| /* | 
 |  * Copyright 2019 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #ifndef SkZip_DEFINED | 
 | #define SkZip_DEFINED | 
 |  | 
 | #include <iterator> | 
 | #include <tuple> | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | #include "include/core/SkTypes.h" | 
 | #include "include/private/SkTemplates.h" | 
 | #include "include/private/SkTo.h" | 
 | #include "src/core/SkSpan.h" | 
 |  | 
 | // Take a list of things that can be pointers, and use them all in parallel. The iterators and | 
 | // accessor operator[] for the class produce a tuple of the items. | 
 | template<typename... Ts> | 
 | class SkZip { | 
 |     using ReturnTuple = std::tuple<Ts&...>; | 
 |  | 
 |     class Iterator { | 
 |     public: | 
 |         using value_type = ReturnTuple; | 
 |         using difference_type = ptrdiff_t; | 
 |         using pointer = value_type*; | 
 |         using reference = value_type; | 
 |         using iterator_category = std::input_iterator_tag; | 
 |         constexpr Iterator(const SkZip* zip, size_t index) : fZip{zip}, fIndex{index} { } | 
 |         constexpr Iterator(const Iterator& that) : Iterator{ that.fZip, that.fIndex } { } | 
 |         constexpr Iterator& operator++() { ++fIndex; return *this; } | 
 |         constexpr Iterator operator++(int) { Iterator tmp(*this); operator++(); return tmp; } | 
 |         constexpr bool operator==(const Iterator& rhs) const { return fIndex == rhs.fIndex; } | 
 |         constexpr bool operator!=(const Iterator& rhs) const { return fIndex != rhs.fIndex; } | 
 |         constexpr reference operator*() { return (*fZip)[fIndex]; } | 
 |         friend constexpr difference_type operator-(Iterator lhs, Iterator rhs) { | 
 |             return lhs.fIndex - rhs.fIndex; | 
 |         } | 
 |  | 
 |     private: | 
 |         const SkZip* const fZip = nullptr; | 
 |         size_t fIndex = 0; | 
 |     }; | 
 |  | 
 |     template<typename T> | 
 |     static constexpr T* nullify = nullptr; | 
 |  | 
 | public: | 
 |     constexpr SkZip() : fPointers{nullify<Ts>...}, fSize{0} {} | 
 |     constexpr SkZip(size_t) = delete; | 
 |     constexpr SkZip(size_t size, Ts*... ts) | 
 |             : fPointers{ts...} | 
 |             , fSize{size} {} | 
 |     constexpr SkZip(const SkZip& that) = default; | 
 |  | 
 |     // Check to see if U can be used for const T or is the same as T | 
 |     template <typename U, typename T> | 
 |     using CanConvertToConst = typename std::integral_constant<bool, | 
 |                     std::is_convertible<U*, T*>::value && sizeof(U) == sizeof(T)>::type; | 
 |  | 
 |     // Allow SkZip<const T> to be constructed from SkZip<T>. | 
 |     template<typename... Us, | 
 |             typename = std::enable_if<skstd::conjunction<CanConvertToConst<Us, Ts>...>::value>> | 
 |     constexpr SkZip(const SkZip<Us...>& that) | 
 |         : fPointers(that.data()) | 
 |         , fSize{that.size()} { } | 
 |  | 
 |     constexpr ReturnTuple operator[](size_t i) const { return this->index(i);} | 
 |     constexpr size_t size() const { return fSize; } | 
 |     constexpr bool empty() const { return this->size() == 0; } | 
 |     constexpr ReturnTuple front() const { return this->index(0); } | 
 |     constexpr ReturnTuple back() const { return this->index(this->size() - 1); } | 
 |     constexpr Iterator begin() const { return Iterator{this, 0}; } | 
 |     constexpr Iterator end() const { return Iterator{this, this->size()}; } | 
 |     template<size_t I> constexpr auto get() const { | 
 |         return SkSpan(std::get<I>(fPointers), fSize); | 
 |     } | 
 |     constexpr std::tuple<Ts*...> data() const { return fPointers; } | 
 |     constexpr SkZip first(size_t n) const { | 
 |         SkASSERT(n <= this->size()); | 
 |         if (n == 0) { return SkZip(); } | 
 |         return SkZip{n, fPointers}; | 
 |     } | 
 |     constexpr SkZip last(size_t n) const { | 
 |         SkASSERT(n <= this->size()); | 
 |         if (n == 0) { return SkZip(); } | 
 |         return SkZip{n, this->pointersAt(fSize - n)}; | 
 |     } | 
 |     constexpr SkZip subspan(size_t offset, size_t count) const { | 
 |         SkASSERT(offset < this->size()); | 
 |         SkASSERT(count <= this->size() - offset); | 
 |         if (count == 0) { return SkZip(); } | 
 |         return SkZip(count, pointersAt(offset)); | 
 |     } | 
 |  | 
 | private: | 
 |     constexpr SkZip(size_t n, const std::tuple<Ts*...>& pointers) | 
 |         : fPointers{pointers} | 
 |         , fSize{n} {} | 
 |  | 
 |     constexpr ReturnTuple index(size_t i) const { | 
 |         SkASSERT(this->size() > 0); | 
 |         SkASSERT(i < this->size()); | 
 |         return indexDetail(i, std::make_index_sequence<sizeof...(Ts)>{}); | 
 |     } | 
 |  | 
 |     template<std::size_t... Is> | 
 |     constexpr ReturnTuple indexDetail(size_t i, std::index_sequence<Is...>) const { | 
 |         return ReturnTuple((std::get<Is>(fPointers))[i]...); | 
 |     } | 
 |  | 
 |     std::tuple<Ts*...> pointersAt(size_t i) const { | 
 |         SkASSERT(this->size() > 0); | 
 |         SkASSERT(i < this->size()); | 
 |         return pointersAtDetail(i, std::make_index_sequence<sizeof...(Ts)>{}); | 
 |     } | 
 |  | 
 |     template<std::size_t... Is> | 
 |     constexpr std::tuple<Ts*...> pointersAtDetail(size_t i, std::index_sequence<Is...>) const { | 
 |         return std::tuple<Ts*...>{&(std::get<Is>(fPointers))[i]...}; | 
 |     } | 
 |  | 
 |     std::tuple<Ts*...> fPointers; | 
 |     size_t fSize; | 
 | }; | 
 |  | 
 | class SkMakeZipDetail { | 
 |     template<typename T> struct DecayPointer{ | 
 |         using U = typename std::remove_cv<typename std::remove_reference<T>::type>::type; | 
 |         using type = typename std::conditional<std::is_pointer<U>::value, U, T>::type; | 
 |     }; | 
 |     template<typename T> using DecayPointerT = typename DecayPointer<T>::type; | 
 |  | 
 |     template<typename C> struct ContiguousMemory { }; | 
 |     template<typename T> struct ContiguousMemory<T*> { | 
 |         using value_type = T; | 
 |         static constexpr value_type* Data(T* t) { return t; } | 
 |         static constexpr size_t Size(T* s) { return SIZE_MAX; } | 
 |     }; | 
 |     template<typename T, size_t N> struct ContiguousMemory<T(&)[N]> { | 
 |         using value_type = T; | 
 |         static constexpr value_type* Data(T(&t)[N]) { return t; } | 
 |         static constexpr size_t Size(T(&)[N]) { return N; } | 
 |     }; | 
 |     // In general, we don't want r-value collections, but SkSpans are ok, because they are a view | 
 |     // onto an actual container. | 
 |     template<typename T> struct ContiguousMemory<SkSpan<T>> { | 
 |         using value_type = T; | 
 |         static constexpr value_type* Data(SkSpan<T> s) { return s.data(); } | 
 |         static constexpr size_t Size(SkSpan<T> s) { return s.size(); } | 
 |     }; | 
 |     // Only accept l-value references to collections. | 
 |     template<typename C> struct ContiguousMemory<C&> { | 
 |         using value_type = typename std::remove_pointer<decltype(std::declval<C>().data())>::type; | 
 |         static constexpr value_type* Data(C& c) { return c.data(); } | 
 |         static constexpr size_t Size(C& c) { return c.size(); } | 
 |     }; | 
 |     template<typename C> using Span = ContiguousMemory<DecayPointerT<C>>; | 
 |     template<typename C> using ValueType = typename Span<C>::value_type; | 
 |  | 
 |     template<typename C, typename... Ts> struct PickOneSize { }; | 
 |     template <typename T, typename... Ts> struct PickOneSize<T*, Ts...> { | 
 |         static constexpr size_t Size(T* t, Ts... ts) { | 
 |             return PickOneSize<Ts...>::Size(std::forward<Ts>(ts)...); | 
 |         } | 
 |     }; | 
 |     template <typename T, typename... Ts, size_t N> struct PickOneSize<T(&)[N], Ts...> { | 
 |         static constexpr size_t Size(T(&)[N], Ts...) { return N; } | 
 |     }; | 
 |     template<typename T, typename... Ts> struct PickOneSize<SkSpan<T>, Ts...> { | 
 |         static constexpr size_t Size(SkSpan<T> s, Ts...) { return s.size(); } | 
 |     }; | 
 |     template<typename C, typename... Ts> struct PickOneSize<C&, Ts...> { | 
 |         static constexpr size_t Size(C& c, Ts...) { return c.size(); } | 
 |     }; | 
 |  | 
 | public: | 
 |     template<typename... Ts> | 
 |     static constexpr auto MakeZip(Ts&& ... ts) { | 
 |  | 
 |         // Pick the first collection that has a size, and use that for the size. | 
 |         size_t size = PickOneSize<DecayPointerT<Ts>...>::Size(std::forward<Ts>(ts)...); | 
 |  | 
 | #ifdef SK_DEBUG | 
 |         // Check that all sizes are the same. | 
 |         size_t minSize = SIZE_MAX; | 
 |         size_t maxSize = 0; | 
 |         for (size_t s : {Span<Ts>::Size(std::forward<Ts>(ts))...}) { | 
 |             if (s != SIZE_MAX) { | 
 |                 minSize = std::min(minSize, s); | 
 |                 maxSize = std::max(maxSize, s); | 
 |             } | 
 |         } | 
 |         SkASSERT(minSize == maxSize); | 
 | #endif | 
 |  | 
 |         return SkZip<ValueType<Ts>...>{size, Span<Ts>::Data(std::forward<Ts>(ts))...}; | 
 |     } | 
 | }; | 
 |  | 
 | template<typename... Ts> | 
 | template<typename T> | 
 | constexpr T* SkZip<Ts...>::nullify; | 
 |  | 
 | template<typename... Ts> | 
 | inline constexpr auto SkMakeZip(Ts&& ... ts) { | 
 |     return SkMakeZipDetail::MakeZip(std::forward<Ts>(ts)...); | 
 | } | 
 | #endif //SkZip_DEFINED |