blob: 1c4558fab9ee64b6bb566839871b6dd2905a1dd2 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLConstantFolder.h"
#include "include/core/SkTypes.h"
#include "include/private/SkSLModifiers.h"
#include "include/sksl/SkSLErrorReporter.h"
#include "include/sksl/SkSLPosition.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLContext.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLConstructorCompound.h"
#include "src/sksl/ir/SkSLConstructorSplat.h"
#include "src/sksl/ir/SkSLExpression.h"
#include "src/sksl/ir/SkSLLiteral.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLType.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include <math.h>
#include <limits>
#include <optional>
#include <type_traits>
#include <utility>
namespace SkSL {
static bool is_vec_or_mat(const Type& type) {
switch (type.typeKind()) {
case Type::TypeKind::kMatrix:
case Type::TypeKind::kVector:
return true;
default:
return false;
}
}
static std::unique_ptr<Expression> eliminate_no_op_boolean(Position pos,
const Expression& left,
Operator op,
const Expression& right) {
bool rightVal = right.as<Literal>().boolValue();
// Detect no-op Boolean expressions and optimize them away.
if ((op.kind() == Operator::Kind::LOGICALAND && rightVal) || // (expr && true) -> (expr)
(op.kind() == Operator::Kind::LOGICALOR && !rightVal) || // (expr || false) -> (expr)
(op.kind() == Operator::Kind::LOGICALXOR && !rightVal) || // (expr ^^ false) -> (expr)
(op.kind() == Operator::Kind::EQEQ && rightVal) || // (expr == true) -> (expr)
(op.kind() == Operator::Kind::NEQ && !rightVal)) { // (expr != false) -> (expr)
std::unique_ptr<Expression> result = left.clone();
result->fPosition = pos;
return result;
}
return nullptr;
}
static std::unique_ptr<Expression> short_circuit_boolean(Position pos,
const Expression& left,
Operator op,
const Expression& right) {
bool leftVal = left.as<Literal>().boolValue();
// When the literal is on the left, we can sometimes eliminate the other expression entirely.
if ((op.kind() == Operator::Kind::LOGICALAND && !leftVal) || // (false && expr) -> (false)
(op.kind() == Operator::Kind::LOGICALOR && leftVal)) { // (true || expr) -> (true)
std::unique_ptr<Expression> result = left.clone();
result->fPosition = pos;
return result;
}
// We can't eliminate the right-side expression via short-circuit, but we might still be able to
// simplify away a no-op expression.
return eliminate_no_op_boolean(pos, right, op, left);
}
static std::unique_ptr<Expression> simplify_constant_equality(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right) {
if (op.kind() == Operator::Kind::EQEQ || op.kind() == Operator::Kind::NEQ) {
bool equality = (op.kind() == Operator::Kind::EQEQ);
switch (left.compareConstant(right)) {
case Expression::ComparisonResult::kNotEqual:
equality = !equality;
[[fallthrough]];
case Expression::ComparisonResult::kEqual:
return Literal::MakeBool(context, pos, equality);
case Expression::ComparisonResult::kUnknown:
break;
}
}
return nullptr;
}
static std::unique_ptr<Expression> simplify_matrix_multiplication(const Context& context,
Position pos,
const Expression& left,
const Expression& right,
int leftColumns,
int leftRows,
int rightColumns,
int rightRows) {
const Type& componentType = left.type().componentType();
SkASSERT(componentType.matches(right.type().componentType()));
// Fetch the left matrix.
double leftVals[4][4];
for (int c = 0; c < leftColumns; ++c) {
for (int r = 0; r < leftRows; ++r) {
leftVals[c][r] = *left.getConstantValue((c * leftRows) + r);
}
}
// Fetch the right matrix.
double rightVals[4][4];
for (int c = 0; c < rightColumns; ++c) {
for (int r = 0; r < rightRows; ++r) {
rightVals[c][r] = *right.getConstantValue((c * rightRows) + r);
}
}
SkASSERT(leftColumns == rightRows);
int outColumns = rightColumns,
outRows = leftRows;
ExpressionArray args;
args.reserve_back(outColumns * outRows);
for (int c = 0; c < outColumns; ++c) {
for (int r = 0; r < outRows; ++r) {
// Compute a dot product for this position.
double val = 0;
for (int dotIdx = 0; dotIdx < leftColumns; ++dotIdx) {
val += leftVals[dotIdx][r] * rightVals[c][dotIdx];
}
args.push_back(Literal::Make(pos, val, &componentType));
}
}
if (outColumns == 1) {
// Matrix-times-vector conceptually makes a 1-column N-row matrix, but we return vecN.
std::swap(outColumns, outRows);
}
const Type& resultType = componentType.toCompound(context, outColumns, outRows);
return ConstructorCompound::Make(context, pos, resultType, std::move(args));
}
static std::unique_ptr<Expression> simplify_matrix_times_matrix(const Context& context,
Position pos,
const Expression& left,
const Expression& right) {
const Type& leftType = left.type();
const Type& rightType = right.type();
SkASSERT(leftType.isMatrix());
SkASSERT(rightType.isMatrix());
return simplify_matrix_multiplication(context, pos, left, right,
leftType.columns(), leftType.rows(),
rightType.columns(), rightType.rows());
}
static std::unique_ptr<Expression> simplify_vector_times_matrix(const Context& context,
Position pos,
const Expression& left,
const Expression& right) {
const Type& leftType = left.type();
const Type& rightType = right.type();
SkASSERT(leftType.isVector());
SkASSERT(rightType.isMatrix());
return simplify_matrix_multiplication(context, pos, left, right,
/*leftColumns=*/leftType.columns(), /*leftRows=*/1,
rightType.columns(), rightType.rows());
}
static std::unique_ptr<Expression> simplify_matrix_times_vector(const Context& context,
Position pos,
const Expression& left,
const Expression& right) {
const Type& leftType = left.type();
const Type& rightType = right.type();
SkASSERT(leftType.isMatrix());
SkASSERT(rightType.isVector());
return simplify_matrix_multiplication(context, pos, left, right,
leftType.columns(), leftType.rows(),
/*rightColumns=*/1, /*rightRows=*/rightType.columns());
}
static std::unique_ptr<Expression> simplify_componentwise(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right) {
SkASSERT(is_vec_or_mat(left.type()));
SkASSERT(left.type().matches(right.type()));
const Type& type = left.type();
// Handle equality operations: == !=
if (std::unique_ptr<Expression> result = simplify_constant_equality(context, pos, left, op,
right)) {
return result;
}
// Handle floating-point arithmetic: + - * /
using FoldFn = double (*)(double, double);
FoldFn foldFn;
switch (op.kind()) {
case Operator::Kind::PLUS: foldFn = +[](double a, double b) { return a + b; }; break;
case Operator::Kind::MINUS: foldFn = +[](double a, double b) { return a - b; }; break;
case Operator::Kind::STAR: foldFn = +[](double a, double b) { return a * b; }; break;
case Operator::Kind::SLASH: foldFn = +[](double a, double b) { return a / b; }; break;
default:
return nullptr;
}
const Type& componentType = type.componentType();
SkASSERT(componentType.isNumber());
double minimumValue = -INFINITY, maximumValue = INFINITY;
if (componentType.isInteger()) {
minimumValue = componentType.minimumValue();
maximumValue = componentType.maximumValue();
}
ExpressionArray args;
int numSlots = type.slotCount();
args.reserve_back(numSlots);
for (int i = 0; i < numSlots; i++) {
double value = foldFn(*left.getConstantValue(i), *right.getConstantValue(i));
if (value < minimumValue || value > maximumValue) {
return nullptr;
}
args.push_back(Literal::Make(pos, value, &componentType));
}
return ConstructorCompound::Make(context, pos, type, std::move(args));
}
static std::unique_ptr<Expression> splat_scalar(const Context& context,
const Expression& scalar,
const Type& type) {
if (type.isVector()) {
return ConstructorSplat::Make(context, scalar.fPosition, type, scalar.clone());
}
if (type.isMatrix()) {
int numSlots = type.slotCount();
ExpressionArray splatMatrix;
splatMatrix.reserve_back(numSlots);
for (int index = 0; index < numSlots; ++index) {
splatMatrix.push_back(scalar.clone());
}
return ConstructorCompound::Make(context, scalar.fPosition, type, std::move(splatMatrix));
}
SkDEBUGFAILF("unsupported type %s", type.description().c_str());
return nullptr;
}
static std::unique_ptr<Expression> cast_expression(const Context& context,
Position pos,
const Expression& expr,
const Type& type) {
ExpressionArray ctorArgs;
ctorArgs.push_back(expr.clone());
return Constructor::Convert(context, pos, type, std::move(ctorArgs));
}
static std::unique_ptr<Expression> negate_expression(const Context& context,
Position pos,
const Expression& expr,
const Type& type) {
std::unique_ptr<Expression> ctor = cast_expression(context, pos, expr, type);
return ctor ? PrefixExpression::Make(context, pos, Operator::Kind::MINUS, std::move(ctor))
: nullptr;
}
bool ConstantFolder::GetConstantInt(const Expression& value, SKSL_INT* out) {
const Expression* expr = GetConstantValueForVariable(value);
if (!expr->isIntLiteral()) {
return false;
}
*out = expr->as<Literal>().intValue();
return true;
}
bool ConstantFolder::GetConstantValue(const Expression& value, double* out) {
const Expression* expr = GetConstantValueForVariable(value);
if (!expr->is<Literal>()) {
return false;
}
*out = expr->as<Literal>().value();
return true;
}
static bool contains_constant_zero(const Expression& expr) {
int numSlots = expr.type().slotCount();
for (int index = 0; index < numSlots; ++index) {
std::optional<double> slotVal = expr.getConstantValue(index);
if (slotVal.has_value() && *slotVal == 0.0) {
return true;
}
}
return false;
}
static bool is_constant_value(const Expression& expr, double value) {
int numSlots = expr.type().slotCount();
for (int index = 0; index < numSlots; ++index) {
std::optional<double> slotVal = expr.getConstantValue(index);
if (!slotVal.has_value() || *slotVal != value) {
return false;
}
}
return true;
}
static bool error_on_divide_by_zero(const Context& context, Position pos, Operator op,
const Expression& right) {
switch (op.kind()) {
case Operator::Kind::SLASH:
case Operator::Kind::SLASHEQ:
case Operator::Kind::PERCENT:
case Operator::Kind::PERCENTEQ:
if (contains_constant_zero(right)) {
context.fErrors->error(pos, "division by zero");
return true;
}
return false;
default:
return false;
}
}
const Expression* ConstantFolder::GetConstantValueForVariable(const Expression& inExpr) {
for (const Expression* expr = &inExpr;;) {
if (!expr->is<VariableReference>()) {
break;
}
const VariableReference& varRef = expr->as<VariableReference>();
if (varRef.refKind() != VariableRefKind::kRead) {
break;
}
const Variable& var = *varRef.variable();
if (!(var.modifiers().fFlags & Modifiers::kConst_Flag)) {
break;
}
expr = var.initialValue();
if (!expr) {
// Function parameters can be const but won't have an initial value.
break;
}
if (expr->isCompileTimeConstant()) {
return expr;
}
}
// We didn't find a compile-time constant at the end. Return the expression as-is.
return &inExpr;
}
std::unique_ptr<Expression> ConstantFolder::MakeConstantValueForVariable(Position pos,
std::unique_ptr<Expression> expr) {
const Expression* constantExpr = GetConstantValueForVariable(*expr);
if (constantExpr != expr.get()) {
expr = constantExpr->clone();
expr->fPosition = pos;
}
return expr;
}
static std::unique_ptr<Expression> simplify_no_op_arithmetic(const Context& context,
Position pos,
const Expression& left,
Operator op,
const Expression& right,
const Type& resultType) {
switch (op.kind()) {
case Operator::Kind::PLUS:
if (is_constant_value(right, 0.0)) { // x + 0
return cast_expression(context, pos, left, resultType);
}
if (is_constant_value(left, 0.0)) { // 0 + x
return cast_expression(context, pos, right, resultType);
}
break;
case Operator::Kind::STAR:
if (is_constant_value(right, 1.0)) { // x * 1
return cast_expression(context, pos, left, resultType);
}
if (is_constant_value(left, 1.0)) { // 1 * x
return cast_expression(context, pos, right, resultType);
}
if (is_constant_value(right, 0.0) && !left.hasSideEffects()) { // x * 0
return cast_expression(context, pos, right, resultType);
}
if (is_constant_value(left, 0.0) && !right.hasSideEffects()) { // 0 * x
return cast_expression(context, pos, left, resultType);
}
if (is_constant_value(right, -1.0)) { // x * -1 (to `-x`)
return negate_expression(context, pos, left, resultType);
}
if (is_constant_value(left, -1.0)) { // -1 * x (to `-x`)
return negate_expression(context, pos, right, resultType);
}
break;
case Operator::Kind::MINUS:
if (is_constant_value(right, 0.0)) { // x - 0
return cast_expression(context, pos, left, resultType);
}
if (is_constant_value(left, 0.0)) { // 0 - x (to `-x`)
return negate_expression(context, pos, right, resultType);
}
break;
case Operator::Kind::SLASH:
if (is_constant_value(right, 1.0)) { // x / 1
return cast_expression(context, pos, left, resultType);
}
break;
case Operator::Kind::PLUSEQ:
case Operator::Kind::MINUSEQ:
if (is_constant_value(right, 0.0)) { // x += 0, x -= 0
if (std::unique_ptr<Expression> var = cast_expression(context, pos, left,
resultType)) {
Analysis::UpdateVariableRefKind(var.get(), VariableRefKind::kRead);
return var;
}
}
break;
case Operator::Kind::STAREQ:
case Operator::Kind::SLASHEQ:
if (is_constant_value(right, 1.0)) { // x *= 1, x /= 1
if (std::unique_ptr<Expression> var = cast_expression(context, pos, left,
resultType)) {
Analysis::UpdateVariableRefKind(var.get(), VariableRefKind::kRead);
return var;
}
}
break;
default:
break;
}
return nullptr;
}
template <typename T>
static std::unique_ptr<Expression> fold_float_expression(Position pos,
T result,
const Type* resultType) {
// If constant-folding this expression would generate a NaN/infinite result, leave it as-is.
if constexpr (!std::is_same<T, bool>::value) {
if (!std::isfinite(result)) {
return nullptr;
}
}
return Literal::Make(pos, result, resultType);
}
template <typename T>
static std::unique_ptr<Expression> fold_int_expression(Position pos,
T result,
const Type* resultType) {
// If constant-folding this expression would overflow the result type, leave it as-is.
if constexpr (!std::is_same<T, bool>::value) {
if (result < resultType->minimumValue() || result > resultType->maximumValue()) {
return nullptr;
}
}
return Literal::Make(pos, result, resultType);
}
std::unique_ptr<Expression> ConstantFolder::Simplify(const Context& context,
Position pos,
const Expression& leftExpr,
Operator op,
const Expression& rightExpr,
const Type& resultType) {
// Replace constant variables with their literal values.
const Expression* left = GetConstantValueForVariable(leftExpr);
const Expression* right = GetConstantValueForVariable(rightExpr);
// If this is the comma operator, the left side is evaluated but not otherwise used in any way.
// So if the left side has no side effects, it can just be eliminated entirely.
if (op.kind() == Operator::Kind::COMMA && !left->hasSideEffects()) {
std::unique_ptr<Expression> result = right->clone();
result->fPosition = pos;
return result;
}
// If this is the assignment operator, and both sides are the same trivial expression, this is
// self-assignment (i.e., `var = var`) and can be reduced to just a variable reference (`var`).
// This can happen when other parts of the assignment are optimized away.
if (op.kind() == Operator::Kind::EQ && Analysis::IsSameExpressionTree(*left, *right)) {
std::unique_ptr<Expression> result = right->clone();
result->fPosition = pos;
return result;
}
// Simplify the expression when both sides are constant Boolean literals.
if (left->isBoolLiteral() && right->isBoolLiteral()) {
bool leftVal = left->as<Literal>().boolValue();
bool rightVal = right->as<Literal>().boolValue();
bool result;
switch (op.kind()) {
case Operator::Kind::LOGICALAND: result = leftVal && rightVal; break;
case Operator::Kind::LOGICALOR: result = leftVal || rightVal; break;
case Operator::Kind::LOGICALXOR: result = leftVal ^ rightVal; break;
case Operator::Kind::EQEQ: result = leftVal == rightVal; break;
case Operator::Kind::NEQ: result = leftVal != rightVal; break;
default: return nullptr;
}
return Literal::MakeBool(context, pos, result);
}
// If the left side is a Boolean literal, apply short-circuit optimizations.
if (left->isBoolLiteral()) {
return short_circuit_boolean(pos, *left, op, *right);
}
// If the right side is a Boolean literal...
if (right->isBoolLiteral()) {
// ... and the left side has no side effects...
if (!left->hasSideEffects()) {
// We can reverse the expressions and short-circuit optimizations are still valid.
return short_circuit_boolean(pos, *right, op, *left);
}
// We can't use short-circuiting, but we can still optimize away no-op Boolean expressions.
return eliminate_no_op_boolean(pos, *left, op, *right);
}
if (op.kind() == Operator::Kind::EQEQ && Analysis::IsSameExpressionTree(*left, *right)) {
// With == comparison, if both sides are the same trivial expression, this is self-
// comparison and is always true. (We are not concerned with NaN.)
return Literal::MakeBool(context, pos, /*value=*/true);
}
if (op.kind() == Operator::Kind::NEQ && Analysis::IsSameExpressionTree(*left, *right)) {
// With != comparison, if both sides are the same trivial expression, this is self-
// comparison and is always false. (We are not concerned with NaN.)
return Literal::MakeBool(context, pos, /*value=*/false);
}
if (error_on_divide_by_zero(context, pos, op, *right)) {
return nullptr;
}
// Optimize away no-op arithmetic like `x * 1`, `x *= 1`, `x + 0`, `x * 0`, `0 / x`, etc.
const Type& leftType = left->type();
const Type& rightType = right->type();
if ((leftType.isScalar() || leftType.isVector()) &&
(rightType.isScalar() || rightType.isVector())) {
std::unique_ptr<Expression> expr = simplify_no_op_arithmetic(context, pos, *left, op,
*right, resultType);
if (expr) {
return expr;
}
}
// Other than the cases above, constant folding requires both sides to be constant.
if (!left->isCompileTimeConstant() || !right->isCompileTimeConstant()) {
return nullptr;
}
// Note that fold_int_expression returns null if the result would overflow its type.
using SKSL_UINT = uint64_t;
if (left->isIntLiteral() && right->isIntLiteral()) {
SKSL_INT leftVal = left->as<Literal>().intValue();
SKSL_INT rightVal = right->as<Literal>().intValue();
#define RESULT(Op) fold_int_expression(pos, \
(SKSL_INT)(leftVal) Op (SKSL_INT)(rightVal), &resultType)
#define URESULT(Op) fold_int_expression(pos, \
(SKSL_INT)((SKSL_UINT)(leftVal) Op (SKSL_UINT)(rightVal)), &resultType)
switch (op.kind()) {
case Operator::Kind::PLUS: return URESULT(+);
case Operator::Kind::MINUS: return URESULT(-);
case Operator::Kind::STAR: return URESULT(*);
case Operator::Kind::SLASH:
if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) {
context.fErrors->error(pos, "arithmetic overflow");
return nullptr;
}
return RESULT(/);
case Operator::Kind::PERCENT:
if (leftVal == std::numeric_limits<SKSL_INT>::min() && rightVal == -1) {
context.fErrors->error(pos, "arithmetic overflow");
return nullptr;
}
return RESULT(%);
case Operator::Kind::BITWISEAND: return RESULT(&);
case Operator::Kind::BITWISEOR: return RESULT(|);
case Operator::Kind::BITWISEXOR: return RESULT(^);
case Operator::Kind::EQEQ: return RESULT(==);
case Operator::Kind::NEQ: return RESULT(!=);
case Operator::Kind::GT: return RESULT(>);
case Operator::Kind::GTEQ: return RESULT(>=);
case Operator::Kind::LT: return RESULT(<);
case Operator::Kind::LTEQ: return RESULT(<=);
case Operator::Kind::SHL:
if (rightVal >= 0 && rightVal <= 31) {
// Left-shifting a negative (or really, any signed) value is undefined behavior
// in C++, but not GLSL. Do the shift on unsigned values, to avoid UBSAN.
return URESULT(<<);
}
context.fErrors->error(pos, "shift value out of range");
return nullptr;
case Operator::Kind::SHR:
if (rightVal >= 0 && rightVal <= 31) {
return RESULT(>>);
}
context.fErrors->error(pos, "shift value out of range");
return nullptr;
default:
return nullptr;
}
#undef RESULT
#undef URESULT
}
// Perform constant folding on pairs of floating-point literals.
if (left->isFloatLiteral() && right->isFloatLiteral()) {
SKSL_FLOAT leftVal = left->as<Literal>().floatValue();
SKSL_FLOAT rightVal = right->as<Literal>().floatValue();
#define RESULT(Op) fold_float_expression(pos, leftVal Op rightVal, &resultType)
switch (op.kind()) {
case Operator::Kind::PLUS: return RESULT(+);
case Operator::Kind::MINUS: return RESULT(-);
case Operator::Kind::STAR: return RESULT(*);
case Operator::Kind::SLASH: return RESULT(/);
case Operator::Kind::EQEQ: return RESULT(==);
case Operator::Kind::NEQ: return RESULT(!=);
case Operator::Kind::GT: return RESULT(>);
case Operator::Kind::GTEQ: return RESULT(>=);
case Operator::Kind::LT: return RESULT(<);
case Operator::Kind::LTEQ: return RESULT(<=);
default: return nullptr;
}
#undef RESULT
}
// Perform matrix multiplication.
if (op.kind() == Operator::Kind::STAR) {
if (leftType.isMatrix() && rightType.isMatrix()) {
return simplify_matrix_times_matrix(context, pos, *left, *right);
}
if (leftType.isVector() && rightType.isMatrix()) {
return simplify_vector_times_matrix(context, pos, *left, *right);
}
if (leftType.isMatrix() && rightType.isVector()) {
return simplify_matrix_times_vector(context, pos, *left, *right);
}
}
// Perform constant folding on pairs of vectors/matrices.
if (is_vec_or_mat(leftType) && leftType.matches(rightType)) {
return simplify_componentwise(context, pos, *left, op, *right);
}
// Perform constant folding on vectors/matrices against scalars, e.g.: half4(2) + 2
if (rightType.isScalar() && is_vec_or_mat(leftType) &&
leftType.componentType().matches(rightType)) {
return simplify_componentwise(context, pos, *left, op,
*splat_scalar(context, *right, left->type()));
}
// Perform constant folding on scalars against vectors/matrices, e.g.: 2 + half4(2)
if (leftType.isScalar() && is_vec_or_mat(rightType) &&
rightType.componentType().matches(leftType)) {
return simplify_componentwise(context, pos, *splat_scalar(context, *left, right->type()),
op, *right);
}
// Perform constant folding on pairs of matrices or arrays.
if ((leftType.isMatrix() && rightType.isMatrix()) ||
(leftType.isArray() && rightType.isArray())) {
return simplify_constant_equality(context, pos, *left, op, *right);
}
// We aren't able to constant-fold.
return nullptr;
}
} // namespace SkSL