blob: 484aaa5cb7ef3d2f7c69e90e759336f4671709c8 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkExecutor.h"
#include "include/private/base/SkMutex.h"
#include "include/private/base/SkSemaphore.h"
#include "include/private/base/SkTArray.h"
#include "include/private/base/SkTPin.h"
#include "src/base/SkNoDestructor.h"
#include <deque>
#include <thread>
#include <utility>
using namespace skia_private;
#if defined(SK_BUILD_FOR_WIN)
#include "src/base/SkLeanWindows.h"
static int num_cores() {
SYSTEM_INFO sysinfo;
GetNativeSystemInfo(&sysinfo);
return (int)sysinfo.dwNumberOfProcessors;
}
#else
#include <unistd.h>
static int num_cores() {
return (int)sysconf(_SC_NPROCESSORS_ONLN);
}
#endif
SkExecutor::~SkExecutor() {}
void SkExecutor::add(std::function<void(void)> work) {
this->add(std::move(work), /* workList= */ 0);
}
// The default default SkExecutor is an SkTrivialExecutor, which just runs the work right away.
class SkTrivialExecutor final : public SkExecutor {
void add(std::function<void(void)> work, int /* workList */) override {
work();
}
void discardAllPendingWork() override {}
};
static SkExecutor& trivial_executor() {
static SkNoDestructor<SkTrivialExecutor> executor;
return *executor;
}
static SkExecutor* gDefaultExecutor = nullptr;
SkExecutor& SkExecutor::GetDefault() {
if (gDefaultExecutor) {
return *gDefaultExecutor;
}
return trivial_executor();
}
void SkExecutor::SetDefault(SkExecutor* executor) {
gDefaultExecutor = executor;
}
// We'll always push_back() new work, but pop from the front of deques or the back of SkTArray.
static inline std::function<void(void)> pop(std::deque<std::function<void(void)>>* list) {
std::function<void(void)> fn = std::move(list->front());
list->pop_front();
return fn;
}
static inline std::function<void(void)> pop(TArray<std::function<void(void)>>* list) {
std::function<void(void)> fn = std::move(list->back());
list->pop_back();
return fn;
}
// An SkThreadPool is an executor that runs work on a fixed pool of OS threads.
template <typename WorkList>
class SkThreadPool final : public SkExecutor {
public:
explicit SkThreadPool(int numWorkLists, int threads, bool allowBorrowing)
: fNumWorkLists(numWorkLists < 1 ? 1 : numWorkLists)
, fAllowBorrowing(allowBorrowing) {
fWorkLists = std::make_unique<WorkList[]>(fNumWorkLists);
for (int i = 0; i < threads; i++) {
fThreads.emplace_back(&Loop, this);
}
}
~SkThreadPool() override {
// Signal each thread that it's time to shut down.
for (int i = 0; i < fThreads.size(); i++) {
// Add the notification to the highest priority list
this->add(nullptr, /* workList= */ 0);
}
// Wait for each thread to shut down.
for (int i = 0; i < fThreads.size(); i++) {
fThreads[i].join();
}
}
void add(std::function<void(void)> work, int workList) override {
workList = SkTPin(workList, 0, fNumWorkLists-1);
// Add some work to our pile of work to do.
{
SkAutoMutexExclusive lock(fWorkLock);
fWorkLists[workList].emplace_back(std::move(work));
}
// Tell the Loop() threads to pick it up.
fWorkAvailable.signal(1);
}
void discardAllPendingWork() override {
SkAutoMutexExclusive lock(fWorkLock);
for (int i = 0; i < fNumWorkLists; ++i) {
fWorkLists[i].clear();
}
}
void borrow() override {
// If there is work waiting and we're allowed to borrow work, do it.
if (fAllowBorrowing && fWorkAvailable.try_wait()) {
SkAssertResult(this->do_work());
}
}
private:
// This method should usually be called only when fWorkAvailable indicates there's work to do.
bool do_work() {
std::function<void(void)> work;
bool workAvailable = false;
{
SkAutoMutexExclusive lock(fWorkLock);
for (int i = 0; i < fNumWorkLists; ++i) {
if (!fWorkLists[i].empty()) {
workAvailable = true;
work = pop(&fWorkLists[i]);
break;
}
}
}
if (!workAvailable) {
// Because we can discard work asynchronous to Loop() we can sometimes get in this
// method with no work to do
return true;
}
if (!work) {
return false; // This is Loop()'s signal to shut down.
}
work();
return true;
}
static void Loop(void* ctx) {
auto pool = (SkThreadPool*)ctx;
do {
pool->fWorkAvailable.wait();
} while (pool->do_work());
}
// Both SkMutex and SkSpinlock can work here.
using Lock = SkMutex;
TArray<std::thread> fThreads;
const int fNumWorkLists; // guaranteed >= 1
std::unique_ptr<WorkList[]> fWorkLists SK_GUARDED_BY(fWorkLock);
Lock fWorkLock;
SkSemaphore fWorkAvailable;
const bool fAllowBorrowing;
};
std::unique_ptr<SkExecutor> SkExecutor::MakeFIFOThreadPool(int threads, bool allowBorrowing) {
using WorkList = std::deque<std::function<void(void)>>;
return std::make_unique<SkThreadPool<WorkList>>(/* numWorkLists= */ 1,
threads > 0 ? threads : num_cores(),
allowBorrowing);
}
std::unique_ptr<SkExecutor> SkExecutor::MakeLIFOThreadPool(int threads, bool allowBorrowing) {
using WorkList = TArray<std::function<void(void)>>;
return std::make_unique<SkThreadPool<WorkList>>(/* numWorkLists= */ 1,
threads > 0 ? threads : num_cores(),
allowBorrowing);
}
std::unique_ptr<SkExecutor> SkExecutor::MakeMultiListFIFOThreadPool(int numWorkLists,
int threads,
bool allowBorrowing) {
using WorkList = std::deque<std::function<void(void)>>;
return std::make_unique<SkThreadPool<WorkList>>(numWorkLists,
threads > 0 ? threads : num_cores(),
allowBorrowing);
}
std::unique_ptr<SkExecutor> SkExecutor::MakeMultiListLIFOThreadPool(int numWorkLists,
int threads,
bool allowBorrowing) {
using WorkList = TArray<std::function<void(void)>>;
return std::make_unique<SkThreadPool<WorkList>>(numWorkLists,
threads > 0 ? threads : num_cores(),
allowBorrowing);
}