| /* |
| * Copyright 2023 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/base/SkCubics.h" |
| |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkTPin.h" |
| #include "src/base/SkQuads.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| |
| static constexpr double PI = 3.141592653589793; |
| |
| static bool nearly_equal(double x, double y) { |
| if (sk_double_nearly_zero(x)) { |
| return sk_double_nearly_zero(y); |
| } |
| return sk_doubles_nearly_equal_ulps(x, y); |
| } |
| |
| // When the A coefficient of a cubic is close to 0, there can be floating point error |
| // that arises from computing a very large root. In those cases, we would rather be |
| // precise about the smaller 2 roots, so we have this arbitrary cutoff for when A is |
| // really small or small compared to B. |
| static bool close_to_a_quadratic(double A, double B) { |
| if (sk_double_nearly_zero(B)) { |
| return sk_double_nearly_zero(A); |
| } |
| return std::abs(A / B) < 1.0e-7; |
| } |
| |
| int SkCubics::RootsReal(double A, double B, double C, double D, double solution[3]) { |
| if (close_to_a_quadratic(A, B)) { |
| return SkQuads::RootsReal(B, C, D, solution); |
| } |
| if (sk_double_nearly_zero(D)) { // 0 is one root |
| int num = SkQuads::RootsReal(A, B, C, solution); |
| for (int i = 0; i < num; ++i) { |
| if (sk_double_nearly_zero(solution[i])) { |
| return num; |
| } |
| } |
| solution[num++] = 0; |
| return num; |
| } |
| if (sk_double_nearly_zero(A + B + C + D)) { // 1 is one root |
| int num = SkQuads::RootsReal(A, A + B, -D, solution); |
| for (int i = 0; i < num; ++i) { |
| if (sk_doubles_nearly_equal_ulps(solution[i], 1)) { |
| return num; |
| } |
| } |
| solution[num++] = 1; |
| return num; |
| } |
| double a, b, c; |
| { |
| // If A is zero (e.g. B was nan and thus close_to_a_quadratic was false), we will |
| // temporarily have infinities rolling about, but will catch that when checking |
| // R2MinusQ3. |
| double invA = sk_ieee_double_divide(1, A); |
| a = B * invA; |
| b = C * invA; |
| c = D * invA; |
| } |
| double a2 = a * a; |
| double Q = (a2 - b * 3) / 9; |
| double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| double R2 = R * R; |
| double Q3 = Q * Q * Q; |
| double R2MinusQ3 = R2 - Q3; |
| // If one of R2 Q3 is infinite or nan, subtracting them will also be infinite/nan. |
| // If both are infinite or nan, the subtraction will be nan. |
| // In either case, we have no finite roots. |
| if (!SkIsFinite(R2MinusQ3)) { |
| return 0; |
| } |
| double adiv3 = a / 3; |
| double r; |
| double* roots = solution; |
| if (R2MinusQ3 < 0) { // we have 3 real roots |
| // the divide/root can, due to finite precisions, be slightly outside of -1...1 |
| const double theta = acos(SkTPin(R / std::sqrt(Q3), -1., 1.)); |
| const double neg2RootQ = -2 * std::sqrt(Q); |
| |
| r = neg2RootQ * cos(theta / 3) - adiv3; |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
| if (!nearly_equal(solution[0], r)) { |
| *roots++ = r; |
| } |
| r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
| if (!nearly_equal(solution[0], r) && |
| (roots - solution == 1 || !nearly_equal(solution[1], r))) { |
| *roots++ = r; |
| } |
| } else { // we have 1 real root |
| const double sqrtR2MinusQ3 = std::sqrt(R2MinusQ3); |
| A = fabs(R) + sqrtR2MinusQ3; |
| A = std::cbrt(A); // cube root |
| if (R > 0) { |
| A = -A; |
| } |
| if (!sk_double_nearly_zero(A)) { |
| A += Q / A; |
| } |
| r = A - adiv3; |
| *roots++ = r; |
| if (!sk_double_nearly_zero(R2) && |
| sk_doubles_nearly_equal_ulps(R2, Q3)) { |
| r = -A / 2 - adiv3; |
| if (!nearly_equal(solution[0], r)) { |
| *roots++ = r; |
| } |
| } |
| } |
| return static_cast<int>(roots - solution); |
| } |
| |
| int SkCubics::RootsValidT(double A, double B, double C, double D, |
| double solution[3]) { |
| double allRoots[3] = {0, 0, 0}; |
| int realRoots = SkCubics::RootsReal(A, B, C, D, allRoots); |
| int foundRoots = 0; |
| for (int index = 0; index < realRoots; ++index) { |
| double tValue = allRoots[index]; |
| if (tValue >= 1.0 && tValue <= 1.00005) { |
| // Make sure we do not already have 1 (or something very close) in the list of roots. |
| if ((foundRoots < 1 || !sk_doubles_nearly_equal_ulps(solution[0], 1)) && |
| (foundRoots < 2 || !sk_doubles_nearly_equal_ulps(solution[1], 1))) { |
| solution[foundRoots++] = 1; |
| } |
| } else if (tValue >= -0.00005 && (tValue <= 0.0 || sk_double_nearly_zero(tValue))) { |
| // Make sure we do not already have 0 (or something very close) in the list of roots. |
| if ((foundRoots < 1 || !sk_double_nearly_zero(solution[0])) && |
| (foundRoots < 2 || !sk_double_nearly_zero(solution[1]))) { |
| solution[foundRoots++] = 0; |
| } |
| } else if (tValue > 0.0 && tValue < 1.0) { |
| solution[foundRoots++] = tValue; |
| } |
| } |
| return foundRoots; |
| } |
| |
| static bool approximately_zero(double x) { |
| // This cutoff for our binary search hopefully strikes a good balance between |
| // performance and accuracy. |
| return std::abs(x) < 0.00000001; |
| } |
| |
| static int find_extrema_valid_t(double A, double B, double C, |
| double t[2]) { |
| // To find the local min and max of a cubic, we take the derivative and |
| // solve when that is equal to 0. |
| // d/dt (A*t^3 + B*t^2 + C*t + D) = 3A*t^2 + 2B*t + C |
| double roots[2] = {0, 0}; |
| int numRoots = SkQuads::RootsReal(3*A, 2*B, C, roots); |
| int validRoots = 0; |
| for (int i = 0; i < numRoots; i++) { |
| double tValue = roots[i]; |
| if (tValue >= 0 && tValue <= 1.0) { |
| t[validRoots++] = tValue; |
| } |
| } |
| return validRoots; |
| } |
| |
| static double binary_search(double A, double B, double C, double D, double start, double stop) { |
| SkASSERT(start <= stop); |
| double left = SkCubics::EvalAt(A, B, C, D, start); |
| if (approximately_zero(left)) { |
| return start; |
| } |
| double right = SkCubics::EvalAt(A, B, C, D, stop); |
| if (!SkIsFinite(left, right)) { |
| return -1; // Not going to deal with one or more endpoints being non-finite. |
| } |
| if ((left > 0 && right > 0) || (left < 0 && right < 0)) { |
| return -1; // We can only have a root if one is above 0 and the other is below 0. |
| } |
| |
| constexpr int maxIterations = 1000; // prevent infinite loop |
| for (int i = 0; i < maxIterations; i++) { |
| double step = (start + stop) / 2; |
| double curr = SkCubics::EvalAt(A, B, C, D, step); |
| if (approximately_zero(curr)) { |
| return step; |
| } |
| if ((curr < 0 && left < 0) || (curr > 0 && left > 0)) { |
| // go right |
| start = step; |
| } else { |
| // go left |
| stop = step; |
| } |
| } |
| return -1; |
| } |
| |
| int SkCubics::BinarySearchRootsValidT(double A, double B, double C, double D, |
| double solution[3]) { |
| if (!SkIsFinite(A, B, C, D)) { |
| return 0; |
| } |
| double regions[4] = {0, 0, 0, 1}; |
| // Find local minima and maxima |
| double minMax[2] = {0, 0}; |
| int extremaCount = find_extrema_valid_t(A, B, C, minMax); |
| int startIndex = 2 - extremaCount; |
| if (extremaCount == 1) { |
| regions[startIndex + 1] = minMax[0]; |
| } |
| if (extremaCount == 2) { |
| // While the roots will be in the range 0 to 1 inclusive, they might not be sorted. |
| regions[startIndex + 1] = std::min(minMax[0], minMax[1]); |
| regions[startIndex + 2] = std::max(minMax[0], minMax[1]); |
| } |
| // Starting at regions[startIndex] and going up through regions[3], we have |
| // an ascending list of numbers in the range 0 to 1.0, between which are the possible |
| // locations of a root. |
| int foundRoots = 0; |
| for (;startIndex < 3; startIndex++) { |
| double root = binary_search(A, B, C, D, regions[startIndex], regions[startIndex + 1]); |
| if (root >= 0) { |
| // Check for duplicates |
| if ((foundRoots < 1 || !approximately_zero(solution[0] - root)) && |
| (foundRoots < 2 || !approximately_zero(solution[1] - root))) { |
| solution[foundRoots++] = root; |
| } |
| } |
| } |
| return foundRoots; |
| } |