blob: 8331fc70465b5a7d79f8e81566f2a45511ddf312 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDashingEffect.h"
#include "GrBatch.h"
#include "GrBatchTarget.h"
#include "GrBatchTest.h"
#include "GrGeometryProcessor.h"
#include "GrContext.h"
#include "GrCoordTransform.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawTarget.h"
#include "GrDrawTargetCaps.h"
#include "GrInvariantOutput.h"
#include "GrProcessor.h"
#include "GrStrokeInfo.h"
#include "GrVertexBuffer.h"
#include "SkGr.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLSL.h"
#include "gl/builders/GrGLProgramBuilder.h"
///////////////////////////////////////////////////////////////////////////////
// Returns whether or not the gpu can fast path the dash line effect.
bool GrDashingEffect::CanDrawDashLine(const SkPoint pts[2], const GrStrokeInfo& strokeInfo,
const SkMatrix& viewMatrix) {
// Pts must be either horizontal or vertical in src space
if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) {
return false;
}
// May be able to relax this to include skew. As of now cannot do perspective
// because of the non uniform scaling of bloating a rect
if (!viewMatrix.preservesRightAngles()) {
return false;
}
if (!strokeInfo.isDashed() || 2 != strokeInfo.getDashCount()) {
return false;
}
const SkScalar* intervals = strokeInfo.getDashIntervals();
if (0 == intervals[0] && 0 == intervals[1]) {
return false;
}
SkPaint::Cap cap = strokeInfo.getCap();
// Current we do don't handle Round or Square cap dashes
if (SkPaint::kRound_Cap == cap && intervals[0] != 0.f) {
return false;
}
return true;
}
namespace {
struct DashLineVertex {
SkPoint fPos;
SkPoint fDashPos;
SkScalar fIntervalLength;
SkRect fRect;
};
struct DashCircleVertex {
SkPoint fPos;
SkPoint fDashPos;
SkScalar fIntervalLength;
SkScalar fRadius;
SkScalar fCenterX;
};
enum DashAAMode {
kBW_DashAAMode,
kEdgeAA_DashAAMode,
kMSAA_DashAAMode,
kDashAAModeCount,
};
};
static void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale,
const SkMatrix& viewMatrix, const SkPoint pts[2]) {
SkVector vecSrc = pts[1] - pts[0];
SkScalar magSrc = vecSrc.length();
SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0;
vecSrc.scale(invSrc);
SkVector vecSrcPerp;
vecSrc.rotateCW(&vecSrcPerp);
viewMatrix.mapVectors(&vecSrc, 1);
viewMatrix.mapVectors(&vecSrcPerp, 1);
// parallelScale tells how much to scale along the line parallel to the dash line
// perpScale tells how much to scale in the direction perpendicular to the dash line
*parallelScale = vecSrc.length();
*perpScale = vecSrcPerp.length();
}
// calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1]
// Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot
static void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = NULL) {
SkVector vec = pts[1] - pts[0];
SkScalar mag = vec.length();
SkScalar inv = mag ? SkScalarInvert(mag) : 0;
vec.scale(inv);
rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
if (ptsRot) {
rotMatrix->mapPoints(ptsRot, pts, 2);
// correction for numerical issues if map doesn't make ptsRot exactly horizontal
ptsRot[1].fY = pts[0].fY;
}
}
// Assumes phase < sum of all intervals
static SkScalar calc_start_adjustment(const SkScalar intervals[2], SkScalar phase) {
SkASSERT(phase < intervals[0] + intervals[1]);
if (phase >= intervals[0] && phase != 0) {
SkScalar srcIntervalLen = intervals[0] + intervals[1];
return srcIntervalLen - phase;
}
return 0;
}
static SkScalar calc_end_adjustment(const SkScalar intervals[2], const SkPoint pts[2],
SkScalar phase, SkScalar* endingInt) {
if (pts[1].fX <= pts[0].fX) {
return 0;
}
SkScalar srcIntervalLen = intervals[0] + intervals[1];
SkScalar totalLen = pts[1].fX - pts[0].fX;
SkScalar temp = totalLen / srcIntervalLen;
SkScalar numFullIntervals = SkScalarFloorToScalar(temp);
*endingInt = totalLen - numFullIntervals * srcIntervalLen + phase;
temp = *endingInt / srcIntervalLen;
*endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen;
if (0 == *endingInt) {
*endingInt = srcIntervalLen;
}
if (*endingInt > intervals[0]) {
if (0 == intervals[0]) {
*endingInt -= 0.01f; // make sure we capture the last zero size pnt (used if has caps)
}
return *endingInt - intervals[0];
}
return 0;
}
enum DashCap {
kRound_DashCap,
kNonRound_DashCap,
};
static int kDashVertices = 4;
template <typename T>
void setup_dashed_rect_common(const SkRect& rect, const SkMatrix& matrix, T* vertices, int idx,
SkScalar offset, SkScalar bloatX, SkScalar bloatY, SkScalar len,
SkScalar stroke) {
SkScalar startDashX = offset - bloatX;
SkScalar endDashX = offset + len + bloatX;
SkScalar startDashY = -stroke - bloatY;
SkScalar endDashY = stroke + bloatY;
vertices[idx].fDashPos = SkPoint::Make(startDashX , startDashY);
vertices[idx + 1].fDashPos = SkPoint::Make(startDashX, endDashY);
vertices[idx + 2].fDashPos = SkPoint::Make(endDashX, endDashY);
vertices[idx + 3].fDashPos = SkPoint::Make(endDashX, startDashY);
vertices[idx].fPos = SkPoint::Make(rect.fLeft, rect.fTop);
vertices[idx + 1].fPos = SkPoint::Make(rect.fLeft, rect.fBottom);
vertices[idx + 2].fPos = SkPoint::Make(rect.fRight, rect.fBottom);
vertices[idx + 3].fPos = SkPoint::Make(rect.fRight, rect.fTop);
matrix.mapPointsWithStride(&vertices[idx].fPos, sizeof(T), 4);
}
static void setup_dashed_rect(const SkRect& rect, void* vertices, int idx,
const SkMatrix& matrix, SkScalar offset, SkScalar bloatX,
SkScalar bloatY, SkScalar len, SkScalar stroke,
SkScalar startInterval, SkScalar endInterval, SkScalar strokeWidth,
DashCap cap, const size_t vertexStride) {
SkScalar intervalLength = startInterval + endInterval;
if (kRound_DashCap == cap) {
SkASSERT(vertexStride == sizeof(DashCircleVertex));
DashCircleVertex* verts = reinterpret_cast<DashCircleVertex*>(vertices);
setup_dashed_rect_common<DashCircleVertex>(rect, matrix, verts, idx, offset, bloatX,
bloatY, len, stroke);
SkScalar radius = SkScalarHalf(strokeWidth) - 0.5f;
SkScalar centerX = SkScalarHalf(endInterval);
for (int i = 0; i < kDashVertices; i++) {
verts[idx + i].fIntervalLength = intervalLength;
verts[idx + i].fRadius = radius;
verts[idx + i].fCenterX = centerX;
}
} else {
SkASSERT(kNonRound_DashCap == cap && vertexStride == sizeof(DashLineVertex));
DashLineVertex* verts = reinterpret_cast<DashLineVertex*>(vertices);
setup_dashed_rect_common<DashLineVertex>(rect, matrix, verts, idx, offset, bloatX,
bloatY, len, stroke);
SkScalar halfOffLen = SkScalarHalf(endInterval);
SkScalar halfStroke = SkScalarHalf(strokeWidth);
SkRect rectParam;
rectParam.set(halfOffLen + 0.5f, -halfStroke + 0.5f,
halfOffLen + startInterval - 0.5f, halfStroke - 0.5f);
for (int i = 0; i < kDashVertices; i++) {
verts[idx + i].fIntervalLength = intervalLength;
verts[idx + i].fRect = rectParam;
}
}
}
static void setup_dashed_rect_pos(const SkRect& rect, int idx, const SkMatrix& matrix,
SkPoint* verts) {
verts[idx] = SkPoint::Make(rect.fLeft, rect.fTop);
verts[idx + 1] = SkPoint::Make(rect.fLeft, rect.fBottom);
verts[idx + 2] = SkPoint::Make(rect.fRight, rect.fBottom);
verts[idx + 3] = SkPoint::Make(rect.fRight, rect.fTop);
matrix.mapPoints(&verts[idx], 4);
}
/**
* An GrGeometryProcessor that renders a dashed line.
* This GrGeometryProcessor is meant for dashed lines that only have a single on/off interval pair.
* Bounding geometry is rendered and the effect computes coverage based on the fragment's
* position relative to the dashed line.
*/
static GrGeometryProcessor* create_dash_gp(GrColor,
DashAAMode aaMode,
DashCap cap,
const SkMatrix& localMatrix,
bool usesLocalCoords);
class DashBatch : public GrBatch {
public:
struct Geometry {
GrColor fColor;
SkMatrix fViewMatrix;
SkMatrix fSrcRotInv;
SkPoint fPtsRot[2];
SkScalar fSrcStrokeWidth;
SkScalar fPhase;
SkScalar fIntervals[2];
SkScalar fParallelScale;
SkScalar fPerpendicularScale;
};
static GrBatch* Create(const Geometry& geometry, SkPaint::Cap cap, DashAAMode aaMode,
bool fullDash) {
return SkNEW_ARGS(DashBatch, (geometry, cap, aaMode, fullDash));
}
const char* name() const override { return "DashBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
void initBatchTracker(const GrPipelineInfo& init) override {
// Handle any color overrides
if (init.fColorIgnored) {
fGeoData[0].fColor = GrColor_ILLEGAL;
} else if (GrColor_ILLEGAL != init.fOverrideColor) {
fGeoData[0].fColor = init.fOverrideColor;
}
// setup batch properties
fBatch.fColorIgnored = init.fColorIgnored;
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = init.fUsesLocalCoords;
fBatch.fCoverageIgnored = init.fCoverageIgnored;
}
struct DashDraw {
SkScalar fStartOffset;
SkScalar fStrokeWidth;
SkScalar fLineLength;
SkScalar fHalfDevStroke;
SkScalar fDevBloatX;
SkScalar fDevBloatY;
bool fLineDone;
bool fHasStartRect;
bool fHasEndRect;
};
void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
int instanceCount = fGeoData.count();
SkMatrix invert;
if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) {
SkDebugf("Failed to invert\n");
return;
}
SkPaint::Cap cap = this->cap();
SkAutoTUnref<const GrGeometryProcessor> gp;
bool isRoundCap = SkPaint::kRound_Cap == cap;
DashCap capType = isRoundCap ? kRound_DashCap : kNonRound_DashCap;
if (this->fullDash()) {
gp.reset(create_dash_gp(this->color(), this->aaMode(), capType, invert,
this->usesLocalCoords()));
} else {
// Set up the vertex data for the line and start/end dashes
gp.reset(GrDefaultGeoProcFactory::Create(GrDefaultGeoProcFactory::kPosition_GPType,
this->color(),
this->usesLocalCoords(),
this->coverageIgnored(),
SkMatrix::I(),
invert));
}
batchTarget->initDraw(gp, pipeline);
// useAA here means Edge AA or MSAA
bool useAA = this->aaMode() != kBW_DashAAMode;
bool fullDash = this->fullDash();
// We do two passes over all of the dashes. First we setup the start, end, and bounds,
// rectangles. We preserve all of this work in the rects / draws arrays below. Then we
// iterate again over these decomposed dashes to generate vertices
SkSTArray<128, SkRect, true> rects;
SkSTArray<128, DashDraw, true> draws;
int totalRectCount = 0;
int rectOffset = 0;
rects.push_back_n(3 * instanceCount);
for (int i = 0; i < instanceCount; i++) {
Geometry& args = fGeoData[i];
bool hasCap = SkPaint::kButt_Cap != cap && 0 != args.fSrcStrokeWidth;
// We always want to at least stroke out half a pixel on each side in device space
// so 0.5f / perpScale gives us this min in src space
SkScalar halfSrcStroke =
SkMaxScalar(args.fSrcStrokeWidth * 0.5f, 0.5f / args.fPerpendicularScale);
SkScalar strokeAdj;
if (!hasCap) {
strokeAdj = 0.f;
} else {
strokeAdj = halfSrcStroke;
}
SkScalar startAdj = 0;
bool lineDone = false;
// Too simplify the algorithm, we always push back rects for start and end rect.
// Otherwise we'd have to track start / end rects for each individual geometry
SkRect& bounds = rects[rectOffset++];
SkRect& startRect = rects[rectOffset++];
SkRect& endRect = rects[rectOffset++];
bool hasStartRect = false;
// If we are using AA, check to see if we are drawing a partial dash at the start. If so
// draw it separately here and adjust our start point accordingly
if (useAA) {
if (args.fPhase > 0 && args.fPhase < args.fIntervals[0]) {
SkPoint startPts[2];
startPts[0] = args.fPtsRot[0];
startPts[1].fY = startPts[0].fY;
startPts[1].fX = SkMinScalar(startPts[0].fX + args.fIntervals[0] - args.fPhase,
args.fPtsRot[1].fX);
startRect.set(startPts, 2);
startRect.outset(strokeAdj, halfSrcStroke);
hasStartRect = true;
startAdj = args.fIntervals[0] + args.fIntervals[1] - args.fPhase;
}
}
// adjustments for start and end of bounding rect so we only draw dash intervals
// contained in the original line segment.
startAdj += calc_start_adjustment(args.fIntervals, args.fPhase);
if (startAdj != 0) {
args.fPtsRot[0].fX += startAdj;
args.fPhase = 0;
}
SkScalar endingInterval = 0;
SkScalar endAdj = calc_end_adjustment(args.fIntervals, args.fPtsRot, args.fPhase,
&endingInterval);
args.fPtsRot[1].fX -= endAdj;
if (args.fPtsRot[0].fX >= args.fPtsRot[1].fX) {
lineDone = true;
}
bool hasEndRect = false;
// If we are using AA, check to see if we are drawing a partial dash at then end. If so
// draw it separately here and adjust our end point accordingly
if (useAA && !lineDone) {
// If we adjusted the end then we will not be drawing a partial dash at the end.
// If we didn't adjust the end point then we just need to make sure the ending
// dash isn't a full dash
if (0 == endAdj && endingInterval != args.fIntervals[0]) {
SkPoint endPts[2];
endPts[1] = args.fPtsRot[1];
endPts[0].fY = endPts[1].fY;
endPts[0].fX = endPts[1].fX - endingInterval;
endRect.set(endPts, 2);
endRect.outset(strokeAdj, halfSrcStroke);
hasEndRect = true;
endAdj = endingInterval + args.fIntervals[1];
args.fPtsRot[1].fX -= endAdj;
if (args.fPtsRot[0].fX >= args.fPtsRot[1].fX) {
lineDone = true;
}
}
}
if (startAdj != 0) {
args.fPhase = 0;
}
// Change the dashing info from src space into device space
SkScalar* devIntervals = args.fIntervals;
devIntervals[0] = args.fIntervals[0] * args.fParallelScale;
devIntervals[1] = args.fIntervals[1] * args.fParallelScale;
SkScalar devPhase = args.fPhase * args.fParallelScale;
SkScalar strokeWidth = args.fSrcStrokeWidth * args.fPerpendicularScale;
if ((strokeWidth < 1.f && useAA) || 0.f == strokeWidth) {
strokeWidth = 1.f;
}
SkScalar halfDevStroke = strokeWidth * 0.5f;
if (SkPaint::kSquare_Cap == cap && 0 != args.fSrcStrokeWidth) {
// add cap to on interval and remove from off interval
devIntervals[0] += strokeWidth;
devIntervals[1] -= strokeWidth;
}
SkScalar startOffset = devIntervals[1] * 0.5f + devPhase;
// For EdgeAA, we bloat in X & Y for both square and round caps.
// For MSAA, we don't bloat at all for square caps, and bloat in Y only for round caps.
SkScalar devBloatX = this->aaMode() == kEdgeAA_DashAAMode ? 0.5f : 0.0f;
SkScalar devBloatY = (SkPaint::kRound_Cap == cap && this->aaMode() == kMSAA_DashAAMode)
? 0.5f : devBloatX;
SkScalar bloatX = devBloatX / args.fParallelScale;
SkScalar bloatY = devBloatY / args.fPerpendicularScale;
if (devIntervals[1] <= 0.f && useAA) {
// Case when we end up drawing a solid AA rect
// Reset the start rect to draw this single solid rect
// but it requires to upload a new intervals uniform so we can mimic
// one giant dash
args.fPtsRot[0].fX -= hasStartRect ? startAdj : 0;
args.fPtsRot[1].fX += hasEndRect ? endAdj : 0;
startRect.set(args.fPtsRot, 2);
startRect.outset(strokeAdj, halfSrcStroke);
hasStartRect = true;
hasEndRect = false;
lineDone = true;
SkPoint devicePts[2];
args.fViewMatrix.mapPoints(devicePts, args.fPtsRot, 2);
SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]);
if (hasCap) {
lineLength += 2.f * halfDevStroke;
}
devIntervals[0] = lineLength;
}
totalRectCount += !lineDone ? 1 : 0;
totalRectCount += hasStartRect ? 1 : 0;
totalRectCount += hasEndRect ? 1 : 0;
if (SkPaint::kRound_Cap == cap && 0 != args.fSrcStrokeWidth) {
// need to adjust this for round caps to correctly set the dashPos attrib on
// vertices
startOffset -= halfDevStroke;
}
DashDraw& draw = draws.push_back();
if (!lineDone) {
SkPoint devicePts[2];
args.fViewMatrix.mapPoints(devicePts, args.fPtsRot, 2);
draw.fLineLength = SkPoint::Distance(devicePts[0], devicePts[1]);
if (hasCap) {
draw.fLineLength += 2.f * halfDevStroke;
}
bounds.set(args.fPtsRot[0].fX, args.fPtsRot[0].fY,
args.fPtsRot[1].fX, args.fPtsRot[1].fY);
bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke);
}
if (hasStartRect) {
SkASSERT(useAA); // so that we know bloatX and bloatY have been set
startRect.outset(bloatX, bloatY);
}
if (hasEndRect) {
SkASSERT(useAA); // so that we know bloatX and bloatY have been set
endRect.outset(bloatX, bloatY);
}
draw.fStartOffset = startOffset;
draw.fDevBloatX = devBloatX;
draw.fDevBloatY = devBloatY;
draw.fHalfDevStroke = halfDevStroke;
draw.fStrokeWidth = strokeWidth;
draw.fHasStartRect = hasStartRect;
draw.fLineDone = lineDone;
draw.fHasEndRect = hasEndRect;
}
if (!totalRectCount) {
return;
}
QuadHelper helper;
void* vertices = helper.init(batchTarget, gp->getVertexStride(), totalRectCount);
if (!vertices) {
return;
}
int curVIdx = 0;
int rectIndex = 0;
for (int i = 0; i < instanceCount; i++) {
Geometry& geom = fGeoData[i];
if (!draws[i].fLineDone) {
if (fullDash) {
setup_dashed_rect(rects[rectIndex], vertices, curVIdx, geom.fSrcRotInv,
draws[i].fStartOffset, draws[i].fDevBloatX,
draws[i].fDevBloatY, draws[i].fLineLength,
draws[i].fHalfDevStroke, geom.fIntervals[0],
geom.fIntervals[1], draws[i].fStrokeWidth,
capType, gp->getVertexStride());
} else {
SkPoint* verts = reinterpret_cast<SkPoint*>(vertices);
SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
setup_dashed_rect_pos(rects[rectIndex], curVIdx, geom.fSrcRotInv, verts);
}
curVIdx += 4;
}
rectIndex++;
if (draws[i].fHasStartRect) {
if (fullDash) {
setup_dashed_rect(rects[rectIndex], vertices, curVIdx, geom.fSrcRotInv,
draws[i].fStartOffset, draws[i].fDevBloatX,
draws[i].fDevBloatY, geom.fIntervals[0],
draws[i].fHalfDevStroke, geom.fIntervals[0],
geom.fIntervals[1], draws[i].fStrokeWidth, capType,
gp->getVertexStride());
} else {
SkPoint* verts = reinterpret_cast<SkPoint*>(vertices);
SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
setup_dashed_rect_pos(rects[rectIndex], curVIdx, geom.fSrcRotInv, verts);
}
curVIdx += 4;
}
rectIndex++;
if (draws[i].fHasEndRect) {
if (fullDash) {
setup_dashed_rect(rects[rectIndex], vertices, curVIdx, geom.fSrcRotInv,
draws[i].fStartOffset, draws[i].fDevBloatX,
draws[i].fDevBloatY, geom.fIntervals[0],
draws[i].fHalfDevStroke, geom.fIntervals[0],
geom.fIntervals[1], draws[i].fStrokeWidth, capType,
gp->getVertexStride());
} else {
SkPoint* verts = reinterpret_cast<SkPoint*>(vertices);
SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
setup_dashed_rect_pos(rects[rectIndex], curVIdx, geom.fSrcRotInv, verts);
}
curVIdx += 4;
}
rectIndex++;
}
SkASSERT(0 == (curVIdx % 4) && (curVIdx / 4) == totalRectCount);
helper.issueDraw(batchTarget);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
private:
DashBatch(const Geometry& geometry, SkPaint::Cap cap, DashAAMode aaMode, bool fullDash) {
this->initClassID<DashBatch>();
fGeoData.push_back(geometry);
fBatch.fAAMode = aaMode;
fBatch.fCap = cap;
fBatch.fFullDash = fullDash;
// compute bounds
SkScalar halfStrokeWidth = 0.5f * geometry.fSrcStrokeWidth;
SkScalar xBloat = SkPaint::kButt_Cap == cap ? 0 : halfStrokeWidth;
fBounds.set(geometry.fPtsRot[0], geometry.fPtsRot[1]);
fBounds.outset(xBloat, halfStrokeWidth);
// Note, we actually create the combined matrix here, and save the work
SkMatrix& combinedMatrix = fGeoData[0].fSrcRotInv;
combinedMatrix.postConcat(geometry.fViewMatrix);
combinedMatrix.mapRect(&fBounds);
}
bool onCombineIfPossible(GrBatch* t) override {
DashBatch* that = t->cast<DashBatch>();
if (this->aaMode() != that->aaMode()) {
return false;
}
if (this->fullDash() != that->fullDash()) {
return false;
}
if (this->cap() != that->cap()) {
return false;
}
// TODO vertex color
if (this->color() != that->color()) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
DashAAMode aaMode() const { return fBatch.fAAMode; }
bool fullDash() const { return fBatch.fFullDash; }
SkPaint::Cap cap() const { return fBatch.fCap; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
struct BatchTracker {
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
SkPaint::Cap fCap;
DashAAMode fAAMode;
bool fFullDash;
};
static const int kVertsPerDash = 4;
static const int kIndicesPerDash = 6;
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
};
static GrBatch* create_batch(GrColor color, const SkMatrix& viewMatrix, const SkPoint pts[2],
bool useAA, const GrStrokeInfo& strokeInfo, bool msaaRT) {
const SkScalar* intervals = strokeInfo.getDashIntervals();
SkScalar phase = strokeInfo.getDashPhase();
SkPaint::Cap cap = strokeInfo.getCap();
DashBatch::Geometry geometry;
geometry.fSrcStrokeWidth = strokeInfo.getWidth();
// the phase should be normalized to be [0, sum of all intervals)
SkASSERT(phase >= 0 && phase < intervals[0] + intervals[1]);
// Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX
if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) {
SkMatrix rotMatrix;
align_to_x_axis(pts, &rotMatrix, geometry.fPtsRot);
if(!rotMatrix.invert(&geometry.fSrcRotInv)) {
SkDebugf("Failed to create invertible rotation matrix!\n");
return NULL;
}
} else {
geometry.fSrcRotInv.reset();
memcpy(geometry.fPtsRot, pts, 2 * sizeof(SkPoint));
}
// Scale corrections of intervals and stroke from view matrix
calc_dash_scaling(&geometry.fParallelScale, &geometry.fPerpendicularScale, viewMatrix,
geometry.fPtsRot);
SkScalar offInterval = intervals[1] * geometry.fParallelScale;
SkScalar strokeWidth = geometry.fSrcStrokeWidth * geometry.fPerpendicularScale;
if (SkPaint::kSquare_Cap == cap && 0 != geometry.fSrcStrokeWidth) {
// add cap to on interveal and remove from off interval
offInterval -= strokeWidth;
}
DashAAMode aaMode = msaaRT ? kMSAA_DashAAMode :
useAA ? kEdgeAA_DashAAMode : kBW_DashAAMode;
// TODO we can do a real rect call if not using fulldash(ie no off interval, not using AA)
bool fullDash = offInterval > 0.f || aaMode != kBW_DashAAMode;
geometry.fColor = color;
geometry.fViewMatrix = viewMatrix;
geometry.fPhase = phase;
geometry.fIntervals[0] = intervals[0];
geometry.fIntervals[1] = intervals[1];
return DashBatch::Create(geometry, cap, aaMode, fullDash);
}
bool GrDashingEffect::DrawDashLine(GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder, GrColor color,
const SkMatrix& viewMatrix, const SkPoint pts[2],
bool useAA, const GrStrokeInfo& strokeInfo) {
SkAutoTUnref<GrBatch> batch(create_batch(color, viewMatrix, pts, useAA, strokeInfo,
pipelineBuilder->getRenderTarget()->isMultisampled()));
if (!batch) {
return false;
}
target->drawBatch(pipelineBuilder, batch);
return true;
}
//////////////////////////////////////////////////////////////////////////////
class GLDashingCircleEffect;
/*
* This effect will draw a dotted line (defined as a dashed lined with round caps and no on
* interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo.
* Both of the previous two parameters are in device space. This effect also requires the setting of
* a vec2 vertex attribute for the the four corners of the bounding rect. This attribute is the
* "dash position" of each vertex. In other words it is the vertex coords (in device space) if we
* transform the line to be horizontal, with the start of line at the origin then shifted to the
* right by half the off interval. The line then goes in the positive x direction.
*/
class DashingCircleEffect : public GrGeometryProcessor {
public:
typedef SkPathEffect::DashInfo DashInfo;
static GrGeometryProcessor* Create(GrColor,
DashAAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords);
const char* name() const override { return "DashingCircleEffect"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inDashParams() const { return fInDashParams; }
const Attribute* inCircleParams() const { return fInCircleParams; }
DashAAMode aaMode() const { return fAAMode; }
GrColor color() const { return fColor; }
bool colorIgnored() const { return GrColor_ILLEGAL == fColor; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
virtual void getGLProcessorKey(const GrBatchTracker&,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) const override;
virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker&,
const GrGLSLCaps&) const override;
private:
DashingCircleEffect(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix,
bool usesLocalCoords);
GrColor fColor;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
DashAAMode fAAMode;
const Attribute* fInPosition;
const Attribute* fInDashParams;
const Attribute* fInCircleParams;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
class GLDashingCircleEffect : public GrGLGeometryProcessor {
public:
GLDashingCircleEffect(const GrGeometryProcessor&, const GrBatchTracker&);
void onEmitCode(EmitArgs&, GrGPArgs*) override;
static inline void GenKey(const GrGeometryProcessor&,
const GrBatchTracker&,
const GrGLSLCaps&,
GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&,
const GrPrimitiveProcessor&,
const GrBatchTracker&) override;
void setTransformData(const GrPrimitiveProcessor& primProc,
const GrGLProgramDataManager& pdman,
int index,
const SkTArray<const GrCoordTransform*, true>& transforms) override {
this->setTransformDataHelper<DashingCircleEffect>(primProc, pdman, index, transforms);
}
private:
UniformHandle fParamUniform;
UniformHandle fColorUniform;
GrColor fColor;
SkScalar fPrevRadius;
SkScalar fPrevCenterX;
SkScalar fPrevIntervalLength;
typedef GrGLGeometryProcessor INHERITED;
};
GLDashingCircleEffect::GLDashingCircleEffect(const GrGeometryProcessor&,
const GrBatchTracker&) {
fColor = GrColor_ILLEGAL;
fPrevRadius = SK_ScalarMin;
fPrevCenterX = SK_ScalarMin;
fPrevIntervalLength = SK_ScalarMax;
}
void GLDashingCircleEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const DashingCircleEffect& dce = args.fGP.cast<DashingCircleEffect>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(dce);
// XY are dashPos, Z is dashInterval
GrGLVertToFrag dashParams(kVec3f_GrSLType);
args.fPB->addVarying("DashParam", &dashParams);
vsBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.inDashParams()->fName);
// x refers to circle radius - 0.5, y refers to cicle's center x coord
GrGLVertToFrag circleParams(kVec2f_GrSLType);
args.fPB->addVarying("CircleParams", &circleParams);
vsBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.inCircleParams()->fName);
// Setup pass through color
if (!dce.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, dce.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, dce.inPosition()->fName, dce.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
// transforms all points so that we can compare them to our test circle
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;",
dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(),
dashParams.fsIn());
fsBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", dashParams.fsIn());
fsBuilder->codeAppendf("vec2 center = vec2(%s.y, 0.0);", circleParams.fsIn());
fsBuilder->codeAppend("float dist = length(center - fragPosShifted);");
if (dce.aaMode() != kBW_DashAAMode) {
fsBuilder->codeAppendf("float diff = dist - %s.x;", circleParams.fsIn());
fsBuilder->codeAppend("diff = 1.0 - diff;");
fsBuilder->codeAppend("float alpha = clamp(diff, 0.0, 1.0);");
} else {
fsBuilder->codeAppendf("float alpha = 1.0;");
fsBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn());
}
fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
}
void GLDashingCircleEffect::setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& processor,
const GrBatchTracker& bt) {
const DashingCircleEffect& dce = processor.cast<DashingCircleEffect>();
if (dce.color() != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(dce.color(), c);
pdman.set4fv(fColorUniform, 1, c);
fColor = dce.color();
}
}
void GLDashingCircleEffect::GenKey(const GrGeometryProcessor& gp,
const GrBatchTracker& bt,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const DashingCircleEffect& dce = gp.cast<DashingCircleEffect>();
uint32_t key = 0;
key |= dce.usesLocalCoords() && dce.localMatrix().hasPerspective() ? 0x1 : 0x0;
key |= dce.colorIgnored() ? 0x2 : 0x0;
key |= dce.aaMode() << 8;
b->add32(key);
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* DashingCircleEffect::Create(GrColor color,
DashAAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords) {
return SkNEW_ARGS(DashingCircleEffect, (color, aaMode, localMatrix, usesLocalCoords));
}
void DashingCircleEffect::getGLProcessorKey(const GrBatchTracker& bt,
const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLDashingCircleEffect::GenKey(*this, bt, caps, b);
}
GrGLPrimitiveProcessor* DashingCircleEffect::createGLInstance(const GrBatchTracker& bt,
const GrGLSLCaps&) const {
return SkNEW_ARGS(GLDashingCircleEffect, (*this, bt));
}
DashingCircleEffect::DashingCircleEffect(GrColor color,
DashAAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords)
: fColor(color)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords)
, fAAMode(aaMode) {
this->initClassID<DashingCircleEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInDashParams = &this->addVertexAttrib(Attribute("inDashParams", kVec3f_GrVertexAttribType));
fInCircleParams = &this->addVertexAttrib(Attribute("inCircleParams",
kVec2f_GrVertexAttribType));
}
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect);
GrGeometryProcessor* DashingCircleEffect::TestCreate(SkRandom* random,
GrContext*,
const GrCaps& caps,
GrTexture*[]) {
DashAAMode aaMode = static_cast<DashAAMode>(random->nextULessThan(kDashAAModeCount));
return DashingCircleEffect::Create(GrRandomColor(random),
aaMode, GrTest::TestMatrix(random),
random->nextBool());
}
//////////////////////////////////////////////////////////////////////////////
class GLDashingLineEffect;
/*
* This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the
* length and spacing by the DashInfo. Both of the previous two parameters are in device space.
* This effect also requires the setting of a vec2 vertex attribute for the the four corners of the
* bounding rect. This attribute is the "dash position" of each vertex. In other words it is the
* vertex coords (in device space) if we transform the line to be horizontal, with the start of
* line at the origin then shifted to the right by half the off interval. The line then goes in the
* positive x direction.
*/
class DashingLineEffect : public GrGeometryProcessor {
public:
typedef SkPathEffect::DashInfo DashInfo;
static GrGeometryProcessor* Create(GrColor,
DashAAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords);
const char* name() const override { return "DashingEffect"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inDashParams() const { return fInDashParams; }
const Attribute* inRectParams() const { return fInRectParams; }
DashAAMode aaMode() const { return fAAMode; }
GrColor color() const { return fColor; }
bool colorIgnored() const { return GrColor_ILLEGAL == fColor; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const override;
virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt,
const GrGLSLCaps&) const override;
private:
DashingLineEffect(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix,
bool usesLocalCoords);
GrColor fColor;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
DashAAMode fAAMode;
const Attribute* fInPosition;
const Attribute* fInDashParams;
const Attribute* fInRectParams;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
class GLDashingLineEffect : public GrGLGeometryProcessor {
public:
GLDashingLineEffect(const GrGeometryProcessor&, const GrBatchTracker&);
void onEmitCode(EmitArgs&, GrGPArgs*) override;
static inline void GenKey(const GrGeometryProcessor&,
const GrBatchTracker&,
const GrGLSLCaps&,
GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&,
const GrPrimitiveProcessor&,
const GrBatchTracker&) override;
void setTransformData(const GrPrimitiveProcessor& primProc,
const GrGLProgramDataManager& pdman,
int index,
const SkTArray<const GrCoordTransform*, true>& transforms) override {
this->setTransformDataHelper<DashingLineEffect>(primProc, pdman, index, transforms);
}
private:
GrColor fColor;
UniformHandle fColorUniform;
typedef GrGLGeometryProcessor INHERITED;
};
GLDashingLineEffect::GLDashingLineEffect(const GrGeometryProcessor&,
const GrBatchTracker&) {
fColor = GrColor_ILLEGAL;
}
void GLDashingLineEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
const DashingLineEffect& de = args.fGP.cast<DashingLineEffect>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(de);
// XY refers to dashPos, Z is the dash interval length
GrGLVertToFrag inDashParams(kVec3f_GrSLType);
args.fPB->addVarying("DashParams", &inDashParams);
vsBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.inDashParams()->fName);
// The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5),
// respectively.
GrGLVertToFrag inRectParams(kVec4f_GrSLType);
args.fPB->addVarying("RectParams", &inRectParams);
vsBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.inRectParams()->fName);
// Setup pass through color
if (!de.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, de.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, de.inPosition()->fName, de.localMatrix(),
args.fTransformsIn, args.fTransformsOut);
// transforms all points so that we can compare them to our test rect
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;",
inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(),
inDashParams.fsIn());
fsBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", inDashParams.fsIn());
if (de.aaMode() == kEdgeAA_DashAAMode) {
// The amount of coverage removed in x and y by the edges is computed as a pair of negative
// numbers, xSub and ySub.
fsBuilder->codeAppend("float xSub, ySub;");
fsBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("ySub = min(fragPosShifted.y - %s.y, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("ySub += min(%s.w - fragPosShifted.y, 0.0);", inRectParams.fsIn());
// Now compute coverage in x and y and multiply them to get the fraction of the pixel
// covered.
fsBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));");
} else if (de.aaMode() == kMSAA_DashAAMode) {
// For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle
// AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha.
fsBuilder->codeAppend("float xSub;");
fsBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn());
fsBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn());
// Now compute coverage in x to get the fraction of the pixel covered.
fsBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0));");
} else {
// Assuming the bounding geometry is tight so no need to check y values
fsBuilder->codeAppendf("float alpha = 1.0;");
fsBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
fsBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;",
inRectParams.fsIn());
}
fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage);
}
void GLDashingLineEffect::setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& processor,
const GrBatchTracker& bt) {
const DashingLineEffect& de = processor.cast<DashingLineEffect>();
if (de.color() != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(de.color(), c);
pdman.set4fv(fColorUniform, 1, c);
fColor = de.color();
}
}
void GLDashingLineEffect::GenKey(const GrGeometryProcessor& gp,
const GrBatchTracker& bt,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const DashingLineEffect& de = gp.cast<DashingLineEffect>();
uint32_t key = 0;
key |= de.usesLocalCoords() && de.localMatrix().hasPerspective() ? 0x1 : 0x0;
key |= de.colorIgnored() ? 0x2 : 0x0;
key |= de.aaMode() << 8;
b->add32(key);
}
//////////////////////////////////////////////////////////////////////////////
GrGeometryProcessor* DashingLineEffect::Create(GrColor color,
DashAAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords) {
return SkNEW_ARGS(DashingLineEffect, (color, aaMode, localMatrix, usesLocalCoords));
}
void DashingLineEffect::getGLProcessorKey(const GrBatchTracker& bt,
const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLDashingLineEffect::GenKey(*this, bt, caps, b);
}
GrGLPrimitiveProcessor* DashingLineEffect::createGLInstance(const GrBatchTracker& bt,
const GrGLSLCaps&) const {
return SkNEW_ARGS(GLDashingLineEffect, (*this, bt));
}
DashingLineEffect::DashingLineEffect(GrColor color,
DashAAMode aaMode,
const SkMatrix& localMatrix,
bool usesLocalCoords)
: fColor(color)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords)
, fAAMode(aaMode) {
this->initClassID<DashingLineEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInDashParams = &this->addVertexAttrib(Attribute("inDashParams", kVec3f_GrVertexAttribType));
fInRectParams = &this->addVertexAttrib(Attribute("inRect", kVec4f_GrVertexAttribType));
}
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect);
GrGeometryProcessor* DashingLineEffect::TestCreate(SkRandom* random,
GrContext*,
const GrCaps& caps,
GrTexture*[]) {
DashAAMode aaMode = static_cast<DashAAMode>(random->nextULessThan(kDashAAModeCount));
return DashingLineEffect::Create(GrRandomColor(random),
aaMode, GrTest::TestMatrix(random), random->nextBool());
}
//////////////////////////////////////////////////////////////////////////////
static GrGeometryProcessor* create_dash_gp(GrColor color,
DashAAMode dashAAMode,
DashCap cap,
const SkMatrix& localMatrix,
bool usesLocalCoords) {
switch (cap) {
case kRound_DashCap:
return DashingCircleEffect::Create(color, dashAAMode, localMatrix, usesLocalCoords);
case kNonRound_DashCap:
return DashingLineEffect::Create(color, dashAAMode, localMatrix, usesLocalCoords);
default:
SkFAIL("Unexpected dashed cap.");
}
return NULL;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
BATCH_TEST_DEFINE(DashBatch) {
GrColor color = GrRandomColor(random);
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
bool useAA = random->nextBool();
bool msaaRT = random->nextBool();
// We can only dash either horizontal or vertical lines
SkPoint pts[2];
if (random->nextBool()) {
// vertical
pts[0].fX = 1.f;
pts[0].fY = random->nextF() * 10.f;
pts[1].fX = 1.f;
pts[1].fY = random->nextF() * 10.f;
} else {
// horizontal
pts[0].fX = random->nextF() * 10.f;
pts[0].fY = 1.f;
pts[1].fX = random->nextF() * 10.f;
pts[1].fY = 1.f;
}
// pick random cap
SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::Cap::kCapCount));
SkScalar intervals[2];
// We can only dash with the following intervals
enum Intervals {
kOpenOpen_Intervals ,
kOpenClose_Intervals,
kCloseOpen_Intervals,
};
Intervals intervalType = SkPaint::kRound_Cap ?
kOpenClose_Intervals :
Intervals(random->nextULessThan(kCloseOpen_Intervals + 1));
static const SkScalar kIntervalMin = 0.1f;
static const SkScalar kIntervalMax = 10.f;
switch (intervalType) {
case kOpenOpen_Intervals:
intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
break;
case kOpenClose_Intervals:
intervals[0] = 0.f;
intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
break;
case kCloseOpen_Intervals:
intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax);
intervals[1] = 0.f;
break;
}
// phase is 0 < sum (i0, i1)
SkScalar phase = random->nextRangeScalar(0, intervals[0] + intervals[1]);
SkPaint p;
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(SkIntToScalar(1));
p.setStrokeCap(cap);
GrStrokeInfo strokeInfo(p);
SkPathEffect::DashInfo info;
info.fIntervals = intervals;
info.fCount = 2;
info.fPhase = phase;
SkDEBUGCODE(bool success = ) strokeInfo.setDashInfo(info);
SkASSERT(success);
return create_batch(color, viewMatrix, pts, useAA, strokeInfo, msaaRT);
}
#endif