| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkAnalyticEdge_DEFINED |
| #define SkAnalyticEdge_DEFINED |
| |
| #include "include/private/base/SkTo.h" |
| #include "src/core/SkEdge.h" |
| |
| #include <utility> |
| |
| struct SkAnalyticEdge { |
| // Similar to SkEdge, the conic edges will be converted to quadratic edges |
| enum Type { |
| kLine_Type, |
| kQuad_Type, |
| kCubic_Type |
| }; |
| |
| SkAnalyticEdge* fNext; |
| SkAnalyticEdge* fPrev; |
| |
| // During aaa_walk_edges, if this edge is a left edge, |
| // then fRiteE is its corresponding right edge. Otherwise it's nullptr. |
| SkAnalyticEdge* fRiteE; |
| |
| SkFixed fX; |
| SkFixed fDX; |
| SkFixed fUpperX; // The x value when y = fUpperY |
| SkFixed fY; // The current y |
| SkFixed fUpperY; // The upper bound of y (our edge is from y = fUpperY to y = fLowerY) |
| SkFixed fLowerY; // The lower bound of y (our edge is from y = fUpperY to y = fLowerY) |
| SkFixed fDY; // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0. |
| // fDY is only used for blitting trapezoids. |
| |
| SkFixed fSavedX; // For deferred blitting |
| SkFixed fSavedY; // For deferred blitting |
| SkFixed fSavedDY; // For deferred blitting |
| |
| Type fEdgeType; // Remembers the *initial* edge type |
| |
| int8_t fCurveCount; // only used by kQuad(+) and kCubic(-) |
| uint8_t fCurveShift; // appled to all Dx/DDx/DDDx except for fCubicDShift exception |
| uint8_t fCubicDShift; // applied to fCDx and fCDy only in cubic |
| int8_t fWinding; // 1 or -1 |
| |
| static const int kDefaultAccuracy = 2; // default accuracy for snapping |
| |
| static inline SkFixed SnapY(SkFixed y) { |
| const int accuracy = kDefaultAccuracy; |
| // This approach is safer than left shift, round, then right shift |
| return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy); |
| } |
| |
| // Update fX, fY of this edge so fY = y |
| inline void goY(SkFixed y) { |
| if (y == fY + SK_Fixed1) { |
| fX = fX + fDX; |
| fY = y; |
| } else if (y != fY) { |
| // Drop lower digits as our alpha only has 8 bits |
| // (fDX and y - fUpperY may be greater than SK_Fixed1) |
| fX = fUpperX + SkFixedMul(fDX, y - fUpperY); |
| fY = y; |
| } |
| } |
| |
| inline void goY(SkFixed y, int yShift) { |
| SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy); |
| SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift); |
| fY = y; |
| fX += fDX >> yShift; |
| } |
| |
| inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) { |
| fSavedX = x; |
| fSavedY = y; |
| fSavedDY = dY; |
| } |
| |
| bool setLine(const SkPoint& p0, const SkPoint& p1); |
| bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope); |
| |
| // return true if we're NOT done with this edge |
| bool update(SkFixed last_y, bool sortY = true); |
| |
| #ifdef SK_DEBUG |
| void dump() const { |
| SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n", |
| fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX), |
| SkFixedToFloat(fDX), fWinding); |
| } |
| |
| void validate() const { |
| SkASSERT(fPrev && fNext); |
| SkASSERT(fPrev->fNext == this); |
| SkASSERT(fNext->fPrev == this); |
| |
| SkASSERT(fUpperY < fLowerY); |
| SkASSERT(SkAbs32(fWinding) == 1); |
| } |
| #endif |
| }; |
| |
| struct SkAnalyticQuadraticEdge : public SkAnalyticEdge { |
| SkQuadraticEdge fQEdge; |
| |
| // snap y to integer points in the middle of the curve to accelerate AAA path filling |
| SkFixed fSnappedX, fSnappedY; |
| |
| bool setQuadratic(const SkPoint pts[3]); |
| bool updateQuadratic(); |
| inline void keepContinuous() { |
| // We use fX as the starting x to ensure the continuouty. |
| // Without it, we may break the sorted edge list. |
| SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1); |
| SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump |
| fSnappedX = fX; |
| fSnappedY = fY; |
| } |
| }; |
| |
| struct SkAnalyticCubicEdge : public SkAnalyticEdge { |
| SkCubicEdge fCEdge; |
| |
| SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping |
| |
| bool setCubic(const SkPoint pts[4], bool sortY = true); |
| bool updateCubic(bool sortY = true); |
| inline void keepContinuous() { |
| SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1); |
| fCEdge.fCx = fX; |
| fSnappedY = fY; |
| } |
| }; |
| |
| struct SkBezier { |
| int fCount; // 2 line, 3 quad, 4 cubic |
| SkPoint fP0; |
| SkPoint fP1; |
| |
| // See if left shift, covert to SkFDot6, and round has the same top and bottom y. |
| // If so, the edge will be empty. |
| static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) { |
| #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift); |
| #else |
| SkScalar scale = (1 << (shift + 6)); |
| return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale)); |
| #endif |
| } |
| }; |
| |
| struct SkLine : public SkBezier { |
| bool set(const SkPoint pts[2]){ |
| if (IsEmpty(pts[0].fY, pts[1].fY)) { |
| return false; |
| } |
| fCount = 2; |
| fP0 = pts[0]; |
| fP1 = pts[1]; |
| return true; |
| } |
| }; |
| |
| struct SkQuad : public SkBezier { |
| SkPoint fP2; |
| |
| bool set(const SkPoint pts[3]){ |
| if (IsEmpty(pts[0].fY, pts[2].fY)) { |
| return false; |
| } |
| fCount = 3; |
| fP0 = pts[0]; |
| fP1 = pts[1]; |
| fP2 = pts[2]; |
| return true; |
| } |
| }; |
| |
| struct SkCubic : public SkBezier { |
| SkPoint fP2; |
| SkPoint fP3; |
| |
| bool set(const SkPoint pts[4]){ |
| // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be |
| // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just |
| // checking IsEmpty(pts[0].fY, pts[3].fY). |
| if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) && |
| IsEmpty(pts[2].fY, pts[3].fY)) { |
| return false; |
| } |
| fCount = 4; |
| fP0 = pts[0]; |
| fP1 = pts[1]; |
| fP2 = pts[2]; |
| fP3 = pts[3]; |
| return true; |
| } |
| }; |
| |
| #endif |