| /* |
| * Copyright 2012 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkMatrixConvolutionImageFilter.h" |
| #include "SkBitmap.h" |
| #include "SkColorPriv.h" |
| #include "SkReadBuffer.h" |
| #include "SkSpecialImage.h" |
| #include "SkWriteBuffer.h" |
| #include "SkRect.h" |
| #include "SkUnPreMultiply.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrContext.h" |
| #include "GrTextureProxy.h" |
| #include "effects/GrMatrixConvolutionEffect.h" |
| #endif |
| |
| // We need to be able to read at most SK_MaxS32 bytes, so divide that |
| // by the size of a scalar to know how many scalars we can read. |
| static const int32_t gMaxKernelSize = SK_MaxS32 / sizeof(SkScalar); |
| |
| SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(const SkISize& kernelSize, |
| const SkScalar* kernel, |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| TileMode tileMode, |
| bool convolveAlpha, |
| sk_sp<SkImageFilter> input, |
| const CropRect* cropRect) |
| : INHERITED(&input, 1, cropRect) |
| , fKernelSize(kernelSize) |
| , fGain(gain) |
| , fBias(bias) |
| , fKernelOffset(kernelOffset) |
| , fTileMode(tileMode) |
| , fConvolveAlpha(convolveAlpha) { |
| size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height()); |
| fKernel = new SkScalar[size]; |
| memcpy(fKernel, kernel, size * sizeof(SkScalar)); |
| SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1); |
| SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth); |
| SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight); |
| } |
| |
| sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::Make(const SkISize& kernelSize, |
| const SkScalar* kernel, |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| TileMode tileMode, |
| bool convolveAlpha, |
| sk_sp<SkImageFilter> input, |
| const CropRect* cropRect) { |
| if (kernelSize.width() < 1 || kernelSize.height() < 1) { |
| return nullptr; |
| } |
| if (gMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) { |
| return nullptr; |
| } |
| if (!kernel) { |
| return nullptr; |
| } |
| if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) || |
| (kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) { |
| return nullptr; |
| } |
| return sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilter(kernelSize, kernel, gain, |
| bias, kernelOffset, |
| tileMode, convolveAlpha, |
| std::move(input), cropRect)); |
| } |
| |
| sk_sp<SkFlattenable> SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) { |
| SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1); |
| SkISize kernelSize; |
| kernelSize.fWidth = buffer.readInt(); |
| kernelSize.fHeight = buffer.readInt(); |
| const int count = buffer.getArrayCount(); |
| |
| const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height()); |
| if (!buffer.validate(kernelArea == count)) { |
| return nullptr; |
| } |
| SkAutoSTArray<16, SkScalar> kernel(count); |
| if (!buffer.readScalarArray(kernel.get(), count)) { |
| return nullptr; |
| } |
| SkScalar gain = buffer.readScalar(); |
| SkScalar bias = buffer.readScalar(); |
| SkIPoint kernelOffset; |
| kernelOffset.fX = buffer.readInt(); |
| kernelOffset.fY = buffer.readInt(); |
| TileMode tileMode = (TileMode)buffer.readInt(); |
| bool convolveAlpha = buffer.readBool(); |
| return Make(kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, |
| convolveAlpha, common.getInput(0), &common.cropRect()); |
| } |
| |
| void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const { |
| this->INHERITED::flatten(buffer); |
| buffer.writeInt(fKernelSize.fWidth); |
| buffer.writeInt(fKernelSize.fHeight); |
| buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight); |
| buffer.writeScalar(fGain); |
| buffer.writeScalar(fBias); |
| buffer.writeInt(fKernelOffset.fX); |
| buffer.writeInt(fKernelOffset.fY); |
| buffer.writeInt((int) fTileMode); |
| buffer.writeBool(fConvolveAlpha); |
| } |
| |
| SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() { |
| delete[] fKernel; |
| } |
| |
| class UncheckedPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class ClampPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| x = SkTPin(x, bounds.fLeft, bounds.fRight - 1); |
| y = SkTPin(y, bounds.fTop, bounds.fBottom - 1); |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class RepeatPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| x = (x - bounds.left()) % bounds.width() + bounds.left(); |
| y = (y - bounds.top()) % bounds.height() + bounds.top(); |
| if (x < bounds.left()) { |
| x += bounds.width(); |
| } |
| if (y < bounds.top()) { |
| y += bounds.height(); |
| } |
| return *src.getAddr32(x, y); |
| } |
| }; |
| |
| class ClampToBlackPixelFetcher { |
| public: |
| static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) { |
| if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) { |
| return 0; |
| } else { |
| return *src.getAddr32(x, y); |
| } |
| } |
| }; |
| |
| template<class PixelFetcher, bool convolveAlpha> |
| void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| const SkIRect& r, |
| const SkIRect& bounds) const { |
| SkIRect rect(r); |
| if (!rect.intersect(bounds)) { |
| return; |
| } |
| for (int y = rect.fTop; y < rect.fBottom; ++y) { |
| SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop); |
| for (int x = rect.fLeft; x < rect.fRight; ++x) { |
| SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0; |
| for (int cy = 0; cy < fKernelSize.fHeight; cy++) { |
| for (int cx = 0; cx < fKernelSize.fWidth; cx++) { |
| SkPMColor s = PixelFetcher::fetch(src, |
| x + cx - fKernelOffset.fX, |
| y + cy - fKernelOffset.fY, |
| bounds); |
| SkScalar k = fKernel[cy * fKernelSize.fWidth + cx]; |
| if (convolveAlpha) { |
| sumA += SkGetPackedA32(s) * k; |
| } |
| sumR += SkGetPackedR32(s) * k; |
| sumG += SkGetPackedG32(s) * k; |
| sumB += SkGetPackedB32(s) * k; |
| } |
| } |
| int a = convolveAlpha |
| ? SkClampMax(SkScalarFloorToInt(sumA * fGain + fBias), 255) |
| : 255; |
| int r = SkClampMax(SkScalarFloorToInt(sumR * fGain + fBias), a); |
| int g = SkClampMax(SkScalarFloorToInt(sumG * fGain + fBias), a); |
| int b = SkClampMax(SkScalarFloorToInt(sumB * fGain + fBias), a); |
| if (!convolveAlpha) { |
| a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds)); |
| *dptr++ = SkPreMultiplyARGB(a, r, g, b); |
| } else { |
| *dptr++ = SkPackARGB32(a, r, g, b); |
| } |
| } |
| } |
| } |
| |
| template<class PixelFetcher> |
| void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, |
| SkBitmap* result, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| if (fConvolveAlpha) { |
| filterPixels<PixelFetcher, true>(src, result, rect, bounds); |
| } else { |
| filterPixels<PixelFetcher, false>(src, result, rect, bounds); |
| } |
| } |
| |
| void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, |
| SkBitmap* result, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| filterPixels<UncheckedPixelFetcher>(src, result, rect, bounds); |
| } |
| |
| void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, |
| SkBitmap* result, |
| const SkIRect& rect, |
| const SkIRect& bounds) const { |
| switch (fTileMode) { |
| case kClamp_TileMode: |
| filterPixels<ClampPixelFetcher>(src, result, rect, bounds); |
| break; |
| case kRepeat_TileMode: |
| filterPixels<RepeatPixelFetcher>(src, result, rect, bounds); |
| break; |
| case kClampToBlack_TileMode: |
| filterPixels<ClampToBlackPixelFetcher>(src, result, rect, bounds); |
| break; |
| } |
| } |
| |
| // FIXME: This should be refactored to SkImageFilterUtils for |
| // use by other filters. For now, we assume the input is always |
| // premultiplied and unpremultiply it |
| static SkBitmap unpremultiply_bitmap(const SkBitmap& src) { |
| if (!src.getPixels()) { |
| return SkBitmap(); |
| } |
| |
| const SkImageInfo info = SkImageInfo::MakeN32(src.width(), src.height(), src.alphaType()); |
| SkBitmap result; |
| if (!result.tryAllocPixels(info)) { |
| return SkBitmap(); |
| } |
| for (int y = 0; y < src.height(); ++y) { |
| const uint32_t* srcRow = src.getAddr32(0, y); |
| uint32_t* dstRow = result.getAddr32(0, y); |
| for (int x = 0; x < src.width(); ++x) { |
| dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]); |
| } |
| } |
| return result; |
| } |
| |
| #if SK_SUPPORT_GPU |
| |
| static GrTextureDomain::Mode convert_tilemodes(SkMatrixConvolutionImageFilter::TileMode tileMode) { |
| switch (tileMode) { |
| case SkMatrixConvolutionImageFilter::kClamp_TileMode: |
| return GrTextureDomain::kClamp_Mode; |
| case SkMatrixConvolutionImageFilter::kRepeat_TileMode: |
| return GrTextureDomain::kRepeat_Mode; |
| case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode: |
| return GrTextureDomain::kDecal_Mode; |
| default: |
| SkASSERT(false); |
| } |
| return GrTextureDomain::kIgnore_Mode; |
| } |
| #endif |
| |
| sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilter::onFilterImage(SkSpecialImage* source, |
| const Context& ctx, |
| SkIPoint* offset) const { |
| SkIPoint inputOffset = SkIPoint::Make(0, 0); |
| sk_sp<SkSpecialImage> input(this->filterInput(0, source, ctx, &inputOffset)); |
| if (!input) { |
| return nullptr; |
| } |
| |
| SkIRect bounds; |
| input = this->applyCropRect(this->mapContext(ctx), input.get(), &inputOffset, &bounds); |
| if (!input) { |
| return nullptr; |
| } |
| |
| #if SK_SUPPORT_GPU |
| // Note: if the kernel is too big, the GPU path falls back to SW |
| if (source->isTextureBacked() && |
| fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE) { |
| GrContext* context = source->getContext(); |
| |
| // Ensure the input is in the destination color space. Typically applyCropRect will have |
| // called pad_image to account for our dilation of bounds, so the result will already be |
| // moved to the destination color space. If a filter DAG avoids that, then we use this |
| // fall-back, which saves us from having to do the xform during the filter itself. |
| input = ImageToColorSpace(input.get(), ctx.outputProperties()); |
| |
| sk_sp<GrTextureProxy> inputProxy(input->asTextureProxyRef(context)); |
| SkASSERT(inputProxy); |
| |
| offset->fX = bounds.left(); |
| offset->fY = bounds.top(); |
| bounds.offset(-inputOffset); |
| |
| sk_sp<GrFragmentProcessor> fp(GrMatrixConvolutionEffect::Make(std::move(inputProxy), |
| bounds, |
| fKernelSize, |
| fKernel, |
| fGain, |
| fBias, |
| fKernelOffset, |
| convert_tilemodes(fTileMode), |
| fConvolveAlpha)); |
| if (!fp) { |
| return nullptr; |
| } |
| |
| return DrawWithFP(context, std::move(fp), bounds, ctx.outputProperties()); |
| } |
| #endif |
| |
| SkBitmap inputBM; |
| |
| if (!input->getROPixels(&inputBM)) { |
| return nullptr; |
| } |
| |
| if (inputBM.colorType() != kN32_SkColorType) { |
| return nullptr; |
| } |
| |
| if (!fConvolveAlpha && !inputBM.isOpaque()) { |
| inputBM = unpremultiply_bitmap(inputBM); |
| } |
| |
| if (!inputBM.getPixels()) { |
| return nullptr; |
| } |
| |
| const SkImageInfo info = SkImageInfo::MakeN32(bounds.width(), bounds.height(), |
| inputBM.alphaType()); |
| |
| SkBitmap dst; |
| if (!dst.tryAllocPixels(info)) { |
| return nullptr; |
| } |
| |
| offset->fX = bounds.fLeft; |
| offset->fY = bounds.fTop; |
| bounds.offset(-inputOffset); |
| SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fKernelOffset.fX, |
| bounds.top() + fKernelOffset.fY, |
| bounds.width() - fKernelSize.fWidth + 1, |
| bounds.height() - fKernelSize.fHeight + 1); |
| SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top()); |
| SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(), |
| bounds.right(), bounds.bottom()); |
| SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(), |
| interior.left(), interior.bottom()); |
| SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(), |
| bounds.right(), interior.bottom()); |
| this->filterBorderPixels(inputBM, &dst, top, bounds); |
| this->filterBorderPixels(inputBM, &dst, left, bounds); |
| this->filterInteriorPixels(inputBM, &dst, interior, bounds); |
| this->filterBorderPixels(inputBM, &dst, right, bounds); |
| this->filterBorderPixels(inputBM, &dst, bottom, bounds); |
| return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(bounds.width(), bounds.height()), |
| dst); |
| } |
| |
| sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::onMakeColorSpace(SkColorSpaceXformer* xformer) |
| const { |
| SkASSERT(1 == this->countInputs()); |
| if (!this->getInput(0)) { |
| return sk_ref_sp(const_cast<SkMatrixConvolutionImageFilter*>(this)); |
| } |
| |
| sk_sp<SkImageFilter> input = this->getInput(0)->makeColorSpace(xformer); |
| return SkMatrixConvolutionImageFilter::Make(fKernelSize, fKernel, fGain, fBias, fKernelOffset, |
| fTileMode, fConvolveAlpha, std::move(input), |
| this->getCropRectIfSet()); |
| } |
| |
| SkIRect SkMatrixConvolutionImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, |
| MapDirection direction) const { |
| SkIRect dst = src; |
| int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1; |
| dst.fRight += w; |
| dst.fBottom += h; |
| if (kReverse_MapDirection == direction) { |
| dst.offset(-fKernelOffset); |
| } else { |
| dst.offset(fKernelOffset - SkIPoint::Make(w, h)); |
| } |
| return dst; |
| } |
| |
| bool SkMatrixConvolutionImageFilter::affectsTransparentBlack() const { |
| // Because the kernel is applied in device-space, we have no idea what |
| // pixels it will affect in object-space. |
| return true; |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkMatrixConvolutionImageFilter::toString(SkString* str) const { |
| str->appendf("SkMatrixConvolutionImageFilter: ("); |
| str->appendf("size: (%d,%d) kernel: (", fKernelSize.width(), fKernelSize.height()); |
| for (int y = 0; y < fKernelSize.height(); y++) { |
| for (int x = 0; x < fKernelSize.width(); x++) { |
| str->appendf("%f ", fKernel[y * fKernelSize.width() + x]); |
| } |
| } |
| str->appendf(")"); |
| str->appendf("gain: %f bias: %f ", fGain, fBias); |
| str->appendf("offset: (%d, %d) ", fKernelOffset.fX, fKernelOffset.fY); |
| str->appendf("convolveAlpha: %s", fConvolveAlpha ? "true" : "false"); |
| str->append(")"); |
| } |
| #endif |