blob: 80298b6dda4061363a2f31fbdcea66bda3f97016 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <new>
#include "include/core/SkPoint.h"
#include "include/core/SkPoint3.h"
#include "include/gpu/GrTexture.h"
#include "include/private/GrRecordingContext.h"
#include "include/private/SkFloatingPoint.h"
#include "include/private/SkTo.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkRectPriv.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrDrawOpTest.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrResourceProviderPriv.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/generated/GrClampFragmentProcessor.h"
#include "src/gpu/geometry/GrQuad.h"
#include "src/gpu/geometry/GrQuadBuffer.h"
#include "src/gpu/geometry/GrQuadUtils.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/ops/GrFillRectOp.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
#include "src/gpu/ops/GrQuadPerEdgeAA.h"
#include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h"
#include "src/gpu/ops/GrTextureOp.h"
namespace {
using Domain = GrQuadPerEdgeAA::Domain;
using VertexSpec = GrQuadPerEdgeAA::VertexSpec;
using ColorType = GrQuadPerEdgeAA::ColorType;
// Extracts lengths of vertical and horizontal edges of axis-aligned quad. "width" is the edge
// between v0 and v2 (or v1 and v3), "height" is the edge between v0 and v1 (or v2 and v3).
static SkSize axis_aligned_quad_size(const GrQuad& quad) {
SkASSERT(quad.quadType() == GrQuad::Type::kAxisAligned);
// Simplification of regular edge length equation, since it's axis aligned and can avoid sqrt
float dw = sk_float_abs(quad.x(2) - quad.x(0)) + sk_float_abs(quad.y(2) - quad.y(0));
float dh = sk_float_abs(quad.x(1) - quad.x(0)) + sk_float_abs(quad.y(1) - quad.y(0));
return {dw, dh};
}
static bool filter_has_effect(const GrQuad& srcQuad, const GrQuad& dstQuad) {
// If not axis-aligned in src or dst, then always say it has an effect
if (srcQuad.quadType() != GrQuad::Type::kAxisAligned ||
dstQuad.quadType() != GrQuad::Type::kAxisAligned) {
return true;
}
SkRect srcRect;
SkRect dstRect;
if (srcQuad.asRect(&srcRect) && dstQuad.asRect(&dstRect)) {
// Disable filtering when there is no scaling (width and height are the same), and the
// top-left corners have the same fraction (so src and dst snap to the pixel grid
// identically).
SkASSERT(srcRect.isSorted());
return srcRect.width() != dstRect.width() || srcRect.height() != dstRect.height() ||
SkScalarFraction(srcRect.fLeft) != SkScalarFraction(dstRect.fLeft) ||
SkScalarFraction(srcRect.fTop) != SkScalarFraction(dstRect.fTop);
} else {
// Although the quads are axis-aligned, the local coordinate system is transformed such
// that fractionally-aligned sample centers will not align with the device coordinate system
// So disable filtering when edges are the same length and both srcQuad and dstQuad
// 0th vertex is integer aligned.
if (SkScalarIsInt(srcQuad.x(0)) && SkScalarIsInt(srcQuad.y(0)) &&
SkScalarIsInt(dstQuad.x(0)) && SkScalarIsInt(dstQuad.y(0))) {
// Extract edge lengths
SkSize srcSize = axis_aligned_quad_size(srcQuad);
SkSize dstSize = axis_aligned_quad_size(dstQuad);
return srcSize.fWidth != dstSize.fWidth || srcSize.fHeight != dstSize.fHeight;
} else {
return true;
}
}
}
// Describes function for normalizing src coords: [x * iw, y * ih + yOffset] can represent
// regular and rectangular textures, w/ or w/o origin correction.
struct NormalizationParams {
float fIW; // 1 / width of texture, or 1.0 for texture rectangles
float fIH; // 1 / height of texture, or 1.0 for tex rects, X -1 if bottom-left origin
float fYOffset; // 0 for top-left origin, height of [normalized] tex if bottom-left
};
static NormalizationParams proxy_normalization_params(const GrSurfaceProxy* proxy,
GrSurfaceOrigin origin) {
// Whether or not the proxy is instantiated, this is the size its texture will be, so we can
// normalize the src coordinates up front.
SkISize dimensions = proxy->backingStoreDimensions();
float iw, ih, h;
if (proxy->backendFormat().textureType() == GrTextureType::kRectangle) {
iw = ih = 1.f;
h = dimensions.height();
} else {
iw = 1.f / dimensions.width();
ih = 1.f / dimensions.height();
h = 1.f;
}
if (origin == kBottomLeft_GrSurfaceOrigin) {
return {iw, -ih, h};
} else {
return {iw, ih, 0.0f};
}
}
static SkRect inset_domain_for_bilerp(const NormalizationParams& params, const SkRect& domainRect) {
// Normalized pixel size is also equal to iw and ih, so the insets for bilerp are just
// in those units and can be applied safely after normalization. However, if the domain is
// smaller than a texel, it should clamp to the center of that axis.
float dw = domainRect.width() < params.fIW ? domainRect.width() : params.fIW;
float dh = domainRect.height() < params.fIH ? domainRect.height() : params.fIH;
return domainRect.makeInset(0.5f * dw, 0.5f * dh);
}
// Normalize the domain. If 'domainRect' is null, it is assumed no domain constraint is desired,
// so a sufficiently large rect is returned even if the quad ends up batched with an op that uses
// domains overall.
static SkRect normalize_domain(GrSamplerState::Filter filter,
const NormalizationParams& params,
const SkRect* domainRect) {
static constexpr SkRect kLargeRect = {-100000, -100000, 1000000, 1000000};
if (!domainRect) {
// Either the quad has no domain constraint and is batched with a domain constrained op
// (in which case we want a domain that doesn't restrict normalized tex coords), or the
// entire op doesn't use the domain, in which case the returned value is ignored.
return kLargeRect;
}
auto ltrb = skvx::Vec<4, float>::Load(domainRect);
// Normalize and offset
ltrb = mad(ltrb, {params.fIW, params.fIH, params.fIW, params.fIH},
{0.f, params.fYOffset, 0.f, params.fYOffset});
if (params.fIH < 0.f) {
// Flip top and bottom to keep the rect sorted when loaded back to SkRect.
ltrb = skvx::shuffle<0, 3, 2, 1>(ltrb);
}
SkRect out;
ltrb.store(&out);
return out;
}
// Normalizes logical src coords and corrects for origin
static void normalize_src_quad(const NormalizationParams& params,
GrQuad* srcQuad) {
// The src quad should not have any perspective
SkASSERT(!srcQuad->hasPerspective());
skvx::Vec<4, float> xs = srcQuad->x4f() * params.fIW;
skvx::Vec<4, float> ys = mad(srcQuad->y4f(), params.fIH, params.fYOffset);
xs.store(srcQuad->xs());
ys.store(srcQuad->ys());
}
// Count the number of proxy runs in the entry set. This usually is already computed by
// SkGpuDevice, but when the BatchLengthLimiter chops the set up it must determine a new proxy count
// for each split.
static int proxy_run_count(const GrRenderTargetContext::TextureSetEntry set[], int count) {
int actualProxyRunCount = 0;
const GrSurfaceProxy* lastProxy = nullptr;
for (int i = 0; i < count; ++i) {
if (set[i].fProxyView.proxy() != lastProxy) {
actualProxyRunCount++;
lastProxy = set[i].fProxyView.proxy();
}
}
return actualProxyRunCount;
}
/**
* Op that implements GrTextureOp::Make. It draws textured quads. Each quad can modulate against a
* the texture by color. The blend with the destination is always src-over. The edges are non-AA.
*/
class TextureOp final : public GrMeshDrawOp {
public:
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrSurfaceProxyView proxyView,
sk_sp<GrColorSpaceXform> textureXform,
GrSamplerState::Filter filter,
const SkPMColor4f& color,
GrTextureOp::Saturate saturate,
GrAAType aaType,
DrawQuad* quad,
const SkRect* domain) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<TextureOp>(std::move(proxyView), std::move(textureXform), filter,
color, saturate, aaType, quad, domain);
}
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrRenderTargetContext::TextureSetEntry set[],
int cnt,
int proxyRunCnt,
GrSamplerState::Filter filter,
GrTextureOp::Saturate saturate,
GrAAType aaType,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform) {
// Allocate size based on proxyRunCnt, since that determines number of ViewCountPairs.
SkASSERT(proxyRunCnt <= cnt);
size_t size = sizeof(TextureOp) + sizeof(ViewCountPair) * (proxyRunCnt - 1);
GrOpMemoryPool* pool = context->priv().opMemoryPool();
void* mem = pool->allocate(size);
return std::unique_ptr<GrDrawOp>(
new (mem) TextureOp(set, cnt, proxyRunCnt, filter, saturate, aaType, constraint,
viewMatrix, std::move(textureColorSpaceXform)));
}
~TextureOp() override {
for (unsigned p = 1; p < fMetadata.fProxyCount; ++p) {
fViewCountPairs[p].~ViewCountPair();
}
}
const char* name() const override { return "TextureOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
bool mipped = (GrSamplerState::Filter::kMipMap == fMetadata.filter());
for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) {
func(fViewCountPairs[p].fProxy.get(), GrMipMapped(mipped));
}
}
#ifdef SK_DEBUG
SkString dumpInfo() const override {
SkString str;
str.appendf("# draws: %d\n", fQuads.count());
auto iter = fQuads.iterator();
for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) {
str.appendf("Proxy ID: %d, Filter: %d\n",
fViewCountPairs[p].fProxy->uniqueID().asUInt(),
static_cast<int>(fMetadata.fFilter));
int i = 0;
while(i < fViewCountPairs[p].fQuadCnt && iter.next()) {
const GrQuad* quad = iter.deviceQuad();
GrQuad uv = iter.isLocalValid() ? *(iter.localQuad()) : GrQuad();
const ColorDomainAndAA& info = iter.metadata();
str.appendf(
"%d: Color: 0x%08x, Domain(%d): [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n"
" UVs [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n"
" Quad [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n",
i, info.fColor.toBytes_RGBA(), fMetadata.fDomain, info.fDomainRect.fLeft,
info.fDomainRect.fTop, info.fDomainRect.fRight, info.fDomainRect.fBottom,
quad->point(0).fX, quad->point(0).fY, quad->point(1).fX, quad->point(1).fY,
quad->point(2).fX, quad->point(2).fY, quad->point(3).fX, quad->point(3).fY,
uv.point(0).fX, uv.point(0).fY, uv.point(1).fX, uv.point(1).fY,
uv.point(2).fX, uv.point(2).fY, uv.point(3).fX, uv.point(3).fY);
i++;
}
}
str += INHERITED::dumpInfo();
return str;
}
static void ValidateResourceLimits() {
// The op implementation has an upper bound on the number of quads that it can represent.
// However, the resource manager imposes its own limit on the number of quads, which should
// always be lower than the numerical limit this op can hold.
using CountStorage = decltype(Metadata::fTotalQuadCount);
CountStorage maxQuadCount = std::numeric_limits<CountStorage>::max();
// GrResourceProvider::Max...() is typed as int, so don't compare across signed/unsigned.
int resourceLimit = SkTo<int>(maxQuadCount);
SkASSERT(GrResourceProvider::MaxNumAAQuads() <= resourceLimit &&
GrResourceProvider::MaxNumNonAAQuads() <= resourceLimit);
}
#endif
GrProcessorSet::Analysis finalize(
const GrCaps& caps, const GrAppliedClip*, bool hasMixedSampledCoverage,
GrClampType clampType) override {
SkASSERT(fMetadata.colorType() == ColorType::kNone);
auto iter = fQuads.metadata();
while(iter.next()) {
auto colorType = GrQuadPerEdgeAA::MinColorType(iter->fColor);
fMetadata.fColorType = std::max(fMetadata.fColorType, static_cast<uint16_t>(colorType));
}
return GrProcessorSet::EmptySetAnalysis();
}
FixedFunctionFlags fixedFunctionFlags() const override {
return fMetadata.aaType() == GrAAType::kMSAA ? FixedFunctionFlags::kUsesHWAA
: FixedFunctionFlags::kNone;
}
DEFINE_OP_CLASS_ID
private:
friend class ::GrOpMemoryPool;
struct ColorDomainAndAA {
ColorDomainAndAA(const SkPMColor4f& color, const SkRect& domainRect, GrQuadAAFlags aaFlags)
: fColor(color)
, fDomainRect(domainRect)
, fAAFlags(static_cast<uint16_t>(aaFlags)) {
SkASSERT(fAAFlags == static_cast<uint16_t>(aaFlags));
}
SkPMColor4f fColor;
// If the op doesn't use domains, this is ignored. If the op uses domains and the specific
// entry does not, this rect will equal kLargeRect, so it automatically has no effect.
SkRect fDomainRect;
unsigned fAAFlags : 4;
GrQuadAAFlags aaFlags() const { return static_cast<GrQuadAAFlags>(fAAFlags); }
};
struct ViewCountPair {
// Normally this would be a GrSurfaceProxyView, but GrTextureOp applies the GrOrigin right
// away so it doesn't need to be stored, and all ViewCountPairs in an op have the same
// swizzle so that is stored in the op metadata.
sk_sp<GrSurfaceProxy> fProxy;
int fQuadCnt;
};
// TextureOp and ViewCountPair are 8 byte aligned. This is packed into 8 bytes to minimally
// increase the size of the op; increasing the op size can have a surprising impact on
// performance (since texture ops are one of the most commonly used in an app).
struct Metadata {
// AAType must be filled after initialization; ColorType is determined in finalize()
Metadata(const GrSwizzle& swizzle, GrSamplerState::Filter filter,
GrQuadPerEdgeAA::Domain domain, GrTextureOp::Saturate saturate)
: fSwizzle(swizzle)
, fProxyCount(1)
, fTotalQuadCount(1)
, fFilter(static_cast<uint16_t>(filter))
, fAAType(static_cast<uint16_t>(GrAAType::kNone))
, fColorType(static_cast<uint16_t>(ColorType::kNone))
, fDomain(static_cast<uint16_t>(domain))
, fSaturate(static_cast<uint16_t>(saturate)) {}
GrSwizzle fSwizzle; // sizeof(GrSwizzle) == uint16_t
uint16_t fProxyCount;
// This will be >= fProxyCount, since a proxy may be drawn multiple times
uint16_t fTotalQuadCount;
// These must be based on uint16_t to help MSVC's pack bitfields optimally
uint16_t fFilter : 2; // GrSamplerState::Filter
uint16_t fAAType : 2; // GrAAType
uint16_t fColorType : 2; // GrQuadPerEdgeAA::ColorType
uint16_t fDomain : 1; // bool
uint16_t fSaturate : 1; // bool
uint16_t fUnused : 8; // # of bits left before Metadata exceeds 8 bytes
GrSamplerState::Filter filter() const {
return static_cast<GrSamplerState::Filter>(fFilter);
}
GrAAType aaType() const { return static_cast<GrAAType>(fAAType); }
ColorType colorType() const { return static_cast<ColorType>(fColorType); }
Domain domain() const { return static_cast<Domain>(fDomain); }
GrTextureOp::Saturate saturate() const {
return static_cast<GrTextureOp::Saturate>(fSaturate);
}
static_assert(GrSamplerState::kFilterCount <= 4);
static_assert(kGrAATypeCount <= 4);
static_assert(GrQuadPerEdgeAA::kColorTypeCount <= 4);
};
static_assert(sizeof(Metadata) == 8);
// This descriptor is used in both onPrePrepareDraws and onPrepareDraws.
//
// In the onPrePrepareDraws case it is allocated in the creation-time opData
// arena. Both allocateCommon and allocatePrePrepareOnly are called and they also allocate
// their memory in the creation-time opData arena.
//
// In the onPrepareDraws case this descriptor is created on the stack and only
// allocateCommon is called. In this case the common memory fields are allocated
// in the flush-time arena (i.e., as part of the flushState).
struct PrePreparedDesc {
VertexSpec fVertexSpec;
int fNumProxies = 0;
int fNumTotalQuads = 0;
GrPipeline::DynamicStateArrays* fDynamicStateArrays = nullptr;
GrPipeline::FixedDynamicState* fFixedDynamicState = nullptr;
// This member variable is only used by 'onPrePrepareDraws'. The prior five are also
// used by 'onPrepareDraws'
char* fVertices = nullptr;
// How big should 'fVertices' be to hold all the vertex data?
size_t totalSizeInBytes() const {
return fNumTotalQuads * fVertexSpec.verticesPerQuad() * fVertexSpec.vertexSize();
}
int totalNumVertices() const {
return fNumTotalQuads * fVertexSpec.verticesPerQuad();
}
// Helper to fill in the fFixedDynamicState and fDynamicStateArrays. If there is more
// than one mesh/proxy they are stored in fDynamicStateArrays but if there is only one
// it is stored in fFixedDynamicState.
void setMeshProxy(int index, GrSurfaceProxy* proxy) {
SkASSERT(index < fNumProxies);
if (fDynamicStateArrays) {
SkASSERT(fDynamicStateArrays->fPrimitiveProcessorTextures);
SkASSERT(fNumProxies > 1);
fDynamicStateArrays->fPrimitiveProcessorTextures[index] = proxy;
} else {
SkASSERT(fFixedDynamicState);
SkASSERT(fNumProxies == 1);
fFixedDynamicState->fPrimitiveProcessorTextures[index] = proxy;
}
}
// Allocate the fields required in both onPrePrepareDraws and onPrepareDraws
void allocateCommon(SkArenaAlloc* arena, const GrAppliedClip* clip) {
// We'll use a dynamic state array for the GP textures when there are multiple ops.
// Otherwise, we use fixed dynamic state to specify the single op's proxy.
if (fNumProxies > 1) {
fDynamicStateArrays = Target::AllocDynamicStateArrays(arena, fNumProxies, 1, false);
fFixedDynamicState = Target::MakeFixedDynamicState(arena, clip, 0);
} else {
fFixedDynamicState = Target::MakeFixedDynamicState(arena, clip, 1);
}
}
// Allocate the fields only needed by onPrePrepareDraws
void allocatePrePrepareOnly(SkArenaAlloc* arena) {
fVertices = arena->makeArrayDefault<char>(this->totalSizeInBytes());
}
};
// If domainRect is not null it will be used to apply a strict src rect-style constraint.
TextureOp(GrSurfaceProxyView proxyView,
sk_sp<GrColorSpaceXform> textureColorSpaceXform,
GrSamplerState::Filter filter,
const SkPMColor4f& color,
GrTextureOp::Saturate saturate,
GrAAType aaType,
DrawQuad* quad,
const SkRect* domainRect)
: INHERITED(ClassID())
, fQuads(1, true /* includes locals */)
, fTextureColorSpaceXform(std::move(textureColorSpaceXform))
, fPrePreparedDesc(nullptr)
, fMetadata(proxyView.swizzle(), filter, Domain(!!domainRect), saturate) {
// Clean up disparities between the overall aa type and edge configuration and apply
// optimizations based on the rect and matrix when appropriate
GrQuadUtils::ResolveAAType(aaType, quad->fEdgeFlags, quad->fDevice,
&aaType, &quad->fEdgeFlags);
fMetadata.fAAType = static_cast<uint16_t>(aaType);
// We expect our caller to have already caught this optimization.
SkASSERT(!domainRect ||
!domainRect->contains(proxyView.proxy()->backingStoreBoundsRect()));
// We may have had a strict constraint with nearest filter solely due to possible AA bloat.
// If we don't have (or determined we don't need) coverage AA then we can skip using a
// domain.
if (domainRect && filter == GrSamplerState::Filter::kNearest &&
aaType != GrAAType::kCoverage) {
domainRect = nullptr;
fMetadata.fDomain = static_cast<uint16_t>(Domain::kNo);
}
// Normalize src coordinates and the domain (if set)
NormalizationParams params = proxy_normalization_params(proxyView.proxy(),
proxyView.origin());
normalize_src_quad(params, &quad->fLocal);
SkRect domain = normalize_domain(filter, params, domainRect);
// Set bounds before clipping so we don't have to worry about unioning the bounds of
// the two potential quads (GrQuad::bounds() is perspective-safe).
this->setBounds(quad->fDevice.bounds(), HasAABloat(aaType == GrAAType::kCoverage),
IsHairline::kNo);
int quadCount = this->appendQuad(quad, color, domain);
fViewCountPairs[0] = {proxyView.detachProxy(), quadCount};
}
TextureOp(GrRenderTargetContext::TextureSetEntry set[],
int cnt,
int proxyRunCnt,
GrSamplerState::Filter filter,
GrTextureOp::Saturate saturate,
GrAAType aaType,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform)
: INHERITED(ClassID())
, fQuads(cnt, true /* includes locals */)
, fTextureColorSpaceXform(std::move(textureColorSpaceXform))
, fPrePreparedDesc(nullptr)
, fMetadata(set[0].fProxyView.swizzle(), GrSamplerState::Filter::kNearest,
Domain::kNo, saturate) {
// Update counts to reflect the batch op
fMetadata.fProxyCount = SkToUInt(proxyRunCnt);
fMetadata.fTotalQuadCount = SkToUInt(cnt);
SkRect bounds = SkRectPriv::MakeLargestInverted();
GrAAType netAAType = GrAAType::kNone; // aa type maximally compatible with all dst rects
Domain netDomain = Domain::kNo;
GrSamplerState::Filter netFilter = GrSamplerState::Filter::kNearest;
const GrSurfaceProxy* curProxy = nullptr;
// 'q' is the index in 'set' and fQuadBuffer; 'p' is the index in fViewCountPairs and only
// increases when set[q]'s proxy changes.
int p = 0;
for (int q = 0; q < cnt; ++q) {
if (q == 0) {
// We do not placement new the first ViewCountPair since that one is allocated and
// initialized as part of the GrTextureOp creation.
fViewCountPairs[0].fProxy = set[0].fProxyView.detachProxy();
fViewCountPairs[0].fQuadCnt = 0;
curProxy = fViewCountPairs[0].fProxy.get();
} else if (set[q].fProxyView.proxy() != curProxy) {
// We must placement new the ViewCountPairs here so that the sk_sps in the
// GrSurfaceProxyView get initialized properly.
new(&fViewCountPairs[++p])ViewCountPair({set[q].fProxyView.detachProxy(), 0});
curProxy = fViewCountPairs[p].fProxy.get();
SkASSERT(GrTextureProxy::ProxiesAreCompatibleAsDynamicState(
curProxy, fViewCountPairs[0].fProxy.get()));
SkASSERT(fMetadata.fSwizzle == set[q].fProxyView.swizzle());
} // else another quad referencing the same proxy
SkMatrix ctm = viewMatrix;
if (set[q].fPreViewMatrix) {
ctm.preConcat(*set[q].fPreViewMatrix);
}
// Use dstRect/srcRect unless dstClip is provided, in which case derive new source
// coordinates by mapping dstClipQuad by the dstRect to srcRect transform.
DrawQuad quad;
if (set[q].fDstClipQuad) {
quad.fDevice = GrQuad::MakeFromSkQuad(set[q].fDstClipQuad, ctm);
SkPoint srcPts[4];
GrMapRectPoints(set[q].fDstRect, set[q].fSrcRect, set[q].fDstClipQuad, srcPts, 4);
quad.fLocal = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I());
} else {
quad.fDevice = GrQuad::MakeFromRect(set[q].fDstRect, ctm);
quad.fLocal = GrQuad(set[q].fSrcRect);
}
if (netFilter != filter && filter_has_effect(quad.fLocal, quad.fDevice)) {
// The only way netFilter != filter is if bilerp is requested and we haven't yet
// found a quad that requires bilerp (so net is still nearest).
SkASSERT(netFilter == GrSamplerState::Filter::kNearest &&
filter == GrSamplerState::Filter::kBilerp);
netFilter = GrSamplerState::Filter::kBilerp;
}
// Normalize the src quads and apply origin
NormalizationParams proxyParams = proxy_normalization_params(
curProxy, set[q].fProxyView.origin());
normalize_src_quad(proxyParams, &quad.fLocal);
// Update overall bounds of the op as the union of all quads
bounds.joinPossiblyEmptyRect(quad.fDevice.bounds());
// Determine the AA type for the quad, then merge with net AA type
GrAAType aaForQuad;
GrQuadUtils::ResolveAAType(aaType, set[q].fAAFlags, quad.fDevice,
&aaForQuad, &quad.fEdgeFlags);
// Resolve sets aaForQuad to aaType or None, there is never a change between aa methods
SkASSERT(aaForQuad == GrAAType::kNone || aaForQuad == aaType);
if (netAAType == GrAAType::kNone && aaForQuad != GrAAType::kNone) {
netAAType = aaType;
}
// Calculate metadata for the entry
const SkRect* domainForQuad = nullptr;
if (constraint == SkCanvas::kStrict_SrcRectConstraint) {
// Check (briefly) if the strict constraint is needed for this set entry
if (!set[q].fSrcRect.contains(curProxy->backingStoreBoundsRect()) &&
(filter == GrSamplerState::Filter::kBilerp ||
aaForQuad == GrAAType::kCoverage)) {
// Can't rely on hardware clamping and the draw will access outer texels
// for AA and/or bilerp. Unlike filter quality, this op still has per-quad
// control over AA so that can check aaForQuad, not netAAType.
netDomain = Domain::kYes;
domainForQuad = &set[q].fSrcRect;
}
}
// This domain may represent a no-op, otherwise it will have the origin and dimensions
// of the texture applied to it. Insetting for bilinear filtering is deferred until
// on[Pre]Prepare so that the overall filter can be lazily determined.
SkRect domain = normalize_domain(filter, proxyParams, domainForQuad);
// Always append a quad (or 2 if perspective clipped), it just may refer back to a prior
// ViewCountPair (this frequently happens when Chrome draws 9-patches).
float alpha = SkTPin(set[q].fAlpha, 0.f, 1.f);
fViewCountPairs[p].fQuadCnt += this->appendQuad(
&quad, {alpha, alpha, alpha, alpha}, domain);
}
// The # of proxy switches should match what was provided (+1 because we incremented p
// when a new proxy was encountered).
SkASSERT((p + 1) == fMetadata.fProxyCount);
SkASSERT(fQuads.count() == fMetadata.fTotalQuadCount);
fMetadata.fAAType = static_cast<uint16_t>(netAAType);
fMetadata.fFilter = static_cast<uint16_t>(netFilter);
fMetadata.fDomain = static_cast<uint16_t>(netDomain);
this->setBounds(bounds, HasAABloat(netAAType == GrAAType::kCoverage), IsHairline::kNo);
}
int appendQuad(DrawQuad* quad, const SkPMColor4f& color, const SkRect& domain) {
DrawQuad extra;
// Only clip when there's anti-aliasing. When non-aa, the GPU clips just fine and there's
// no inset/outset math that requires w > 0.
int quadCount = quad->fEdgeFlags != GrQuadAAFlags::kNone ?
GrQuadUtils::ClipToW0(quad, &extra) : 1;
if (quadCount == 0) {
// We can't discard the op at this point, but disable AA flags so it won't go through
// inset/outset processing
quad->fEdgeFlags = GrQuadAAFlags::kNone;
quadCount = 1;
}
fQuads.append(quad->fDevice, {color, domain, quad->fEdgeFlags}, &quad->fLocal);
if (quadCount > 1) {
fQuads.append(extra.fDevice, {color, domain, extra.fEdgeFlags}, &extra.fLocal);
fMetadata.fTotalQuadCount++;
}
return quadCount;
}
void onPrePrepareDraws(GrRecordingContext* context,
const GrSurfaceProxyView* dstView,
GrAppliedClip* clip,
const GrXferProcessor::DstProxyView& dstProxyView) override {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
SkDEBUGCODE(this->validate();)
SkASSERT(!fPrePreparedDesc);
SkArenaAlloc* arena = context->priv().recordTimeAllocator();
fPrePreparedDesc = arena->make<PrePreparedDesc>();
this->characterize(fPrePreparedDesc);
fPrePreparedDesc->allocateCommon(arena, clip);
fPrePreparedDesc->allocatePrePrepareOnly(arena);
// At this juncture we only fill in the vertex data and state arrays. Filling in of
// the meshes is left until onPrepareDraws.
SkAssertResult(FillInData(*context->priv().caps(), this, fPrePreparedDesc,
fPrePreparedDesc->fVertices, nullptr, 0, nullptr, nullptr));
}
static bool FillInData(const GrCaps& caps, TextureOp* texOp, PrePreparedDesc* desc,
char* pVertexData, GrMesh* meshes, int absBufferOffset,
sk_sp<const GrBuffer> vertexBuffer,
sk_sp<const GrBuffer> indexBuffer) {
int totQuadsSeen = 0;
SkDEBUGCODE(int totVerticesSeen = 0;)
SkDEBUGCODE(const size_t vertexSize = desc->fVertexSpec.vertexSize());
GrQuadPerEdgeAA::Tessellator tessellator(desc->fVertexSpec, pVertexData);
int meshIndex = 0;
for (const auto& op : ChainRange<TextureOp>(texOp)) {
auto iter = op.fQuads.iterator();
for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) {
const int quadCnt = op.fViewCountPairs[p].fQuadCnt;
SkDEBUGCODE(int meshVertexCnt = quadCnt * desc->fVertexSpec.verticesPerQuad());
SkASSERT(meshIndex < desc->fNumProxies);
if (pVertexData) {
// Can just use top-left for origin here since we only need the dimensions to
// determine the texel size for insetting.
NormalizationParams params = proxy_normalization_params(
op.fViewCountPairs[p].fProxy.get(), kTopLeft_GrSurfaceOrigin);
bool inset = texOp->fMetadata.filter() != GrSamplerState::Filter::kNearest;
for (int i = 0; i < quadCnt && iter.next(); ++i) {
SkASSERT(iter.isLocalValid());
const ColorDomainAndAA& info = iter.metadata();
tessellator.append(iter.deviceQuad(), iter.localQuad(), info.fColor,
inset ? inset_domain_for_bilerp(params, info.fDomainRect)
: info.fDomainRect,
info.aaFlags());
}
desc->setMeshProxy(meshIndex, op.fViewCountPairs[p].fProxy.get());
SkASSERT((totVerticesSeen + meshVertexCnt) * vertexSize
== (size_t)(tessellator.vertices() - pVertexData));
}
if (meshes) {
GrQuadPerEdgeAA::ConfigureMesh(caps, &(meshes[meshIndex]), desc->fVertexSpec,
totQuadsSeen, quadCnt, desc->totalNumVertices(),
vertexBuffer, indexBuffer, absBufferOffset);
}
++meshIndex;
totQuadsSeen += quadCnt;
SkDEBUGCODE(totVerticesSeen += meshVertexCnt);
SkASSERT(totQuadsSeen * desc->fVertexSpec.verticesPerQuad() == totVerticesSeen);
}
// If quad counts per proxy were calculated correctly, the entire iterator
// should have been consumed.
SkASSERT(!pVertexData || !iter.next());
}
SkASSERT(!pVertexData ||
(desc->totalSizeInBytes() == (size_t)(tessellator.vertices() - pVertexData)));
SkASSERT(meshIndex == desc->fNumProxies);
SkASSERT(totQuadsSeen == desc->fNumTotalQuads);
SkASSERT(totVerticesSeen == desc->totalNumVertices());
return true;
}
#ifdef SK_DEBUG
void validate() const override {
// NOTE: Since this is debug-only code, we use the virtual asTextureProxy()
auto textureType = fViewCountPairs[0].fProxy->asTextureProxy()->textureType();
GrAAType aaType = fMetadata.aaType();
int quadCount = 0;
for (const auto& op : ChainRange<TextureOp>(this)) {
SkASSERT(op.fMetadata.fSwizzle == fMetadata.fSwizzle);
for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) {
auto* proxy = op.fViewCountPairs[p].fProxy->asTextureProxy();
quadCount += op.fViewCountPairs[p].fQuadCnt;
SkASSERT(proxy);
SkASSERT(proxy->textureType() == textureType);
}
// Each individual op must be a single aaType. kCoverage and kNone ops can chain
// together but kMSAA ones do not.
if (aaType == GrAAType::kCoverage || aaType == GrAAType::kNone) {
SkASSERT(op.fMetadata.aaType() == GrAAType::kCoverage ||
op.fMetadata.aaType() == GrAAType::kNone);
} else {
SkASSERT(aaType == GrAAType::kMSAA && op.fMetadata.aaType() == GrAAType::kMSAA);
}
}
SkASSERT(quadCount == this->numChainedQuads());
}
#endif
#if GR_TEST_UTILS
int numQuads() const final { return this->totNumQuads(); }
#endif
void characterize(PrePreparedDesc* desc) const {
GrQuad::Type quadType = GrQuad::Type::kAxisAligned;
ColorType colorType = ColorType::kNone;
GrQuad::Type srcQuadType = GrQuad::Type::kAxisAligned;
Domain domain = Domain::kNo;
GrAAType overallAAType = fMetadata.aaType();
desc->fNumProxies = 0;
desc->fNumTotalQuads = 0;
int maxQuadsPerMesh = 0;
for (const auto& op : ChainRange<TextureOp>(this)) {
if (op.fQuads.deviceQuadType() > quadType) {
quadType = op.fQuads.deviceQuadType();
}
if (op.fQuads.localQuadType() > srcQuadType) {
srcQuadType = op.fQuads.localQuadType();
}
if (op.fMetadata.domain() == Domain::kYes) {
domain = Domain::kYes;
}
colorType = std::max(colorType, op.fMetadata.colorType());
desc->fNumProxies += op.fMetadata.fProxyCount;
for (unsigned p = 0; p < op.fMetadata.fProxyCount; ++p) {
maxQuadsPerMesh = std::max(op.fViewCountPairs[p].fQuadCnt, maxQuadsPerMesh);
}
desc->fNumTotalQuads += op.totNumQuads();
if (op.fMetadata.aaType() == GrAAType::kCoverage) {
overallAAType = GrAAType::kCoverage;
}
}
SkASSERT(desc->fNumTotalQuads == this->numChainedQuads());
SkASSERT(!CombinedQuadCountWillOverflow(overallAAType, false, desc->fNumTotalQuads));
auto indexBufferOption = GrQuadPerEdgeAA::CalcIndexBufferOption(overallAAType,
maxQuadsPerMesh);
desc->fVertexSpec = VertexSpec(quadType, colorType, srcQuadType, /* hasLocal */ true,
domain, overallAAType, /* alpha as coverage */ true,
indexBufferOption);
SkASSERT(desc->fNumTotalQuads <= GrQuadPerEdgeAA::QuadLimit(indexBufferOption));
}
int totNumQuads() const {
#ifdef SK_DEBUG
int tmp = 0;
for (unsigned p = 0; p < fMetadata.fProxyCount; ++p) {
tmp += fViewCountPairs[p].fQuadCnt;
}
SkASSERT(tmp == fMetadata.fTotalQuadCount);
#endif
return fMetadata.fTotalQuadCount;
}
int numChainedQuads() const {
int numChainedQuads = this->totNumQuads();
for (const GrOp* tmp = this->prevInChain(); tmp; tmp = tmp->prevInChain()) {
numChainedQuads += ((const TextureOp*)tmp)->totNumQuads();
}
for (const GrOp* tmp = this->nextInChain(); tmp; tmp = tmp->nextInChain()) {
numChainedQuads += ((const TextureOp*)tmp)->totNumQuads();
}
return numChainedQuads;
}
// onPrePrepareDraws may or may not have been called at this point
void onPrepareDraws(Target* target) override {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
SkDEBUGCODE(this->validate();)
PrePreparedDesc desc;
if (fPrePreparedDesc) {
desc = *fPrePreparedDesc;
} else {
SkArenaAlloc* arena = target->allocator();
this->characterize(&desc);
desc.allocateCommon(arena, target->appliedClip());
SkASSERT(!desc.fVertices);
}
size_t vertexSize = desc.fVertexSpec.vertexSize();
sk_sp<const GrBuffer> vbuffer;
int vertexOffsetInBuffer = 0;
void* vdata = target->makeVertexSpace(vertexSize, desc.totalNumVertices(),
&vbuffer, &vertexOffsetInBuffer);
if (!vdata) {
SkDebugf("Could not allocate vertices\n");
return;
}
sk_sp<const GrBuffer> indexBuffer;
if (desc.fVertexSpec.needsIndexBuffer()) {
indexBuffer = GrQuadPerEdgeAA::GetIndexBuffer(target,
desc.fVertexSpec.indexBufferOption());
if (!indexBuffer) {
SkDebugf("Could not allocate indices\n");
return;
}
}
// Note: this allocation is always in the flush-time arena (i.e., the flushState)
GrMesh* meshes = target->allocMeshes(desc.fNumProxies);
bool result;
if (fPrePreparedDesc) {
memcpy(vdata, desc.fVertices, desc.totalSizeInBytes());
// The above memcpy filled in the vertex data - just call FillInData to fill in the
// mesh data
result = FillInData(target->caps(), this, &desc, nullptr, meshes, vertexOffsetInBuffer,
std::move(vbuffer), std::move(indexBuffer));
} else {
// Fills in both vertex data and mesh data
result = FillInData(target->caps(), this, &desc, (char*) vdata, meshes,
vertexOffsetInBuffer, std::move(vbuffer), std::move(indexBuffer));
}
if (!result) {
return;
}
GrGeometryProcessor* gp;
{
const GrBackendFormat& backendFormat =
fViewCountPairs[0].fProxy->backendFormat();
GrSamplerState samplerState = GrSamplerState(GrSamplerState::WrapMode::kClamp,
fMetadata.filter());
gp = GrQuadPerEdgeAA::MakeTexturedProcessor(target->allocator(),
desc.fVertexSpec, *target->caps().shaderCaps(), backendFormat,
samplerState, fMetadata.fSwizzle, std::move(fTextureColorSpaceXform),
fMetadata.saturate());
SkASSERT(vertexSize == gp->vertexStride());
}
target->recordDraw(gp, meshes, desc.fNumProxies,
desc.fFixedDynamicState, desc.fDynamicStateArrays,
desc.fVertexSpec.primitiveType());
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
auto pipelineFlags = (GrAAType::kMSAA == fMetadata.aaType())
? GrPipeline::InputFlags::kHWAntialias
: GrPipeline::InputFlags::kNone;
auto pipeline = GrSimpleMeshDrawOpHelper::CreatePipeline(flushState,
GrProcessorSet::MakeEmptySet(),
pipelineFlags);
flushState->executeDrawsAndUploadsForMeshDrawOp(this, chainBounds, pipeline);
}
CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*,
const GrCaps& caps) override {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
const auto* that = t->cast<TextureOp>();
if (fPrePreparedDesc || that->fPrePreparedDesc) {
// This should never happen (since only DDL recorded ops should be prePrepared)
// but, in any case, we should never combine ops that that been prePrepared
return CombineResult::kCannotCombine;
}
if (fMetadata.domain() != that->fMetadata.domain()) {
// It is technically possible to combine operations across domain modes, but performance
// testing suggests it's better to make more draw calls where some take advantage of
// the more optimal shader path without coordinate clamping.
return CombineResult::kCannotCombine;
}
if (!GrColorSpaceXform::Equals(fTextureColorSpaceXform.get(),
that->fTextureColorSpaceXform.get())) {
return CombineResult::kCannotCombine;
}
bool upgradeToCoverageAAOnMerge = false;
if (fMetadata.aaType() != that->fMetadata.aaType()) {
if (!CanUpgradeAAOnMerge(fMetadata.aaType(), that->fMetadata.aaType())) {
return CombineResult::kCannotCombine;
}
upgradeToCoverageAAOnMerge = true;
}
if (CombinedQuadCountWillOverflow(fMetadata.aaType(), upgradeToCoverageAAOnMerge,
this->numChainedQuads() + that->numChainedQuads())) {
return CombineResult::kCannotCombine;
}
if (fMetadata.saturate() != that->fMetadata.saturate()) {
return CombineResult::kCannotCombine;
}
if (fMetadata.filter() != that->fMetadata.filter()) {
return CombineResult::kCannotCombine;
}
if (fMetadata.fSwizzle != that->fMetadata.fSwizzle) {
return CombineResult::kCannotCombine;
}
const auto* thisProxy = fViewCountPairs[0].fProxy.get();
const auto* thatProxy = that->fViewCountPairs[0].fProxy.get();
if (fMetadata.fProxyCount > 1 || that->fMetadata.fProxyCount > 1 ||
thisProxy != thatProxy) {
// We can't merge across different proxies. Check if 'this' can be chained with 'that'.
if (GrTextureProxy::ProxiesAreCompatibleAsDynamicState(thisProxy, thatProxy) &&
caps.dynamicStateArrayGeometryProcessorTextureSupport()) {
return CombineResult::kMayChain;
}
return CombineResult::kCannotCombine;
}
fMetadata.fDomain |= that->fMetadata.fDomain;
fMetadata.fColorType = std::max(fMetadata.fColorType, that->fMetadata.fColorType);
if (upgradeToCoverageAAOnMerge) {
fMetadata.fAAType = static_cast<uint16_t>(GrAAType::kCoverage);
}
// Concatenate quad lists together
fQuads.concat(that->fQuads);
fViewCountPairs[0].fQuadCnt += that->fQuads.count();
fMetadata.fTotalQuadCount += that->fQuads.count();
return CombineResult::kMerged;
}
GrQuadBuffer<ColorDomainAndAA> fQuads;
sk_sp<GrColorSpaceXform> fTextureColorSpaceXform;
// 'fPrePreparedDesc' is only filled in when this op has been prePrepared. In that case,
// it - and the matching dynamic and fixed state - have been allocated in the opPOD arena
// not in the FlushState arena.
PrePreparedDesc* fPrePreparedDesc;
// All configurable state of TextureOp is packed into one field to minimize the op's size.
// Historically, increasing the size of TextureOp has caused surprising perf regressions, so
// consider/measure changes with care.
Metadata fMetadata;
// This field must go last. When allocating this op, we will allocate extra space to hold
// additional ViewCountPairs immediately after the op's allocation so we can treat this
// as an fProxyCnt-length array.
ViewCountPair fViewCountPairs[1];
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
#if GR_TEST_UTILS
uint32_t GrTextureOp::ClassID() {
return TextureOp::ClassID();
}
#endif
std::unique_ptr<GrDrawOp> GrTextureOp::Make(GrRecordingContext* context,
GrSurfaceProxyView proxyView,
SkAlphaType alphaType,
sk_sp<GrColorSpaceXform> textureXform,
GrSamplerState::Filter filter,
const SkPMColor4f& color,
Saturate saturate,
SkBlendMode blendMode,
GrAAType aaType,
DrawQuad* quad,
const SkRect* domain) {
// Apply optimizations that are valid whether or not using GrTextureOp or GrFillRectOp
if (domain && domain->contains(proxyView.proxy()->backingStoreBoundsRect())) {
// No need for a shader-based domain if hardware clamping achieves the same effect
domain = nullptr;
}
if (filter != GrSamplerState::Filter::kNearest &&
!filter_has_effect(quad->fLocal, quad->fDevice)) {
filter = GrSamplerState::Filter::kNearest;
}
if (blendMode == SkBlendMode::kSrcOver) {
return TextureOp::Make(context, std::move(proxyView), std::move(textureXform), filter,
color, saturate, aaType, std::move(quad), domain);
} else {
// Emulate complex blending using GrFillRectOp
GrPaint paint;
paint.setColor4f(color);
paint.setXPFactory(SkBlendMode_AsXPFactory(blendMode));
std::unique_ptr<GrFragmentProcessor> fp;
if (domain) {
const auto& caps = *context->priv().caps();
SkRect localRect;
if (quad->fLocal.asRect(&localRect)) {
fp = GrTextureEffect::MakeSubset(std::move(proxyView), alphaType, SkMatrix::I(), filter,
*domain, localRect, caps);
} else {
fp = GrTextureEffect::MakeSubset(std::move(proxyView), alphaType, SkMatrix::I(), filter,
*domain, caps);
}
} else {
fp = GrTextureEffect::Make(std::move(proxyView), alphaType, SkMatrix::I(), filter);
}
fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(textureXform));
paint.addColorFragmentProcessor(std::move(fp));
if (saturate == GrTextureOp::Saturate::kYes) {
paint.addColorFragmentProcessor(GrClampFragmentProcessor::Make(false));
}
return GrFillRectOp::Make(context, std::move(paint), aaType, quad);
}
}
// A helper class that assists in breaking up bulk API quad draws into manageable chunks.
class GrTextureOp::BatchSizeLimiter {
public:
BatchSizeLimiter(GrRenderTargetContext* rtc,
const GrClip& clip,
GrRecordingContext* context,
int numEntries,
GrSamplerState::Filter filter,
GrTextureOp::Saturate saturate,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform)
: fRTC(rtc)
, fClip(clip)
, fContext(context)
, fFilter(filter)
, fSaturate(saturate)
, fConstraint(constraint)
, fViewMatrix(viewMatrix)
, fTextureColorSpaceXform(textureColorSpaceXform)
, fNumLeft(numEntries) {
}
void createOp(GrRenderTargetContext::TextureSetEntry set[],
int clumpSize,
GrAAType aaType) {
int clumpProxyCount = proxy_run_count(&set[fNumClumped], clumpSize);
std::unique_ptr<GrDrawOp> op = TextureOp::Make(fContext, &set[fNumClumped], clumpSize,
clumpProxyCount, fFilter, fSaturate, aaType,
fConstraint, fViewMatrix,
fTextureColorSpaceXform);
fRTC->addDrawOp(fClip, std::move(op));
fNumLeft -= clumpSize;
fNumClumped += clumpSize;
}
int numLeft() const { return fNumLeft; }
int baseIndex() const { return fNumClumped; }
private:
GrRenderTargetContext* fRTC;
const GrClip& fClip;
GrRecordingContext* fContext;
GrSamplerState::Filter fFilter;
GrTextureOp::Saturate fSaturate;
SkCanvas::SrcRectConstraint fConstraint;
const SkMatrix& fViewMatrix;
sk_sp<GrColorSpaceXform> fTextureColorSpaceXform;
int fNumLeft;
int fNumClumped = 0; // also the offset for the start of the next clump
};
// Greedily clump quad draws together until the index buffer limit is exceeded.
void GrTextureOp::AddTextureSetOps(GrRenderTargetContext* rtc,
const GrClip& clip,
GrRecordingContext* context,
GrRenderTargetContext::TextureSetEntry set[],
int cnt,
int proxyRunCnt,
GrSamplerState::Filter filter,
Saturate saturate,
SkBlendMode blendMode,
GrAAType aaType,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> textureColorSpaceXform) {
// Ensure that the index buffer limits are lower than the proxy and quad count limits of
// the op's metadata so we don't need to worry about overflow.
SkDEBUGCODE(TextureOp::ValidateResourceLimits();)
SkASSERT(proxy_run_count(set, cnt) == proxyRunCnt);
// First check if we can support batches as a single op
if (blendMode != SkBlendMode::kSrcOver ||
!context->priv().caps()->dynamicStateArrayGeometryProcessorTextureSupport()) {
// Append each entry as its own op; these may still be GrTextureOps if the blend mode is
// src-over but the backend doesn't support dynamic state changes. Otherwise Make()
// automatically creates the appropriate GrFillRectOp to emulate GrTextureOp.
SkMatrix ctm;
for (int i = 0; i < cnt; ++i) {
float alpha = set[i].fAlpha;
ctm = viewMatrix;
if (set[i].fPreViewMatrix) {
ctm.preConcat(*set[i].fPreViewMatrix);
}
DrawQuad quad;
quad.fEdgeFlags = set[i].fAAFlags;
if (set[i].fDstClipQuad) {
quad.fDevice = GrQuad::MakeFromSkQuad(set[i].fDstClipQuad, ctm);
SkPoint srcPts[4];
GrMapRectPoints(set[i].fDstRect, set[i].fSrcRect, set[i].fDstClipQuad, srcPts, 4);
quad.fLocal = GrQuad::MakeFromSkQuad(srcPts, SkMatrix::I());
} else {
quad.fDevice = GrQuad::MakeFromRect(set[i].fDstRect, ctm);
quad.fLocal = GrQuad(set[i].fSrcRect);
}
const SkRect* domain = constraint == SkCanvas::kStrict_SrcRectConstraint
? &set[i].fSrcRect : nullptr;
auto op = Make(context, set[i].fProxyView, set[i].fSrcAlphaType, textureColorSpaceXform,
filter, {alpha, alpha, alpha, alpha}, saturate, blendMode, aaType,
&quad, domain);
rtc->addDrawOp(clip, std::move(op));
}
return;
}
// Second check if we can always just make a single op and avoid the extra iteration
// needed to clump things together.
if (cnt <= std::min(GrResourceProvider::MaxNumNonAAQuads(),
GrResourceProvider::MaxNumAAQuads())) {
auto op = TextureOp::Make(context, set, cnt, proxyRunCnt, filter, saturate, aaType,
constraint, viewMatrix, std::move(textureColorSpaceXform));
rtc->addDrawOp(clip, std::move(op));
return;
}
BatchSizeLimiter state(rtc, clip, context, cnt, filter, saturate, constraint, viewMatrix,
std::move(textureColorSpaceXform));
// kNone and kMSAA never get altered
if (aaType == GrAAType::kNone || aaType == GrAAType::kMSAA) {
// Clump these into series of MaxNumNonAAQuads-sized GrTextureOps
while (state.numLeft() > 0) {
int clumpSize = std::min(state.numLeft(), GrResourceProvider::MaxNumNonAAQuads());
state.createOp(set, clumpSize, aaType);
}
} else {
// kCoverage can be downgraded to kNone. Note that the following is conservative. kCoverage
// can also get downgraded to kNone if all the quads are on integer coordinates and
// axis-aligned.
SkASSERT(aaType == GrAAType::kCoverage);
while (state.numLeft() > 0) {
GrAAType runningAA = GrAAType::kNone;
bool clumped = false;
for (int i = 0; i < state.numLeft(); ++i) {
int absIndex = state.baseIndex() + i;
if (set[absIndex].fAAFlags != GrQuadAAFlags::kNone) {
if (i >= GrResourceProvider::MaxNumAAQuads()) {
// Here we either need to boost the AA type to kCoverage, but doing so with
// all the accumulated quads would overflow, or we have a set of AA quads
// that has just gotten too large. In either case, calve off the existing
// quads as their own TextureOp.
state.createOp(
set,
runningAA == GrAAType::kNone ? i : GrResourceProvider::MaxNumAAQuads(),
runningAA); // maybe downgrading AA here
clumped = true;
break;
}
runningAA = GrAAType::kCoverage;
} else if (runningAA == GrAAType::kNone) {
if (i >= GrResourceProvider::MaxNumNonAAQuads()) {
// Here we've found a consistent batch of non-AA quads that has gotten too
// large. Calve it off as its own GrTextureOp.
state.createOp(set, GrResourceProvider::MaxNumNonAAQuads(),
GrAAType::kNone); // definitely downgrading AA here
clumped = true;
break;
}
}
}
if (!clumped) {
// We ran through the above loop w/o hitting a limit. Spit out this last clump of
// quads and call it a day.
state.createOp(set, state.numLeft(), runningAA); // maybe downgrading AA here
}
}
}
}
#if GR_TEST_UTILS
#include "include/private/GrRecordingContext.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
GR_DRAW_OP_TEST_DEFINE(TextureOp) {
SkISize dims;
dims.fHeight = random->nextULessThan(90) + 10;
dims.fWidth = random->nextULessThan(90) + 10;
auto origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin;
GrMipMapped mipMapped = random->nextBool() ? GrMipMapped::kYes : GrMipMapped::kNo;
SkBackingFit fit = SkBackingFit::kExact;
if (mipMapped == GrMipMapped::kNo) {
fit = random->nextBool() ? SkBackingFit::kApprox : SkBackingFit::kExact;
}
const GrBackendFormat format =
context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kNo);
GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(
format, dims, swizzle, GrRenderable::kNo, 1, mipMapped, fit, SkBudgeted::kNo,
GrProtected::kNo, GrInternalSurfaceFlags::kNone);
SkRect rect = GrTest::TestRect(random);
SkRect srcRect;
srcRect.fLeft = random->nextRangeScalar(0.f, proxy->width() / 2.f);
srcRect.fRight = random->nextRangeScalar(0.f, proxy->width()) + proxy->width() / 2.f;
srcRect.fTop = random->nextRangeScalar(0.f, proxy->height() / 2.f);
srcRect.fBottom = random->nextRangeScalar(0.f, proxy->height()) + proxy->height() / 2.f;
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
SkPMColor4f color = SkPMColor4f::FromBytes_RGBA(SkColorToPremulGrColor(random->nextU()));
GrSamplerState::Filter filter = (GrSamplerState::Filter)random->nextULessThan(
static_cast<uint32_t>(GrSamplerState::Filter::kMipMap) + 1);
while (mipMapped == GrMipMapped::kNo && filter == GrSamplerState::Filter::kMipMap) {
filter = (GrSamplerState::Filter)random->nextULessThan(
static_cast<uint32_t>(GrSamplerState::Filter::kMipMap) + 1);
}
auto texXform = GrTest::TestColorXform(random);
GrAAType aaType = GrAAType::kNone;
if (random->nextBool()) {
aaType = (numSamples > 1) ? GrAAType::kMSAA : GrAAType::kCoverage;
}
GrQuadAAFlags aaFlags = GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kLeft : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kTop : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kRight : GrQuadAAFlags::kNone;
aaFlags |= random->nextBool() ? GrQuadAAFlags::kBottom : GrQuadAAFlags::kNone;
bool useDomain = random->nextBool();
auto saturate = random->nextBool() ? GrTextureOp::Saturate::kYes : GrTextureOp::Saturate::kNo;
GrSurfaceProxyView proxyView(
std::move(proxy), origin,
context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888));
auto alphaType = static_cast<SkAlphaType>(
random->nextRangeU(kUnknown_SkAlphaType + 1, kLastEnum_SkAlphaType));
DrawQuad quad = {GrQuad::MakeFromRect(rect, viewMatrix), GrQuad(srcRect), aaFlags};
return GrTextureOp::Make(context, std::move(proxyView), alphaType, std::move(texXform), filter,
color, saturate, SkBlendMode::kSrcOver, aaType,
&quad, useDomain ? &srcRect : nullptr);
}
#endif