blob: 543a2e082be24aa9d63dfb38332998d20b51bfdd [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "SkTypes.h"
// Every function in this file should be marked static and inline using SI.
#if defined(__clang__)
#define SI __attribute__((always_inline)) static inline
#else
#define SI static inline
#endif
template <typename T, typename P>
SI T unaligned_load(const P* p) { // const void* would work too, but const P* helps ARMv7 codegen.
T v;
memcpy(&v, p, sizeof(v));
return v;
}
template <typename T, typename P>
SI void unaligned_store(P* p, T v) {
memcpy(p, &v, sizeof(v));
}
template <typename Dst, typename Src>
SI Dst bit_cast(const Src& src) {
static_assert(sizeof(Dst) == sizeof(Src), "");
return unaligned_load<Dst>(&src);
}
template <typename Dst, typename Src>
SI Dst widen_cast(const Src& src) {
static_assert(sizeof(Dst) > sizeof(Src), "");
Dst dst;
memcpy(&dst, &src, sizeof(Src));
return dst;
}
// Our program is an array of void*, either
// - 1 void* per stage with no context pointer, the next stage;
// - 2 void* per stage with a context pointer, first the context pointer, then the next stage.
// load_and_inc() steps the program forward by 1 void*, returning that pointer.
SI void* load_and_inc(void**& program) {
#if defined(__GNUC__) && defined(__x86_64__)
// If program is in %rsi (we try to make this likely) then this is a single instruction.
void* rax;
asm("lodsq" : "=a"(rax), "+S"(program)); // Write-only %rax, read-write %rsi.
return rax;
#else
// On ARM *program++ compiles into pretty ideal code without any handholding.
return *program++;
#endif
}
// Lazily resolved on first cast. Does nothing if cast to Ctx::None.
struct Ctx {
struct None {};
void* ptr;
void**& program;
explicit Ctx(void**& p) : ptr(nullptr), program(p) {}
template <typename T>
operator T*() {
if (!ptr) { ptr = load_and_inc(program); }
return (T*)ptr;
}
operator None() { return None{}; }
};
#if !defined(__clang__)
#define JUMPER_IS_SCALAR
#elif defined(SK_ARM_HAS_NEON)
#define JUMPER_IS_NEON
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX512
#define JUMPER_IS_AVX512
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
#define JUMPER_IS_HSW
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
#define JUMPER_IS_AVX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#define JUMPER_IS_SSE41
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define JUMPER_IS_SSE2
#else
#define JUMPER_IS_SCALAR
#endif
// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
// Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
#if defined(__apple_build_version__) && __clang_major__ < 9
#define JUMPER_IS_SCALAR
#elif __clang_major__ < 5
#define JUMPER_IS_SCALAR
#endif
#if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
#undef JUMPER_IS_NEON
#endif
#endif
#if defined(JUMPER_IS_SCALAR)
#include <math.h>
#elif defined(JUMPER_IS_NEON)
#include <arm_neon.h>
#else
#include <immintrin.h>
#endif
namespace SK_OPTS_NS {
#if defined(JUMPER_IS_SCALAR)
// This path should lead to portable scalar code.
using F = float ;
using I32 = int32_t;
using U64 = uint64_t;
using U32 = uint32_t;
using U16 = uint16_t;
using U8 = uint8_t ;
SI F mad(F f, F m, F a) { return f*m+a; }
SI F min(F a, F b) { return fminf(a,b); }
SI F max(F a, F b) { return fmaxf(a,b); }
SI F abs_ (F v) { return fabsf(v); }
SI F floor_(F v) { return floorf(v); }
SI F rcp (F v) { return 1.0f / v; }
SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
SI F sqrt_(F v) { return sqrtf(v); }
SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
SI U16 pack(U32 v) { return (U16)v; }
SI U8 pack(U16 v) { return (U8)v; }
SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
template <typename T>
SI T gather(const T* p, U32 ix) { return p[ix]; }
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
#elif defined(JUMPER_IS_NEON)
// Since we know we're using Clang, we can use its vector extensions.
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
// We polyfill a few routines that Clang doesn't build into ext_vector_types.
SI F min(F a, F b) { return vminq_f32(a,b); }
SI F max(F a, F b) { return vmaxq_f32(a,b); }
SI F abs_ (F v) { return vabsq_f32(v); }
SI F rcp (F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
#if defined(SK_CPU_ARM64)
SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
SI F floor_(F v) { return vrndmq_f32(v); }
SI F sqrt_(F v) { return vsqrtq_f32(v); }
SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
#else
SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
SI F floor_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
}
SI F sqrt_(F v) {
auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
e *= vrsqrtsq_f32(v,e*e);
e *= vrsqrtsq_f32(v,e*e);
return v*e; // sqrt(v) == v*rsqrt(v).
}
SI U32 round(F v, F scale) {
return vcvtq_u32_f32(mad(v,scale,0.5f));
}
#endif
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
uint16x4x3_t rgb;
if (__builtin_expect(tail,0)) {
if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
} else {
rgb = vld3_u16(ptr);
}
*r = rgb.val[0];
*g = rgb.val[1];
*b = rgb.val[2];
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
uint16x4x4_t rgba;
if (__builtin_expect(tail,0)) {
if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
} else {
rgba = vld4_u16(ptr);
}
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
} else {
vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
float32x4x4_t rgba;
if (__builtin_expect(tail,0)) {
if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
} else {
rgba = vld4q_f32(ptr);
}
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
} else {
vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
}
}
#elif defined(JUMPER_IS_AVX) || defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
// These are __m256 and __m256i, but friendlier and strongly-typed.
template <typename T> using V = T __attribute__((ext_vector_type(8)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) {
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
return _mm256_fmadd_ps(f,m,a);
#else
return f*m+a;
#endif
}
SI F min(F a, F b) { return _mm256_min_ps(a,b); }
SI F max(F a, F b) { return _mm256_max_ps(a,b); }
SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
SI F floor_(F v) { return _mm256_floor_ps(v); }
SI F rcp (F v) { return _mm256_rcp_ps (v); }
SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm256_sqrt_ps (v); }
SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
_mm256_extractf128_si256(v, 1));
}
SI U8 pack(U16 v) {
auto r = _mm_packus_epi16(v,v);
return unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
}
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
SI U64 gather(const uint64_t* p, U32 ix) {
__m256i parts[] = {
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
};
return bit_cast<U64>(parts);
}
#endif
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
__m128i _0,_1,_2,_3,_4,_5,_6,_7;
if (__builtin_expect(tail,0)) {
auto load_rgb = [](const uint16_t* src) {
auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
return _mm_insert_epi16(v, src[2], 2);
};
_1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
if ( true ) { _0 = load_rgb(ptr + 0); }
if (tail > 1) { _1 = load_rgb(ptr + 3); }
if (tail > 2) { _2 = load_rgb(ptr + 6); }
if (tail > 3) { _3 = load_rgb(ptr + 9); }
if (tail > 4) { _4 = load_rgb(ptr + 12); }
if (tail > 5) { _5 = load_rgb(ptr + 15); }
if (tail > 6) { _6 = load_rgb(ptr + 18); }
} else {
// Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
_0 = _01; _1 = _mm_srli_si128(_01, 6);
_2 = _23; _3 = _mm_srli_si128(_23, 6);
_4 = _45; _5 = _mm_srli_si128(_45, 6);
_6 = _67; _7 = _mm_srli_si128(_67, 6);
}
auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
_13 = _mm_unpacklo_epi16(_1, _3),
_46 = _mm_unpacklo_epi16(_4, _6),
_57 = _mm_unpacklo_epi16(_5, _7);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
rg4567 = _mm_unpacklo_epi16(_46, _57),
bx4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(bx0123, bx4567);
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
__m128i _01, _23, _45, _67;
if (__builtin_expect(tail,0)) {
auto src = (const double*)ptr;
_01 = _23 = _45 = _67 = _mm_setzero_si128();
if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
_45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
_67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
}
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
_46 = _mm_unpacklo_epi16(_45, _67),
_57 = _mm_unpackhi_epi16(_45, _67);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
rg4567 = _mm_unpacklo_epi16(_46, _57),
ba4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(ba0123, ba4567);
*a = _mm_unpackhi_epi64(ba0123, ba4567);
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
ba0123 = _mm_unpacklo_epi16(b, a),
ba4567 = _mm_unpackhi_epi16(b, a);
auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
_23 = _mm_unpackhi_epi32(rg0123, ba0123),
_45 = _mm_unpacklo_epi32(rg4567, ba4567),
_67 = _mm_unpackhi_epi32(rg4567, ba4567);
if (__builtin_expect(tail,0)) {
auto dst = (double*)ptr;
if (tail > 0) { _mm_storel_pd(dst+0, _01); }
if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
if (tail > 2) { _mm_storel_pd(dst+2, _23); }
if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
if (tail > 4) { _mm_storel_pd(dst+4, _45); }
if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
if (tail > 6) { _mm_storel_pd(dst+6, _67); }
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _01);
_mm_storeu_si128((__m128i*)ptr + 1, _23);
_mm_storeu_si128((__m128i*)ptr + 2, _45);
_mm_storeu_si128((__m128i*)ptr + 3, _67);
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
F _04, _15, _26, _37;
_04 = _15 = _26 = _37 = 0;
switch (tail) {
case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0);
case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0);
case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0);
case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
}
F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
ba0145 = _mm256_unpackhi_ps(_04,_15),
rg2367 = _mm256_unpacklo_ps(_26,_37),
ba2367 = _mm256_unpackhi_ps(_26,_37);
*r = _mm256_unpacklo_pd(rg0145, rg2367);
*g = _mm256_unpackhi_pd(rg0145, rg2367);
*b = _mm256_unpacklo_pd(ba0145, ba2367);
*a = _mm256_unpackhi_pd(ba0145, ba2367);
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
_15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
_26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
_37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
if (__builtin_expect(tail, 0)) {
if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
} else {
F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
_23 = _mm256_permute2f128_ps(_26, _37, 32),
_45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
_67 = _mm256_permute2f128_ps(_26, _37, 49);
_mm256_storeu_ps(ptr+ 0, _01);
_mm256_storeu_ps(ptr+ 8, _23);
_mm256_storeu_ps(ptr+16, _45);
_mm256_storeu_ps(ptr+24, _67);
}
}
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) { return f*m+a; }
SI F min(F a, F b) { return _mm_min_ps(a,b); }
SI F max(F a, F b) { return _mm_max_ps(a,b); }
SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
SI F rcp (F v) { return _mm_rcp_ps (v); }
SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
#if defined(JUMPER_IS_SSE41)
auto p = _mm_packus_epi32(v,v);
#else
// Sign extend so that _mm_packs_epi32() does the pack we want.
auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
p = _mm_packs_epi32(p,p);
#endif
return unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
}
SI U8 pack(U16 v) {
auto r = widen_cast<__m128i>(v);
r = _mm_packus_epi16(r,r);
return unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) {
return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
}
SI F floor_(F v) {
#if defined(JUMPER_IS_SSE41)
return _mm_floor_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
#endif
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
__m128i _0, _1, _2, _3;
if (__builtin_expect(tail,0)) {
_1 = _2 = _3 = _mm_setzero_si128();
auto load_rgb = [](const uint16_t* src) {
auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
return _mm_insert_epi16(v, src[2], 2);
};
if ( true ) { _0 = load_rgb(ptr + 0); }
if (tail > 1) { _1 = load_rgb(ptr + 3); }
if (tail > 2) { _2 = load_rgb(ptr + 6); }
} else {
// Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
_23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
// Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
_0 = _01;
_1 = _mm_srli_si128(_01, 6);
_2 = _23;
_3 = _mm_srli_si128(_23, 6);
}
// De-interlace to R,G,B.
auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
_13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
G = _mm_srli_si128(R, 8),
B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
*r = unaligned_load<U16>(&R);
*g = unaligned_load<U16>(&G);
*b = unaligned_load<U16>(&B);
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
__m128i _01, _23;
if (__builtin_expect(tail,0)) {
_01 = _23 = _mm_setzero_si128();
auto src = (const double*)ptr;
if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
}
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
*r = unaligned_load<U16>((uint16_t*)&rg + 0);
*g = unaligned_load<U16>((uint16_t*)&rg + 4);
*b = unaligned_load<U16>((uint16_t*)&ba + 0);
*a = unaligned_load<U16>((uint16_t*)&ba + 4);
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
if (__builtin_expect(tail, 0)) {
auto dst = (double*)ptr;
if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
_mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
F _0, _1, _2, _3;
if (__builtin_expect(tail, 0)) {
_1 = _2 = _3 = _mm_setzero_si128();
if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
} else {
_0 = _mm_loadu_ps(ptr + 0);
_1 = _mm_loadu_ps(ptr + 4);
_2 = _mm_loadu_ps(ptr + 8);
_3 = _mm_loadu_ps(ptr +12);
}
_MM_TRANSPOSE4_PS(_0,_1,_2,_3);
*r = _0;
*g = _1;
*b = _2;
*a = _3;
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
_MM_TRANSPOSE4_PS(r,g,b,a);
if (__builtin_expect(tail, 0)) {
if ( true ) { _mm_storeu_ps(ptr + 0, r); }
if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
} else {
_mm_storeu_ps(ptr + 0, r);
_mm_storeu_ps(ptr + 4, g);
_mm_storeu_ps(ptr + 8, b);
_mm_storeu_ps(ptr +12, a);
}
}
#endif
// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER_IS_SCALAR)
SI F cast (U32 v) { return (F)v; }
SI U32 trunc_(F v) { return (U32)v; }
SI U32 expand(U16 v) { return (U32)v; }
SI U32 expand(U8 v) { return (U32)v; }
#else
SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
#endif
template <typename V>
SI V if_then_else(I32 c, V t, V e) {
return bit_cast<V>(if_then_else(c, bit_cast<F>(t), bit_cast<F>(e)));
}
SI U16 bswap(U16 x) {
#if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
// Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
// when generating code for SSE2 and SSE4.1. We'll do it manually...
auto v = widen_cast<__m128i>(x);
v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
return unaligned_load<U16>(&v);
#else
return (x<<8) | (x>>8);
#endif
}
SI F fract(F v) { return v - floor_(v); }
// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
SI F approx_log2(F x) {
// e - 127 is a fair approximation of log2(x) in its own right...
F e = cast(bit_cast<U32>(x)) * (1.0f / (1<<23));
// ... but using the mantissa to refine its error is _much_ better.
F m = bit_cast<F>((bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
return e
- 124.225514990f
- 1.498030302f * m
- 1.725879990f / (0.3520887068f + m);
}
SI F approx_pow2(F x) {
F f = fract(x);
return bit_cast<F>(round(1.0f * (1<<23),
x + 121.274057500f
- 1.490129070f * f
+ 27.728023300f / (4.84252568f - f)));
}
SI F approx_powf(F x, F y) {
#if defined(SK_LEGACY_APPROX_POWF_SPECIALCASE)
return if_then_else((x == 0) , 0
#else
return if_then_else((x == 0)|(x == 1), x
#endif
, approx_pow2(approx_log2(x) * y));
}
SI F from_half(U16 h) {
#if defined(SK_CPU_ARM64) && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f32_f16(h);
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
return _mm256_cvtph_ps(h);
#else
// Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
U32 sem = expand(h),
s = sem & 0x8000,
em = sem ^ s;
// Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
return if_then_else(denorm, F(0)
, bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
#endif
}
SI U16 to_half(F f) {
#if defined(SK_CPU_ARM64) && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f16_f32(f);
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
#else
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
U32 sem = bit_cast<U32>(f),
s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
return pack(if_then_else(denorm, U32(0)
, (s>>16) + (em>>13) - ((127-15)<<10)));
#endif
}
// Our fundamental vector depth is our pixel stride.
static const size_t N = sizeof(F) / sizeof(float);
// We're finally going to get to what a Stage function looks like!
// tail == 0 ~~> work on a full N pixels
// tail != 0 ~~> work on only the first tail pixels
// tail is always < N.
// Any custom ABI to use for all (non-externally-facing) stage functions?
// Also decide here whether to use narrow (compromise) or wide (ideal) stages.
#if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
// This lets us pass vectors more efficiently on 32-bit ARM.
// We can still only pass 16 floats, so best as 4x {r,g,b,a}.
#define ABI __attribute__((pcs("aapcs-vfp")))
#define JUMPER_NARROW_STAGES 1
#elif 0 && defined(_MSC_VER) && defined(__clang__) && defined(__x86_64__)
// SysV ABI makes it very sensible to use wide stages with clang-cl.
// TODO: crashes during compilation :(
#define ABI __attribute__((sysv_abi))
#define JUMPER_NARROW_STAGES 0
#elif defined(_MSC_VER)
// Even if not vectorized, this lets us pass {r,g,b,a} as registers,
// instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
#define ABI __vectorcall
#define JUMPER_NARROW_STAGES 1
#elif defined(__x86_64__) || defined(SK_CPU_ARM64)
// These platforms are ideal for wider stages, and their default ABI is ideal.
#define ABI
#define JUMPER_NARROW_STAGES 0
#else
// 32-bit or unknown... shunt them down the narrow path.
// Odds are these have few registers and are better off there.
#define ABI
#define JUMPER_NARROW_STAGES 1
#endif
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy, tail;
F dr,dg,db,da;
};
using Stage = void(ABI*)(Params*, void** program, F r, F g, F b, F a);
#else
// We keep program the second argument, so that it's passed in rsi for load_and_inc().
using Stage = void(ABI*)(size_t tail, void** program, size_t dx, size_t dy, F,F,F,F, F,F,F,F);
#endif
static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, void** program) {
auto start = (Stage)load_and_inc(program);
const size_t x0 = dx;
for (; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,0, 0,0,0,0 };
while (params.dx + N <= xlimit) {
start(&params,program, 0,0,0,0);
params.dx += N;
}
if (size_t tail = xlimit - params.dx) {
params.tail = tail;
start(&params,program, 0,0,0,0);
}
#else
dx = x0;
while (dx + N <= xlimit) {
start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
dx += N;
}
if (size_t tail = xlimit - dx) {
start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
}
#endif
}
}
#if JUMPER_NARROW_STAGES
#define STAGE(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(Params* params, void** program, \
F r, F g, F b, F a) { \
name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a, \
params->dr, params->dg, params->db, params->da); \
auto next = (Stage)load_and_inc(program); \
next(params,program, r,g,b,a); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
#define STAGE(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
auto next = (Stage)load_and_inc(program); \
next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, void**, F,F,F,F) {}
#else
static void ABI just_return(size_t, void**, size_t,size_t, F,F,F,F, F,F,F,F) {}
#endif
// We could start defining normal Stages now. But first, some helper functions.
// These load() and store() methods are tail-aware,
// but focus mainly on keeping the at-stride tail==0 case fast.
template <typename V, typename T>
SI V load(const T* src, size_t tail) {
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(tail < N);
if (__builtin_expect(tail, 0)) {
V v{}; // Any inactive lanes are zeroed.
switch (tail) {
case 7: v[6] = src[6];
case 6: v[5] = src[5];
case 5: v[4] = src[4];
case 4: memcpy(&v, src, 4*sizeof(T)); break;
case 3: v[2] = src[2];
case 2: memcpy(&v, src, 2*sizeof(T)); break;
case 1: memcpy(&v, src, 1*sizeof(T)); break;
}
return v;
}
#endif
return unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v, size_t tail) {
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(tail < N);
if (__builtin_expect(tail, 0)) {
switch (tail) {
case 7: dst[6] = v[6];
case 6: dst[5] = v[5];
case 5: dst[4] = v[4];
case 4: memcpy(dst, &v, 4*sizeof(T)); break;
case 3: dst[2] = v[2];
case 2: memcpy(dst, &v, 2*sizeof(T)); break;
case 1: memcpy(dst, &v, 1*sizeof(T)); break;
}
return;
}
#endif
unaligned_store(dst, v);
}
SI F from_byte(U8 b) {
return cast(expand(b)) * (1/255.0f);
}
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & (31<<11)) * (1.0f / (31<<11));
*g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
*b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & (15<<12)) * (1.0f / (15<<12));
*g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
*b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
*a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
}
SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
*r = cast((_8888 ) & 0xff) * (1/255.0f);
*g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
*b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
*a = cast((_8888 >> 24) ) * (1/255.0f);
}
SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
*r = cast((rgba ) & 0x3ff) * (1/1023.0f);
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
// clamp v to [0,limit).
SI F clamp(F v, F limit) {
F inclusive = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
return min(max(0, v), inclusive);
}
// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
x = clamp(x, ctx->width);
y = clamp(y, ctx->height);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
// We often have a nominally [0,1] float value we need to scale and convert to an integer,
// whether for a table lookup or to pack back down into bytes for storage.
//
// In practice, especially when dealing with interesting color spaces, that notionally
// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
//
// You can adjust the expected input to [0,bias] by tweaking that parameter.
SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
// TODO: platform-specific implementations to to_unorm(), removing round() entirely?
// Any time we use round() we probably want to use to_unorm().
return round(min(max(0, v), bias), scale);
}
SI I32 cond_to_mask(I32 cond) { return if_then_else(cond, I32(~0), I32(0)); }
// Now finally, normal Stages!
STAGE(seed_shader, Ctx::None) {
static const float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
// It's important for speed to explicitly cast(dx) and cast(dy),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(dx) + unaligned_load<F>(iota);
g = cast(dy) + 0.5f;
b = 1.0f;
a = 0;
dr = dg = db = da = 0;
}
STAGE(dither, const float* rate) {
// Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
uint32_t iota[] = {0,1,2,3,4,5,6,7};
U32 X = dx + unaligned_load<U32>(iota),
Y = dy;
// We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
// In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
// We only need X and X^Y from here on, so it's easier to just think of that as "Y".
Y ^= X;
// We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
// for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
U32 M = (Y & 1) << 5 | (X & 1) << 4
| (Y & 2) << 2 | (X & 2) << 1
| (Y & 4) >> 1 | (X & 4) >> 2;
// Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
// We want to make sure our dither is less than 0.5 in either direction to keep exact values
// like 0 and 1 unchanged after rounding.
F dither = cast(M) * (2/128.0f) - (63/128.0f);
r += *rate*dither;
g += *rate*dither;
b += *rate*dither;
r = max(0, min(r, a));
g = max(0, min(g, a));
b = max(0, min(b, a));
}
// load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
// splats opaque-black into r,g,b,a
STAGE(black_color, Ctx::None) {
r = g = b = 0.0f;
a = 1.0f;
}
STAGE(white_color, Ctx::None) {
r = g = b = a = 1.0f;
}
// load registers r,g,b,a from context (mirrors store_rgba)
STAGE(load_src, const float* ptr) {
r = unaligned_load<F>(ptr + 0*N);
g = unaligned_load<F>(ptr + 1*N);
b = unaligned_load<F>(ptr + 2*N);
a = unaligned_load<F>(ptr + 3*N);
}
// store registers r,g,b,a into context (mirrors load_rgba)
STAGE(store_src, float* ptr) {
unaligned_store(ptr + 0*N, r);
unaligned_store(ptr + 1*N, g);
unaligned_store(ptr + 2*N, b);
unaligned_store(ptr + 3*N, a);
}
// load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst, const float* ptr) {
dr = unaligned_load<F>(ptr + 0*N);
dg = unaligned_load<F>(ptr + 1*N);
db = unaligned_load<F>(ptr + 2*N);
da = unaligned_load<F>(ptr + 3*N);
}
// store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst, float* ptr) {
unaligned_store(ptr + 0*N, dr);
unaligned_store(ptr + 1*N, dg);
unaligned_store(ptr + 2*N, db);
unaligned_store(ptr + 3*N, da);
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, Ctx::None) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, Ctx::None) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, /* s + */ d*inv(sa),
sa*(da - min(da, (da-d)*sa*rcp(s))) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, /* d + */ s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)*rcp(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = rcp(rsqrt(m)) - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
// We're basing our implemenation of non-separable blend modes on
// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
// and
// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
// They're equivalent, but ES' math has been better simplified.
//
// Anything extra we add beyond that is to make the math work with premul inputs.
SI F max(F r, F g, F b) { return max(r, max(g, b)); }
SI F min(F r, F g, F b) { return min(r, min(g, b)); }
SI F sat(F r, F g, F b) { return max(r,g,b) - min(r,g,b); }
SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
SI void set_sat(F* r, F* g, F* b, F s) {
F mn = min(*r,*g,*b),
mx = max(*r,*g,*b),
sat = mx - mn;
// Map min channel to 0, max channel to s, and scale the middle proportionally.
auto scale = [=](F c) {
return if_then_else(sat == 0, 0, (c - mn) * s / sat);
};
*r = scale(*r);
*g = scale(*g);
*b = scale(*b);
}
SI void set_lum(F* r, F* g, F* b, F l) {
F diff = l - lum(*r, *g, *b);
*r += diff;
*g += diff;
*b += diff;
}
SI void clip_color(F* r, F* g, F* b, F a) {
F mn = min(*r, *g, *b),
mx = max(*r, *g, *b),
l = lum(*r, *g, *b);
auto clip = [=](F c) {
c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
c = max(c, 0); // Sometimes without this we may dip just a little negative.
return c;
};
*r = clip(*r);
*g = clip(*g);
*b = clip(*b);
}
STAGE(hue, Ctx::None) {
F R = r*a,
G = g*a,
B = b*a;
set_sat(&R, &G, &B, sat(dr,dg,db)*a);
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(saturation, Ctx::None) {
F R = dr*a,
G = dg*a,
B = db*a;
set_sat(&R, &G, &B, sat( r, g, b)*da);
set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(color, Ctx::None) {
F R = r*da,
G = g*da,
B = b*da;
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(luminosity, Ctx::None) {
F R = dr*a,
G = dg*a,
B = db*a;
set_lum(&R, &G, &B, lum(r,g,b)*da);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 dst = load<U32>(ptr, tail);
dr = cast((dst ) & 0xff);
dg = cast((dst >> 8) & 0xff);
db = cast((dst >> 16) & 0xff);
da = cast((dst >> 24) );
// {dr,dg,db,da} are in [0,255]
// { r, g, b, a} are in [0, 1] (but may be out of gamut)
r = mad(dr, inv(a), r*255.0f);
g = mad(dg, inv(a), g*255.0f);
b = mad(db, inv(a), b*255.0f);
a = mad(da, inv(a), a*255.0f);
// { r, g, b, a} are now in [0,255] (but may be out of gamut)
// to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
dst = to_unorm(r, 1, 255)
| to_unorm(g, 1, 255) << 8
| to_unorm(b, 1, 255) << 16
| to_unorm(a, 1, 255) << 24;
store(ptr, dst, tail);
}
STAGE(clamp_0, Ctx::None) {
r = max(r, 0);
g = max(g, 0);
b = max(b, 0);
a = max(a, 0);
}
STAGE(clamp_1, Ctx::None) {
r = min(r, 1.0f);
g = min(g, 1.0f);
b = min(b, 1.0f);
a = min(a, 1.0f);
}
STAGE(clamp_a, Ctx::None) {
a = min(a, 1.0f);
r = min(r, a);
g = min(g, a);
b = min(b, a);
}
STAGE(clamp_gamut, Ctx::None) {
// If you're using this stage, a should already be in [0,1].
r = min(max(r, 0), a);
g = min(max(g, 0), a);
b = min(max(b, 0), a);
}
STAGE(set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(unbounded_set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(swap_rb, Ctx::None) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE(swap_rb_dst, Ctx::None) {
auto tmp = dr;
dr = db;
db = tmp;
}
STAGE(move_src_dst, Ctx::None) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src, Ctx::None) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(premul, Ctx::None) {
r = r * a;
g = g * a;
b = b * a;
}
STAGE(premul_dst, Ctx::None) {
dr = dr * da;
dg = dg * da;
db = db * da;
}
STAGE(unpremul, Ctx::None) {
float inf = bit_cast<float>(0x7f800000);
auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
r *= scale;
g *= scale;
b *= scale;
}
STAGE(force_opaque , Ctx::None) { a = 1; }
STAGE(force_opaque_dst, Ctx::None) { da = 1; }
STAGE(rgb_to_hsl, Ctx::None) {
F mx = max(r,g,b),
mn = min(r,g,b),
d = mx - mn,
d_rcp = 1.0f / d;
F h = (1/6.0f) *
if_then_else(mx == mn, 0,
if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
(r-g)*d_rcp + 4.0f)));
F l = (mx + mn) * 0.5f;
F s = if_then_else(mx == mn, 0,
d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
r = h;
g = s;
b = l;
}
STAGE(hsl_to_rgb, Ctx::None) {
F h = r,
s = g,
l = b;
F q = l + if_then_else(l >= 0.5f, s - l*s, l*s),
p = 2.0f*l - q;
auto hue_to_rgb = [&](F t) {
t = fract(t);
F r = p;
r = if_then_else(t >= 4/6.0f, r, p + (q-p)*(4.0f - 6.0f*t));
r = if_then_else(t >= 3/6.0f, r, q);
r = if_then_else(t >= 1/6.0f, r, p + (q-p)*( 6.0f*t));
return r;
};
r = if_then_else(s == 0, l, hue_to_rgb(h + (1/3.0f)));
g = if_then_else(s == 0, l, hue_to_rgb(h ));
b = if_then_else(s == 0, l, hue_to_rgb(h - (1/3.0f)));
}
// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
return if_then_else(a < da, min(cr,cg,cb)
, max(cr,cg,cb));
}
STAGE(scale_1_float, const float* c) {
r = r * *c;
g = g * *c;
b = b * *c;
a = a * *c;
}
STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = r * cr;
g = g * cg;
b = b * cb;
a = a * ca;
}
SI F lerp(F from, F to, F t) {
return mad(to-from, t, from);
}
STAGE(lerp_1_float, const float* c) {
r = lerp(dr, r, *c);
g = lerp(dg, g, *c);
b = lerp(db, b, *c);
a = lerp(da, a, *c);
}
STAGE(lerp_native, const float scales[]) {
auto c = unaligned_load<F>(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = lerp(da, a, ca);
}
STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
F mul = from_byte(load<U8>(mptr, tail)),
add = from_byte(load<U8>(aptr, tail));
r = mad(r, mul, add);
g = mad(g, mul, add);
b = mad(b, mul, add);
}
STAGE(byte_tables, const void* ctx) { // TODO: rename Tables SkRasterPipeline_ByteTablesCtx
struct Tables { const uint8_t *r, *g, *b, *a; };
auto tables = (const Tables*)ctx;
r = from_byte(gather(tables->r, to_unorm(r, 255)));
g = from_byte(gather(tables->g, to_unorm(g, 255)));
b = from_byte(gather(tables->b, to_unorm(b, 255)));
a = from_byte(gather(tables->a, to_unorm(a, 255)));
}
SI F strip_sign(F x, U32* sign) {
U32 bits = bit_cast<U32>(x);
*sign = bits & 0x80000000;
return bit_cast<F>(bits ^ *sign);
}
SI F apply_sign(F x, U32 sign) {
return bit_cast<F>(sign | bit_cast<U32>(x));
}
STAGE(parametric, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
, approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(gamma, const float* G) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
return apply_sign(approx_powf(v, *G), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(from_srgb, Ctx::None) {
auto fn = [](F s) {
U32 sign;
s = strip_sign(s, &sign);
auto lo = s * (1/12.92f);
auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f);
return apply_sign(if_then_else(s < 0.055f, lo, hi), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(to_srgb, Ctx::None) {
auto fn = [](F l) {
U32 sign;
l = strip_sign(l, &sign);
// We tweak c and d for each instruction set to make sure fn(1) is exactly 1.
#if defined(JUMPER_IS_AVX512)
const float c = 1.130026340485f,
d = 0.141387879848f;
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || \
defined(JUMPER_IS_AVX ) || defined(JUMPER_IS_HSW )
const float c = 1.130048394203f,
d = 0.141357362270f;
#elif defined(JUMPER_IS_NEON)
const float c = 1.129999995232f,
d = 0.141381442547f;
#else
const float c = 1.129999995232f,
d = 0.141377761960f;
#endif
F t = rsqrt(l);
auto lo = l * 12.92f;
auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), c)
* rcp(d + t);
return apply_sign(if_then_else(l < 0.00465985f, lo, hi), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
r = g = b = 0.0f;
a = from_byte(load<U8>(ptr, tail));
}
STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
dr = dg = db = 0.0f;
da = from_byte(load<U8>(ptr, tail));
}
STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = g = b = 0.0f;
a = from_byte(gather(ptr, ix));
}
STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
U8 packed = pack(pack(to_unorm(a, 255)));
store(ptr, packed, tail);
}
STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr, tail), &r,&g,&b);
a = 1.0f;
}
STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr, tail), &dr,&dg,&db);
da = 1.0f;
}
STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_565(gather(ptr, ix), &r,&g,&b);
a = 1.0f;
}
STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 31) << 11
| to_unorm(g, 63) << 5
| to_unorm(b, 31) );
store(ptr, px, tail);
}
STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_4444(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 15) << 12
| to_unorm(g, 15) << 8
| to_unorm(b, 15) << 4
| to_unorm(a, 15) );
store(ptr, px, tail);
}
STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_8888(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 255)
| to_unorm(g, 255) << 8
| to_unorm(b, 255) << 16
| to_unorm(a, 255) << 24;
store(ptr, px, tail);
}
STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_1010102(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 1023)
| to_unorm(g, 1023) << 10
| to_unorm(b, 1023) << 20
| to_unorm(a, 3) << 30;
store(ptr, px, tail);
}
STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
U16 R,G,B,A;
load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
U16 R,G,B,A;
load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
dr = from_half(R);
dg = from_half(G);
db = from_half(B);
da = from_half(A);
}
STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
auto px = gather(ptr, ix);
U16 R,G,B,A;
load4((const uint16_t*)&px,0, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
store4((uint16_t*)ptr,tail, to_half(r)
, to_half(g)
, to_half(b)
, to_half(a));
}
STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
U16 R = bswap(pack(to_unorm(r, 65535))),
G = bswap(pack(to_unorm(g, 65535))),
B = bswap(pack(to_unorm(b, 65535))),
A = bswap(pack(to_unorm(a, 65535)));
store4(ptr,tail, R,G,B,A);
}
STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
load4(ptr,tail, &r,&g,&b,&a);
}
STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
load4(ptr,tail, &dr,&dg,&db,&da);
}
STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
const float* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = gather(ptr, 4*ix + 0);
g = gather(ptr, 4*ix + 1);
b = gather(ptr, 4*ix + 2);
a = gather(ptr, 4*ix + 3);
}
STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
store4(ptr,tail, r,g,b,a);
}
SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
return v - floor_(v*ctx->invScale)*ctx->scale;
}
SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
auto limit = ctx->scale;
auto invLimit = ctx->invScale;
return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
}
// Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
// The gather stages will hard clamp the output of these stages to [0,limit)...
// we just need to do the basic repeat or mirroring.
STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
// Clamp x to [0,1], both sides inclusive (think, gradients).
// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
SI F clamp_01(F v) { return min(max(0, v), 1); }
STAGE( clamp_x_1, Ctx::None) { r = clamp_01(r); }
STAGE(repeat_x_1, Ctx::None) { r = clamp_01(r - floor_(r)); }
STAGE(mirror_x_1, Ctx::None) { r = clamp_01(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
// Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
// mask == 0x00000000 if the coordinate(s) are out of bounds
// mask == 0xFFFFFFFF if the coordinate(s) are in bounds
// After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
// if either of the coordinates were out of bounds.
STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
unaligned_store(ctx->mask, cond_to_mask((0 <= r) & (r < w)));
}
STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto h = ctx->limit_y;
unaligned_store(ctx->mask, cond_to_mask((0 <= g) & (g < h)));
}
STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
auto h = ctx->limit_y;
unaligned_store(ctx->mask,
cond_to_mask((0 <= r) & (r < w) & (0 <= g) & (g < h)));
}
STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
auto mask = unaligned_load<U32>(ctx->mask);
r = bit_cast<F>( bit_cast<U32>(r) & mask );
g = bit_cast<F>( bit_cast<U32>(g) & mask );
b = bit_cast<F>( bit_cast<U32>(b) & mask );
a = bit_cast<F>( bit_cast<U32>(a) & mask );
}
STAGE(alpha_to_gray, Ctx::None) {
r = g = b = a;
a = 1;
}
STAGE(alpha_to_gray_dst, Ctx::None) {
dr = dg = db = da;
da = 1;
}
STAGE(luminance_to_alpha, Ctx::None) {
a = r*0.2126f + g*0.7152f + b*0.0722f;
r = g = b = 0;
}
STAGE(matrix_translate, const float* m) {
r += m[0];
g += m[1];
}
STAGE(matrix_scale_translate, const float* m) {
r = mad(r,m[0], m[2]);
g = mad(g,m[1], m[3]);
}
STAGE(matrix_2x3, const float* m) {
auto R = mad(r,m[0], mad(g,m[2], m[4])),
G = mad(r,m[1], mad(g,m[3], m[5]));
r = R;
g = G;
}
STAGE(matrix_3x3, const float* m) {
auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
G = mad(r,m[1], mad(g,m[4], b*m[7])),
B = mad(r,m[2], mad(g,m[5], b*m[8]));
r = R;
g = G;
b = B;
}
STAGE(matrix_3x4, const float* m) {
auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
r = R;
g = G;
b = B;
}
STAGE(matrix_4x5, const float* m) {
auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))),
G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))),
B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))),
A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19]))));
r = R;
g = G;
b = B;
a = A;
}
STAGE(matrix_4x3, const float* m) {
auto X = r,
Y = g;
r = mad(X, m[0], mad(Y, m[4], m[ 8]));
g = mad(X, m[1], mad(Y, m[5], m[ 9]));
b = mad(X, m[2], mad(Y, m[6], m[10]));
a = mad(X, m[3], mad(Y, m[7], m[11]));
}
STAGE(matrix_perspective, const float* m) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto R = mad(r,m[0], mad(g,m[1], m[2])),
G = mad(r,m[3], mad(g,m[4], m[5])),
Z = mad(r,m[6], mad(g,m[7], m[8]));
r = R * rcp(Z);
g = G * rcp(Z);
}
SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
F* r, F* g, F* b, F* a) {
F fr, br, fg, bg, fb, bb, fa, ba;
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
if (c->stopCount <=8) {
fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
} else
#endif
{
fr = gather(c->fs[0], idx);
br = gather(c->bs[0], idx);
fg = gather(c->fs[1], idx);
bg = gather(c->bs[1], idx);
fb = gather(c->fs[2], idx);
bb = gather(c->bs[2], idx);
fa = gather(c->fs[3], idx);
ba = gather(c->bs[3], idx);
}
*r = mad(t, fr, br);
*g = mad(t, fg, bg);
*b = mad(t, fb, bb);
*a = mad(t, fa, ba);
}
STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = r;
auto idx = trunc_(t * (c->stopCount-1));
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = r;
U32 idx = 0;
// N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
for (size_t i = 1; i < c->stopCount; i++) {
idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
}
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(evenly_spaced_2_stop_gradient, const void* ctx) {
// TODO: Rename Ctx SkRasterPipeline_EvenlySpaced2StopGradientCtx.
struct Ctx { float f[4], b[4]; };
auto c = (const Ctx*)ctx;
auto t = r;
r = mad(t, c->f[0], c->b[0]);
g = mad(t, c->f[1], c->b[1]);
b = mad(t, c->f[2], c->b[2]);
a = mad(t, c->f[3], c->b[3]);
}
STAGE(xy_to_unit_angle, Ctx::None) {
F X = r,
Y = g;
F xabs = abs_(X),
yabs = abs_(Y);
F slope = min(xabs, yabs)/max(xabs, yabs);
F s = slope * slope;
// Use a 7th degree polynomial to approximate atan.
// This was generated using sollya.gforge.inria.fr.
// A float optimized polynomial was generated using the following command.
// P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
F phi = slope
* (0.15912117063999176025390625f + s
* (-5.185396969318389892578125e-2f + s
* (2.476101927459239959716796875e-2f + s
* (-7.0547382347285747528076171875e-3f))));
phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
r = phi;
}
STAGE(xy_to_radius, Ctx::None) {
F X2 = r * r,
Y2 = g * g;
r = sqrt_(X2 + Y2);
}
// Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
STAGE(negate_x, Ctx::None) { r = -r; }
STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
}
STAGE(xy_to_2pt_conical_focal_on_circle, Ctx::None) {
F x = r, y = g, &t = r;
t = x + y*y / x; // (x^2 + y^2) / x
}
STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
F& t = r;
t = t + ctx->fP1; // ctx->fP1 = f
}
STAGE(alter_2pt_conical_unswap, Ctx::None) {
F& t = r;
t = 1 - t;
}
STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
F& t = r;
auto is_degenerate = (t != t); // NaN
t = if_then_else(is_degenerate, F(0), t);
unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
}
STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
F& t = r;
auto is_degenerate = (t <= 0) | (t != t);
t = if_then_else(is_degenerate, F(0), t);
unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
}
STAGE(apply_vector_mask, const uint32_t* ctx) {
const U32 mask = unaligned_load<U32>(ctx);
r = bit_cast<F>(bit_cast<U32>(r) & mask);
g = bit_cast<F>(bit_cast<U32>(g) & mask);
b = bit_cast<F>(bit_cast<U32>(b) & mask);
a = bit_cast<F>(bit_cast<U32>(a) & mask);
}
STAGE(save_xy, SkRasterPipeline_SamplerCtx* c) {
// Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
// They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
// surrounding (x,y) at (0.5,0.5) off-center.
F fx = fract(r + 0.5f),
fy = fract(g + 0.5f);
// Samplers will need to load x and fx, or y and fy.
unaligned_store(c->x, r);
unaligned_store(c->y, g);
unaligned_store(c->fx, fx);
unaligned_store(c->fy, fy);
}
STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
// Bilinear and bicubic filters are both separable, so we produce independent contributions
// from x and y, multiplying them together here to get each pixel's total scale factor.
auto scale = unaligned_load<F>(c->scalex)
* unaligned_load<F>(c->scaley);
dr = mad(scale, r, dr);
dg = mad(scale, g, dg);
db = mad(scale, b, db);
da = mad(scale, a, da);
}
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
// The y-axis is symmetric.
template <int kScale>
SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
*x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F fx = unaligned_load<F>(ctx->fx);
F scalex;
if (kScale == -1) { scalex = 1.0f - fx; }
if (kScale == +1) { scalex = fx; }
unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
*y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F fy = unaligned_load<F>(ctx->fy);
F scaley;
if (kScale == -1) { scaley = 1.0f - fy; }
if (kScale == +1) { scaley = fy; }
unaligned_store(ctx->scaley, scaley);
}
STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
// pixel center are combined with a non-uniform cubic filter, with higher values near the center.
//
// We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
// See GrCubicEffect for details of this particular filter.
SI F bicubic_near(F t) {
// 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t