctx->b , b );
sk_unaligned_store(ctx->a , a );
sk_unaligned_store(ctx->dr, params->dr);
sk_unaligned_store(ctx->dg, params->dg);
sk_unaligned_store(ctx->db, params->db);
sk_unaligned_store(ctx->da, params->da);
ctx->stage = program;
}
#else
static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program,
size_t dx, size_t dy,
F r, F g, F b, F a, F dr, F dg, F db, F da) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
while (program) {
auto next = (Stage)(++program)->fn;
ctx->stage = nullptr;
next(tail, program, dx, dy, r, g, b, a, dr, dg, db, da);
program = ctx->stage;
if (program) {
r = sk_unaligned_load<F>(ctx->r );
g = sk_unaligned_load<F>(ctx->g );
b = sk_unaligned_load<F>(ctx->b );
a = sk_unaligned_load<F>(ctx->a );
dr = sk_unaligned_load<F>(ctx->dr);
dg = sk_unaligned_load<F>(ctx->dg);
db = sk_unaligned_load<F>(ctx->db);
da = sk_unaligned_load<F>(ctx->da);
}
}
}
static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program,
size_t dx, size_t dy,
F r, F g, F b, F a, F dr, F dg, F db, F da) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
sk_unaligned_store(ctx->r , r );
sk_unaligned_store(ctx->g , g );
sk_unaligned_store(ctx->b , b );
sk_unaligned_store(ctx->a , a );
sk_unaligned_store(ctx->dr, dr);
sk_unaligned_store(ctx->dg, dg);
sk_unaligned_store(ctx->db, db);
sk_unaligned_store(ctx->da, da);
ctx->stage = program;
}
#endif
// We could start defining normal Stages now. But first, some helper functions.
// These load() and store() methods are tail-aware,
// but focus mainly on keeping the at-stride tail==0 case fast.
template <typename V, typename T>
SI V load(const T* src, size_t tail) {
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(tail < N);
if (__builtin_expect(tail, 0)) {
V v{}; // Any inactive lanes are zeroed.
switch (tail) {
case 7: v[6] = src[6]; [[fallthrough]];
case 6: v[5] = src[5]; [[fallthrough]];
case 5: v[4] = src[4]; [[fallthrough]];
case 4: memcpy(&v, src, 4*sizeof(T)); break;
case 3: v[2] = src[2]; [[fallthrough]];
case 2: memcpy(&v, src, 2*sizeof(T)); break;
case 1: memcpy(&v, src, 1*sizeof(T)); break;
}
return v;
}
#endif
return sk_unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v, size_t tail) {
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(tail < N);
if (__builtin_expect(tail, 0)) {
switch (tail) {
case 7: dst[6] = v[6]; [[fallthrough]];
case 6: dst[5] = v[5]; [[fallthrough]];
case 5: dst[4] = v[4]; [[fallthrough]];
case 4: memcpy(dst, &v, 4*sizeof(T)); break;
case 3: dst[2] = v[2]; [[fallthrough]];
case 2: memcpy(dst, &v, 2*sizeof(T)); break;
case 1: memcpy(dst, &v, 1*sizeof(T)); break;
}
return;
}
#endif
sk_unaligned_store(dst, v);
}
SI F from_byte(U8 b) {
return cast(expand(b)) * (1/255.0f);
}
SI F from_short(U16 s) {
return cast(expand(s)) * (1/65535.0f);
}
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & (31<<11)) * (1.0f / (31<<11));
*g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
*b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & (15<<12)) * (1.0f / (15<<12));
*g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
*b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
*a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
}
SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
*r = cast((_8888 ) & 0xff) * (1/255.0f);
*g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
*b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
*a = cast((_8888 >> 24) ) * (1/255.0f);
}
SI void from_88(U16 _88, F* r, F* g) {
U32 wide = expand(_88);
*r = cast((wide ) & 0xff) * (1/255.0f);
*g = cast((wide >> 8) & 0xff) * (1/255.0f);
}
SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
*r = cast((rgba ) & 0x3ff) * (1/1023.0f);
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
SI void from_1616(U32 _1616, F* r, F* g) {
*r = cast((_1616 ) & 0xffff) * (1/65535.0f);
*g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
}
SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
*r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
*g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
*b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
*a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
}
// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
// clamp v to [0,limit).
SI F clamp(F v, F limit) {
F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
return min(max(0.0f, v), inclusive);
}
// clamp to (0,limit).
SI F clamp_ex(F v, F limit) {
const F inclusiveZ = std::numeric_limits<float>::min(),
inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 );
return min(max(inclusiveZ, v), inclusiveL);
}
// Bhaskara I's sine approximation
// 16x(pi - x) / (5*pi^2 - 4x(pi - x)
// ... divide by 4
// 4x(pi - x) / 5*pi^2/4 - x(pi - x)
//
// This is a good approximation only for 0 <= x <= pi, so we use symmetries to get
// radians into that range first.
SI F sin_(F v) {
constexpr float Pi = SK_ScalarPI;
F x = fract(v * (0.5f/Pi)) * (2*Pi);
I32 neg = x > Pi;
x = if_then_else(neg, x - Pi, x);
F pair = x * (Pi - x);
x = 4.0f * pair / ((5*Pi*Pi/4) - pair);
x = if_then_else(neg, -x, x);
return x;
}
SI F cos_(F v) {
return sin_(v + (SK_ScalarPI/2));
}
/* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
Some simplifications:
1. tan(x) is periodic, -PI/2 < x < PI/2
2. tan(x) is odd, so tan(-x) = -tan(x)
3. Our polynomial approximation is best near zero, so we use the following identity
tan(x) + tan(y)
tan(x + y) = -----------------
1 - tan(x)*tan(y)
tan(PI/4) = 1
So for x > PI/8, we do the following refactor:
x' = x - PI/4
1 + tan(x')
tan(x) = ------------
1 - tan(x')
*/
SI F tan_(F x) {
constexpr float Pi = SK_ScalarPI;
// periodic between -pi/2 ... pi/2
// shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2);
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
// minimize total error by shifting if x > pi/8
I32 use_quotient = (x > (Pi/8));
x = if_then_else(use_quotient, x - (Pi/4), x);
// 9th order poly = 4th order(x^2) * x
F x2 = x * x;
x *= 1 + x2 * (1/3.0f +
x2 * (2/15.0f +
x2 * (17/315.0f +
x2 * (62/2835.0f))));
x = if_then_else(use_quotient, (1+x)/(1-x), x);
x = if_then_else(neg, -x, x);
return x;
}
// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
// We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
// produce a NaN if applied to +0.f.
x = clamp_ex(x, ctx->width );
y = clamp_ex(y, ctx->height);
x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
// We often have a nominally [0,1] float value we need to scale and convert to an integer,
// whether for a table lookup or to pack back down into bytes for storage.
//
// In practice, especially when dealing with interesting color spaces, that notionally
// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
//
// You can adjust the expected input to [0,bias] by tweaking that parameter.
SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
// Any time we use round() we probably want to use to_unorm().
return round(min(max(0.0f, v), bias), scale);
}
SI I32 cond_to_mask(I32 cond) {
#if defined(JUMPER_IS_SCALAR)
// In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
// (eg, using bitwise operations to select values).
return if_then_else(cond, I32(~0), I32(0));
#else
// In SIMD mode, our various instruction sets already represent conditions as masks.
return cond;
#endif
}
// Now finally, normal Stages!
STAGE(seed_shader, NoCtx) {
static const float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
// It's important for speed to explicitly cast(dx) and cast(dy),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(dx) + sk_unaligned_load<F>(iota);
g = cast(dy) + 0.5f;
b = 1.0f;
a = 0;
dr = dg = db = da = 0;
}
STAGE(dither, const float* rate) {
// Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
uint32_t iota[] = {0,1,2,3,4,5,6,7};
U32 X = dx + sk_unaligned_load<U32>(iota),
Y = dy;
// We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
// In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
// We only need X and X^Y from here on, so it's easier to just think of that as "Y".
Y ^= X;
// We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
// for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
U32 M = (Y & 1) << 5 | (X & 1) << 4
| (Y & 2) << 2 | (X & 2) << 1
| (Y & 4) >> 1 | (X & 4) >> 2;
// Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
// We want to make sure our dither is less than 0.5 in either direction to keep exact values
// like 0 and 1 unchanged after rounding.
F dither = cast(M) * (2/128.0f) - (63/128.0f);
r += *rate*dither;
g += *rate*dither;
b += *rate*dither;
r = max(0.0f, min(r, a));
g = max(0.0f, min(g, a));
b = max(0.0f, min(b, a));
}
// load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
// load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
dr = c->r;
dg = c->g;
db = c->b;
da = c->a;
}
// splats opaque-black into r,g,b,a
STAGE(black_color, NoCtx) {
r = g = b = 0.0f;
a = 1.0f;
}
STAGE(white_color, NoCtx) {
r = g = b = a = 1.0f;
}
// load registers r,g,b,a from context (mirrors store_src)
STAGE(load_src, const float* ptr) {
r = sk_unaligned_load<F>(ptr + 0*N);
g = sk_unaligned_load<F>(ptr + 1*N);
b = sk_unaligned_load<F>(ptr + 2*N);
a = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers r,g,b,a into context (mirrors load_src)
STAGE(store_src, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
sk_unaligned_store(ptr + 2*N, b);
sk_unaligned_store(ptr + 3*N, a);
}
// store registers r,g into context
STAGE(store_src_rg, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
}
// store register a into context
STAGE(store_src_a, float* ptr) {
sk_unaligned_store(ptr, a);
}
// load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst, const float* ptr) {
dr = sk_unaligned_load<F>(ptr + 0*N);
dg = sk_unaligned_load<F>(ptr + 1*N);
db = sk_unaligned_load<F>(ptr + 2*N);
da = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst, float* ptr) {
sk_unaligned_store(ptr + 0*N, dr);
sk_unaligned_store(ptr + 1*N, dg);
sk_unaligned_store(ptr + 2*N, db);
sk_unaligned_store(ptr + 3*N, da);
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, /* s + */ d*inv(sa),
sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, /* d + */ s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = sqrt_(m) - m,
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
// We're basing our implemenation of non-separable blend modes on
// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
// and
// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
// They're equivalent, but ES' math has been better simplified.
//
// Anything extra we add beyond that is to make the math work with premul inputs.
SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
SI void set_sat(F* r, F* g, F* b, F s) {
F mn = min(*r, min(*g,*b)),
mx = max(*r, max(*g,*b)),
sat = mx - mn;
// Map min channel to 0, max channel to s, and scale the middle proportionally.
auto scale = [=](F c) {
return if_then_else(sat == 0, 0, (c - mn) * s / sat);
};
*r = scale(*r);
*g = scale(*g);
*b = scale(*b);
}
SI void set_lum(F* r, F* g, F* b, F l) {
F diff = l - lum(*r, *g, *b);
*r += diff;
*g += diff;
*b += diff;
}
SI void clip_color(F* r, F* g, F* b, F a) {
F mn = min(*r, min(*g, *b)),
mx = max(*r, max(*g, *b)),
l = lum(*r, *g, *b);
auto clip = [=](F c) {
c = if_then_else(mn < 0 && l != mn, l + (c - l) * ( l) / (l - mn), c);
c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c);
c = max(c, 0.0f); // Sometimes without this we may dip just a little negative.
return c;
};
*r = clip(*r);
*g = clip(*g);
*b = clip(*b);
}
STAGE(hue, NoCtx) {
F R = r*a,
G = g*a,
B = b*a;
set_sat(&R, &G, &B, sat(dr,dg,db)*a);
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(saturation, NoCtx) {
F R = dr*a,
G = dg*a,
B = db*a;
set_sat(&R, &G, &B, sat( r, g, b)*da);
set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(color, NoCtx) {
F R = r*da,
G = g*da,
B = b*da;
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(luminosity, NoCtx) {
F R = dr*a,
G = dg*a,
B = db*a;
set_lum(&R, &G, &B, lum(r,g,b)*da);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 dst = load<U32>(ptr, tail);
dr = cast((dst ) & 0xff);
dg = cast((dst >> 8) & 0xff);
db = cast((dst >> 16) & 0xff);
da = cast((dst >> 24) );
// {dr,dg,db,da} are in [0,255]
// { r, g, b, a} are in [0, 1] (but may be out of gamut)
r = mad(dr, inv(a), r*255.0f);
g = mad(dg, inv(a), g*255.0f);
b = mad(db, inv(a), b*255.0f);
a = mad(da, inv(a), a*255.0f);
// { r, g, b, a} are now in [0,255] (but may be out of gamut)
// to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
dst = to_unorm(r, 1, 255)
| to_unorm(g, 1, 255) << 8
| to_unorm(b, 1, 255) << 16
| to_unorm(a, 1, 255) << 24;
store(ptr, dst, tail);
}
SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); }
STAGE(clamp_01, NoCtx) {
r = clamp_01_(r);
g = clamp_01_(g);
b = clamp_01_(b);
a = clamp_01_(a);
}
STAGE(clamp_gamut, NoCtx) {
a = min(max(a, 0.0f), 1.0f);
r = min(max(r, 0.0f), a);
g = min(max(g, 0.0f), a);
b = min(max(b, 0.0f), a);
}
STAGE(set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(unbounded_set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(swap_rb, NoCtx) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE(swap_rb_dst, NoCtx) {
auto tmp = dr;
dr = db;
db = tmp;
}
STAGE(move_src_dst, NoCtx) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src, NoCtx) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(swap_src_dst, NoCtx) {
std::swap(r, dr);
std::swap(g, dg);
std::swap(b, db);
std::swap(a, da);
}
STAGE(premul, NoCtx) {
r = r * a;
g = g * a;
b = b * a;
}
STAGE(premul_dst, NoCtx) {
dr = dr * da;
dg = dg * da;
db = db * da;
}
STAGE(unpremul, NoCtx) {
float inf = sk_bit_cast<float>(0x7f800000);
auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
r *= scale;
g *= scale;
b *= scale;
}
STAGE(unpremul_polar, NoCtx) {
float inf = sk_bit_cast<float>(0x7f800000);
auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
g *= scale;
b *= scale;
}
STAGE(force_opaque , NoCtx) { a = 1; }
STAGE(force_opaque_dst, NoCtx) { da = 1; }
STAGE(rgb_to_hsl, NoCtx) {
F mx = max(r, max(g,b)),
mn = min(r, min(g,b)),
d = mx - mn,
d_rcp = 1.0f / d;
F h = (1/6.0f) *
if_then_else(mx == mn, 0,
if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
(r-g)*d_rcp + 4.0f)));
F l = (mx + mn) * 0.5f;
F s = if_then_else(mx == mn, 0,
d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
r = h;
g = s;
b = l;
}
STAGE(hsl_to_rgb, NoCtx) {
// See GrRGBToHSLFilterEffect.fp
F h = r,
s = g,
l = b,
c = (1.0f - abs_(2.0f * l - 1)) * s;
auto hue_to_rgb = [&](F hue) {
F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
return (q - 0.5f) * c + l;
};
r = hue_to_rgb(h + 0.0f/3.0f);
g = hue_to_rgb(h + 2.0f/3.0f);
b = hue_to_rgb(h + 1.0f/3.0f);
}
// Color conversion functions used in gradient interpolation, based on
// https://www.w3.org/TR/css-color-4/#color-conversion-code
STAGE(css_lab_to_xyz, NoCtx) {
constexpr float k = 24389 / 27.0f;
constexpr float e = 216 / 24389.0f;
F f[3];
f[1] = (r + 16) * (1 / 116.0f);
f[0] = (g * (1 / 500.0f)) + f[1];
f[2] = f[1] - (b * (1 / 200.0f));
F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] };
F xyz[3] = {
if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)),
if_then_else(r > k * e, f_cubed[1], r * (1 / k)),
if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k))
};
constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f };
r = xyz[0]*D50[0];
g = xyz[1]*D50[1];
b = xyz[2]*D50[2];
}
STAGE(css_oklab_to_linear_srgb, NoCtx) {
F l_ = r + 0.3963377774f * g + 0.2158037573f * b,
m_ = r - 0.1055613458f * g - 0.0638541728f * b,
s_ = r - 0.0894841775f * g - 1.2914855480f * b;
F l = l_*l_*l_,
m = m_*m_*m_,
s = s_*s_*s_;
r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
}
// Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform
// actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB.
// See similar comments & logic in SkGradientShaderBase.cpp.
STAGE(css_hcl_to_lab, NoCtx) {
F H = r,
C = g,
L = b;
F hueRadians = H * (SK_FloatPI / 180);
r = L;
g = C * cos_(hueRadians);
b = C * sin_(hueRadians);
}
SI F mod_(F x, float y) {
return x - y * floor_(x * (1 / y));
}
struct RGB { F r, g, b; };
SI RGB css_hsl_to_srgb_(F h, F s, F l) {
h = mod_(h, 360);
s *= 0.01f;
l *= 0.01f;
F k[3] = {
mod_(0 + h * (1 / 30.0f), 12),
mod_(8 + h * (1 / 30.0f), 12),
mod_(4 + h * (1 / 30.0f), 12)
};
F a = s * min(l, 1 - l);
return {
l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)),
l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)),
l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f))
};
}
STAGE(css_hsl_to_srgb, NoCtx) {
RGB rgb = css_hsl_to_srgb_(r, g, b);
r = rgb.r;
g = rgb.g;
b = rgb.b;
}
STAGE(css_hwb_to_srgb, NoCtx) {
g *= 0.01f;
b *= 0.01f;
F gray = g / (g + b);
RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f);
rgb.r = rgb.r * (1 - g - b) + g;
rgb.g = rgb.g * (1 - g - b) + g;
rgb.b = rgb.b * (1 - g - b) + g;
auto isGray = (g + b) >= 1;
r = if_then_else(isGray, gray, rgb.r);
g = if_then_else(isGray, gray, rgb.g);
b = if_then_else(isGray, gray, rgb.b);
}
// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
return if_then_else(a < da, min(cr, min(cg,cb))
, max(cr, max(cg,cb)));
}
STAGE(scale_1_float, const float* c) {
r = r * *c;
g = g * *c;
b = b * *c;
a = a * *c;
}
STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = r * cr;
g = g * cg;
b = b * cb;
a = a * ca;
}
SI F lerp(F from, F to, F t) {
return mad(to-from, t, from);
}
STAGE(lerp_1_float, const float* c) {
r = lerp(dr, r, *c);
g = lerp(dg, g, *c);
b = lerp(db, b, *c);
a = lerp(da, a, *c);
}
STAGE(scale_native, const float scales[]) {
auto c = sk_unaligned_load<F>(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(lerp_native, const float scales[]) {
auto c = sk_unaligned_load<F>(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = lerp(da, a, ca);
}
STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
F mul = from_byte(load<U8>(mptr, tail)),
add = from_byte(load<U8>(aptr, tail));
r = mad(r, mul, add);
g = mad(g, mul, add);
b = mad(b, mul, add);
}
STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) {
r = from_byte(gather(tables->r, to_unorm(r, 255)));
g = from_byte(gather(tables->g, to_unorm(g, 255)));
b = from_byte(gather(tables->b, to_unorm(b, 255)));
a = from_byte(gather(tables->a, to_unorm(a, 255)));
}
SI F strip_sign(F x, U32* sign) {
U32 bits = sk_bit_cast<U32>(x);
*sign = bits & 0x80000000;
return sk_bit_cast<F>(bits ^ *sign);
}
SI F apply_sign(F x, U32 sign) {
return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
}
STAGE(parametric, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
, approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(gamma_, const float* G) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
return apply_sign(approx_powf(v, *G), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(PQish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f)
/ (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
ctx->f);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(HLGish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
const float R = ctx->a, G = ctx->b,
a = ctx->c, b = ctx->d, c = ctx->e,
K = ctx->f + 1.0f;
F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
, approx_exp((v-c)*a) + b);
return K * apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
const float R = ctx->a, G = ctx->b,
a = ctx->c, b = ctx->d, c = ctx->e,
K = ctx->f + 1.0f;
v /= K;
F r = if_then_else(v <= 1, R * approx_powf(v, G)
, a * approx_log(v - b) + c);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
r = g = b = 0.0f;
a = from_byte(load<U8>(ptr, tail));
}
STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
dr = dg = db = 0.0f;
da = from_byte(load<U8>(ptr, tail));
}
STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = g = b = 0.0f;
a = from_byte(gather(ptr, ix));
}
STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
U8 packed = pack(pack(to_unorm(a, 255)));
store(ptr, packed, tail);
}
STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
U8 packed = pack(pack(to_unorm(r, 255)));
store(ptr, packed, tail);
}
STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr, tail), &r,&g,&b);
a = 1.0f;
}
STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr, tail), &dr,&dg,&db);
da = 1.0f;
}
STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_565(gather(ptr, ix), &r,&g,&b);
a = 1.0f;
}
STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 31) << 11
| to_unorm(g, 63) << 5
| to_unorm(b, 31) );
store(ptr, px, tail);
}
STAGE(