| /* |
| * Copyright 2021 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "src/gpu/tessellate/Tessellation.h" |
| |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPathTypes.h" |
| #include "include/core/SkRect.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkTArray.h" |
| #include "src/base/SkUtils.h" |
| #include "src/base/SkVx.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/gpu/tessellate/CullTest.h" |
| #include "src/gpu/tessellate/WangsFormula.h" |
| |
| using namespace skia_private; |
| |
| namespace skgpu::tess { |
| |
| namespace { |
| |
| using float2 = skvx::float2; |
| using float4 = skvx::float4; |
| |
| // This value only protects us against getting stuck in infinite recursion due to fp32 precision |
| // issues. Mathematically, every curve should reduce to manageable visible sections in O(log N) |
| // chops, where N is the the magnitude of its control points. |
| // |
| // But, to define a protective upper bound, a cubic can enter or exit the viewport as many as 6 |
| // times. So we may need to refine the curve (via binary search chopping at T=.5) up to 6 times. |
| // |
| // Furthermore, chopping a cubic at T=.5 may only reduce its length by 1/8 (.5^3), so we may require |
| // up to 6 chops in order to reduce the length by 1/2. |
| constexpr static int kMaxChopsPerCurve = 128/*magnitude of +fp32_max - -fp32_max*/ * |
| 6/*max number of chops to reduce the length by half*/ * |
| 6/*max number of viewport boundary crosses*/; |
| |
| // Writes a new path, chopping as necessary so no verbs require more segments than |
| // kMaxTessellationSegmentsPerCurve. Curves completely outside the viewport are flattened into |
| // lines. |
| class PathChopper { |
| public: |
| PathChopper(float tessellationPrecision, const SkMatrix& matrix, const SkRect& viewport) |
| : fTessellationPrecision(tessellationPrecision) |
| , fCullTest(viewport, matrix) |
| , fVectorXform(matrix) { |
| fPath.setIsVolatile(true); |
| } |
| |
| SkPath path() const { return fPath; } |
| |
| void moveTo(SkPoint p) { fPath.moveTo(p); } |
| void lineTo(const SkPoint p[2]) { fPath.lineTo(p[1]); } |
| void close() { fPath.close(); } |
| |
| void quadTo(const SkPoint quad[3]) { |
| SkASSERT(fPointStack.empty()); |
| // Use a heap stack to recursively chop the quad into manageable, on-screen segments. |
| fPointStack.push_back_n(3, quad); |
| int numChops = 0; |
| while (!fPointStack.empty()) { |
| const SkPoint* p = fPointStack.end() - 3; |
| if (!fCullTest.areVisible3(p)) { |
| fPath.lineTo(p[2]); |
| } else { |
| float n4 = wangs_formula::quadratic_p4(fTessellationPrecision, p, fVectorXform); |
| if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) { |
| SkPoint chops[5]; |
| SkChopQuadAtHalf(p, chops); |
| fPointStack.pop_back_n(3); |
| fPointStack.push_back_n(3, chops+2); |
| fPointStack.push_back_n(3, chops); |
| ++numChops; |
| continue; |
| } |
| fPath.quadTo(p[1], p[2]); |
| } |
| fPointStack.pop_back_n(3); |
| } |
| } |
| |
| void conicTo(const SkPoint conic[3], float weight) { |
| SkASSERT(fPointStack.empty()); |
| SkASSERT(fWeightStack.empty()); |
| // Use a heap stack to recursively chop the conic into manageable, on-screen segments. |
| fPointStack.push_back_n(3, conic); |
| fWeightStack.push_back(weight); |
| int numChops = 0; |
| while (!fPointStack.empty()) { |
| const SkPoint* p = fPointStack.end() - 3; |
| float w = fWeightStack.back(); |
| if (!fCullTest.areVisible3(p)) { |
| fPath.lineTo(p[2]); |
| } else { |
| float n2 = wangs_formula::conic_p2(fTessellationPrecision, p, w, fVectorXform); |
| if (n2 > kMaxSegmentsPerCurve_p2 && numChops < kMaxChopsPerCurve) { |
| SkConic chops[2]; |
| if (!SkConic(p,w).chopAt(.5, chops)) { |
| SkPoint line[2] = {p[0], p[2]}; |
| this->lineTo(line); |
| continue; |
| } |
| fPointStack.pop_back_n(3); |
| fWeightStack.pop_back(); |
| fPointStack.push_back_n(3, chops[1].fPts); |
| fWeightStack.push_back(chops[1].fW); |
| fPointStack.push_back_n(3, chops[0].fPts); |
| fWeightStack.push_back(chops[0].fW); |
| ++numChops; |
| continue; |
| } |
| fPath.conicTo(p[1], p[2], w); |
| } |
| fPointStack.pop_back_n(3); |
| fWeightStack.pop_back(); |
| } |
| SkASSERT(fWeightStack.empty()); |
| } |
| |
| void cubicTo(const SkPoint cubic[4]) { |
| SkASSERT(fPointStack.empty()); |
| // Use a heap stack to recursively chop the cubic into manageable, on-screen segments. |
| fPointStack.push_back_n(4, cubic); |
| int numChops = 0; |
| while (!fPointStack.empty()) { |
| SkPoint* p = fPointStack.end() - 4; |
| if (!fCullTest.areVisible4(p)) { |
| fPath.lineTo(p[3]); |
| } else { |
| float n4 = wangs_formula::cubic_p4(fTessellationPrecision, p, fVectorXform); |
| if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) { |
| SkPoint chops[7]; |
| SkChopCubicAtHalf(p, chops); |
| fPointStack.pop_back_n(4); |
| fPointStack.push_back_n(4, chops+3); |
| fPointStack.push_back_n(4, chops); |
| ++numChops; |
| continue; |
| } |
| fPath.cubicTo(p[1], p[2], p[3]); |
| } |
| fPointStack.pop_back_n(4); |
| } |
| } |
| |
| private: |
| const float fTessellationPrecision; |
| const CullTest fCullTest; |
| const wangs_formula::VectorXform fVectorXform; |
| SkPath fPath; |
| |
| // Used for stack-based recursion (instead of using the runtime stack). |
| STArray<8, SkPoint> fPointStack; |
| STArray<2, float> fWeightStack; |
| }; |
| |
| } // namespace |
| |
| SkPath PreChopPathCurves(float tessellationPrecision, |
| const SkPath& path, |
| const SkMatrix& matrix, |
| const SkRect& viewport) { |
| // If the viewport is exceptionally large, we could end up blowing out memory with an unbounded |
| // number of of chops. Therefore, we require that the viewport is manageable enough that a fully |
| // contained curve can be tessellated in kMaxTessellationSegmentsPerCurve or fewer. (Any larger |
| // and that amount of pixels wouldn't fit in memory anyway.) |
| SkASSERT(wangs_formula::worst_case_cubic( |
| tessellationPrecision, |
| viewport.width(), |
| viewport.height()) <= kMaxSegmentsPerCurve); |
| PathChopper chopper(tessellationPrecision, matrix, viewport); |
| for (auto [verb, p, w] : SkPathPriv::Iterate(path)) { |
| switch (verb) { |
| case SkPathVerb::kMove: |
| chopper.moveTo(p[0]); |
| break; |
| case SkPathVerb::kLine: |
| chopper.lineTo(p); |
| break; |
| case SkPathVerb::kQuad: |
| chopper.quadTo(p); |
| break; |
| case SkPathVerb::kConic: |
| chopper.conicTo(p, *w); |
| break; |
| case SkPathVerb::kCubic: |
| chopper.cubicTo(p); |
| break; |
| case SkPathVerb::kClose: |
| chopper.close(); |
| break; |
| } |
| } |
| // Must preserve the input path's fill type (see crbug.com/1472747) |
| SkPath chopped = chopper.path(); |
| chopped.setFillType(path.getFillType()); |
| return chopped; |
| } |
| |
| int FindCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) { |
| SkASSERT(pts); |
| SkASSERT(T); |
| SkASSERT(areCusps); |
| |
| // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become |
| // unstable when we chop too close to the boundary. This works out because the tessellation |
| // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and |
| // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a |
| // fraction of a tessellation segment, it just gets snapped. |
| constexpr static float kEpsilon = 1.f / (1 << 11); |
| // Floating-point representation of "1 - 2*kEpsilon". |
| constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11)); |
| // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the |
| // kIEEE_one_minus_2_epsilon bits are correct. |
| SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon); |
| |
| float2 p0 = sk_bit_cast<float2>(pts[0]); |
| float2 p1 = sk_bit_cast<float2>(pts[1]); |
| float2 p2 = sk_bit_cast<float2>(pts[2]); |
| float2 p3 = sk_bit_cast<float2>(pts[3]); |
| |
| // Find the cubic's power basis coefficients. These define the bezier curve as: |
| // |
| // |T^3| |
| // Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0 |
| // |. . .| |T | |
| // |
| // And the tangent direction (scaled by a uniform 1/3) will be: |
| // |
| // |T^2| |
| // Tangent_Direction(T) = dx,dy = |A 2B C| * |T | |
| // |. . .| |1 | |
| // |
| float2 C = p1 - p0; |
| float2 D = p2 - p1; |
| float2 E = p3 - p0; |
| float2 B = D - C; |
| float2 A = -3*D + E; |
| |
| // Now find the cubic's inflection function. There are inflections where F' x F'' == 0. |
| // We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0. |
| // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| // NOTE: We only need the roots, so a uniform scale factor does not affect the solution. |
| float a = cross(A,B); |
| float b = cross(A,C); |
| float c = cross(B,C); |
| float b_over_minus_2 = -.5f * b; |
| float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c; |
| |
| // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within |
| // kEpsilon of one another (in parametric space). This is close enough for our purposes to |
| // consider them a single cusp. |
| float cuspThreshold = a * (kEpsilon/2); |
| cuspThreshold *= cuspThreshold; |
| |
| if (discr_over_4 < -cuspThreshold) { |
| // The curve does not inflect or cusp. This means it might rotate more than 180 degrees |
| // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is |
| // parallel to tan0.) |
| // |
| // Tangent_Direction(T) x tan0 == 0 |
| // (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0 |
| // (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]] |
| // bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]] |
| // T = [0, -2c/b] |
| // |
| // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely |
| // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops. |
| *areCusps = false; |
| float root = sk_ieee_float_divide(c, b_over_minus_2); |
| // Is "root" inside the range [kEpsilon, 1 - kEpsilon)? |
| if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) { |
| T[0] = root; |
| return 1; |
| } |
| return 0; |
| } |
| |
| *areCusps = (discr_over_4 <= cuspThreshold); |
| if (*areCusps) { |
| // The two roots are close enough that we can consider them a single cusp. |
| if (a != 0 || b_over_minus_2 != 0 || c != 0) { |
| // Pick the average of both roots. |
| float root = sk_ieee_float_divide(b_over_minus_2, a); |
| // Is "root" inside the range [kEpsilon, 1 - kEpsilon)? |
| if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) { |
| T[0] = root; |
| return 1; |
| } |
| return 0; |
| } |
| |
| // The curve is a flat line. The standard inflection function doesn't detect cusps from flat |
| // lines. Find cusps by searching instead for points where the tangent is perpendicular to |
| // tan0. This will find any cusp point. |
| // |
| // dot(tan0, Tangent_Direction(T)) == 0 |
| // |
| // |T^2| |
| // tan0 * |A 2B C| * |T | == 0 |
| // |. . .| |1 | |
| // |
| float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0); |
| a = dot(tan0, A); |
| b_over_minus_2 = -dot(tan0, B); |
| c = dot(tan0, C); |
| discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f); |
| } |
| |
| // Solve our quadratic equation to find where to chop. See the quadratic formula from |
| // Numerical Recipes in C. |
| float q = sqrtf(discr_over_4); |
| q = copysignf(q, b_over_minus_2); |
| q = q + b_over_minus_2; |
| float2 roots = float2{q,c} / float2{a,q}; |
| |
| auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon)); |
| if (inside[0]) { |
| if (inside[1] && roots[0] != roots[1]) { |
| if (roots[0] > roots[1]) { |
| roots = skvx::shuffle<1,0>(roots); // Sort. |
| } |
| roots.store(T); |
| return 2; |
| } |
| T[0] = roots[0]; |
| return 1; |
| } |
| if (inside[1]) { |
| T[0] = roots[1]; |
| return 1; |
| } |
| return 0; |
| } |
| |
| } // namespace skgpu::tess |