blob: 585090a85c20ebc658c7584e9190e8a50e339a33 [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/render/TessellateStrokesRenderStep.h"
#include "include/core/SkM44.h"
#include "include/private/SkSLString.h"
#include "src/base/SkVx.h"
#include "src/core/SkGeometry.h"
#include "src/gpu/graphite/DrawParams.h"
#include "src/gpu/graphite/DrawTypes.h"
#include "src/gpu/graphite/DrawWriter.h"
#include "src/gpu/graphite/PipelineData.h"
#include "src/gpu/graphite/render/CommonDepthStencilSettings.h"
#include "src/gpu/graphite/render/DynamicInstancesPatchAllocator.h"
#include "src/gpu/tessellate/FixedCountBufferUtils.h"
#include "src/gpu/tessellate/PatchWriter.h"
#include "src/gpu/tessellate/StrokeIterator.h"
namespace skgpu::graphite {
namespace {
using namespace skgpu::tess;
// Always use dynamic stroke params and join control points, track the join control point in
// PatchWriter and replicate line end points (match Ganesh's shader behavior).
//
// No explicit curve type on platforms that support infinity.
// No color or wide color attribs, since it might always be part of the PaintParams
// or we'll add a color-only fast path to RenderStep later.
static constexpr PatchAttribs kAttribs = PatchAttribs::kJoinControlPoint |
PatchAttribs::kStrokeParams |
PatchAttribs::kPaintDepth |
PatchAttribs::kSsboIndex;
static constexpr PatchAttribs kAttribsWithCurveType = kAttribs | PatchAttribs::kExplicitCurveType;
using Writer = PatchWriter<DynamicInstancesPatchAllocator<FixedCountStrokes>,
Required<PatchAttribs::kJoinControlPoint>,
Required<PatchAttribs::kStrokeParams>,
Required<PatchAttribs::kPaintDepth>,
Required<PatchAttribs::kSsboIndex>,
Optional<PatchAttribs::kExplicitCurveType>,
ReplicateLineEndPoints,
TrackJoinControlPoints>;
// The order of the attribute declarations must match the order used by
// PatchWriter::emitPatchAttribs, i.e.:
// join << fanPoint << stroke << color << depth << curveType << ssboIndex
static constexpr Attribute kBaseAttributes[] = {
{"p01", VertexAttribType::kFloat4, SkSLType::kFloat4},
{"p23", VertexAttribType::kFloat4, SkSLType::kFloat4},
{"prevPoint", VertexAttribType::kFloat2, SkSLType::kFloat2},
{"stroke", VertexAttribType::kFloat2, SkSLType::kFloat2},
{"depth", VertexAttribType::kFloat, SkSLType::kFloat},
{"ssboIndex", VertexAttribType::kInt, SkSLType::kInt}};
static constexpr Attribute kAttributesWithCurveType[] = {
{"p01", VertexAttribType::kFloat4, SkSLType::kFloat4},
{"p23", VertexAttribType::kFloat4, SkSLType::kFloat4},
{"prevPoint", VertexAttribType::kFloat2, SkSLType::kFloat2},
{"stroke", VertexAttribType::kFloat2, SkSLType::kFloat2},
{"depth", VertexAttribType::kFloat, SkSLType::kFloat},
{"curveType", VertexAttribType::kFloat, SkSLType::kFloat},
{"ssboIndex", VertexAttribType::kInt, SkSLType::kInt}};
static constexpr SkSpan<const Attribute> kAttributes[2] = {kAttributesWithCurveType,
kBaseAttributes};
} // namespace
TessellateStrokesRenderStep::TessellateStrokesRenderStep(bool infinitySupport)
: RenderStep("TessellateStrokeRenderStep",
"",
Flags::kRequiresMSAA | Flags::kPerformsShading,
/*uniforms=*/{{"affineMatrix", SkSLType::kFloat4},
{"translate", SkSLType::kFloat2},
{"maxScale", SkSLType::kFloat}},
PrimitiveType::kTriangleStrip,
kDirectDepthGreaterPass,
/*vertexAttrs=*/ {},
/*instanceAttrs=*/kAttributes[infinitySupport])
, fInfinitySupport(infinitySupport) {}
TessellateStrokesRenderStep::~TessellateStrokesRenderStep() {}
std::string TessellateStrokesRenderStep::vertexSkSL() const {
// TODO: Assumes vertex ID support for now, max edges must equal
// skgpu::tess::FixedCountStrokes::kMaxEdges -> (2^14 - 1) -> 16383
return SkSL::String::printf(
R"(
float edgeID = float(sk_VertexID >> 1);
if ((sk_VertexID & 1) != 0) {
edgeID = -edgeID;
}
float2x2 affine = float2x2(affineMatrix.xy, affineMatrix.zw);
float4 devAndLocalCoords = tessellate_stroked_curve(
edgeID, 16383, affine, translate, maxScale, p01, p23, prevPoint,
stroke, %s);
float4 devPosition = float4(devAndLocalCoords.xy, depth, 1.0);
stepLocalCoords = devAndLocalCoords.zw;
)",
fInfinitySupport ? "curve_type_using_inf_support(p23)" : "curveType");
}
void TessellateStrokesRenderStep::writeVertices(DrawWriter* dw,
const DrawParams& params,
int ssboIndex) const {
SkPath path = params.geometry().shape().asPath(); // TODO: Iterate the Shape directly
int patchReserveCount = FixedCountStrokes::PreallocCount(path.countVerbs());
// Stroke tessellation does not use fixed indices or vertex data, and only needs the vertex ID
static const BindBufferInfo kNullBinding = {};
// TODO: All HW that Graphite will run on should support instancing ith sk_VertexID, but when
// we support Vulkan+Swiftshader, we will need the vertex buffer ID fallback unless Swiftshader
// has figured out how to support vertex IDs before then.
Writer writer{fInfinitySupport ? kAttribs : kAttribsWithCurveType,
*dw,
kNullBinding,
kNullBinding,
patchReserveCount};
writer.updatePaintDepthAttrib(params.order().depthAsFloat());
writer.updateSsboIndexAttrib(ssboIndex);
// The vector xform approximates how the control points are transformed by the shader to
// more accurately compute how many *parametric* segments are needed.
// getMaxScale() returns -1 if it can't compute a scale factor (e.g. perspective), taking the
// absolute value automatically converts that to an identity scale factor for our purposes.
writer.setShaderTransform(wangs_formula::VectorXform{params.transform().matrix()},
params.transform().maxScaleFactor());
SkASSERT(params.isStroke());
writer.updateStrokeParamsAttrib({params.strokeStyle().halfWidth(),
params.strokeStyle().joinLimit()});
// TODO: If PatchWriter can handle adding caps to its deferred patches, and we can convert
// hairlines to use round caps instead of square, then StrokeIterator can be deleted entirely.
// Besides being simpler, PatchWriter already has what it needs from the shader matrix and
// stroke params, so we don't have to re-extract them here.
SkMatrix shaderMatrix = params.transform();
SkStrokeRec stroke{SkStrokeRec::kHairline_InitStyle};
stroke.setStrokeStyle(params.strokeStyle().width());
stroke.setStrokeParams(params.strokeStyle().cap(),
params.strokeStyle().join(),
params.strokeStyle().miterLimit());
StrokeIterator strokeIter(path, &stroke, &shaderMatrix);
while (strokeIter.next()) {
using Verb = StrokeIterator::Verb;
const SkPoint* p = strokeIter.pts();
int numChops;
// TODO: The cusp detection logic should be moved into PatchWriter and shared between
// this and StrokeTessellator.cpp, but that will require updating a lot of SkGeometry to
// operate on float2 (skvx) instead of the legacy SkNx or SkPoint.
switch (strokeIter.verb()) {
case Verb::kContourFinished:
writer.writeDeferredStrokePatch();
break;
case Verb::kCircle:
// Round cap or else an empty stroke that is specified to be drawn as a circle.
writer.writeCircle(p[0]);
[[fallthrough]];
case Verb::kMoveWithinContour:
// A regular kMove invalidates the previous control point; the stroke iterator
// tells us a new value to use.
writer.updateJoinControlPointAttrib(p[0]);
break;
case Verb::kLine:
writer.writeLine(p[0], p[1]);
break;
case Verb::kQuad:
if (ConicHasCusp(p)) {
// The cusp is always at the midtandent.
SkPoint cusp = SkEvalQuadAt(p, SkFindQuadMidTangent(p));
writer.writeCircle(cusp);
// A quad can only have a cusp if it's flat with a 180-degree turnaround.
writer.writeLine(p[0], cusp);
writer.writeLine(cusp, p[2]);
} else {
writer.writeQuadratic(p);
}
break;
case Verb::kConic:
if (ConicHasCusp(p)) {
// The cusp is always at the midtandent.
SkConic conic(p, strokeIter.w());
SkPoint cusp = conic.evalAt(conic.findMidTangent());
writer.writeCircle(cusp);
// A conic can only have a cusp if it's flat with a 180-degree turnaround.
writer.writeLine(p[0], cusp);
writer.writeLine(cusp, p[2]);
} else {
writer.writeConic(p, strokeIter.w());
}
break;
case Verb::kCubic:
SkPoint chops[10];
float T[2];
bool areCusps;
numChops = FindCubicConvex180Chops(p, T, &areCusps);
if (numChops == 0) {
writer.writeCubic(p);
} else if (numChops == 1) {
SkChopCubicAt(p, chops, T[0]);
if (areCusps) {
writer.writeCircle(chops[3]);
// In a perfect world, these 3 points would be be equal after chopping
// on a cusp.
chops[2] = chops[4] = chops[3];
}
writer.writeCubic(chops);
writer.writeCubic(chops + 3);
} else {
SkASSERT(numChops == 2);
SkChopCubicAt(p, chops, T[0], T[1]);
if (areCusps) {
writer.writeCircle(chops[3]);
writer.writeCircle(chops[6]);
// Two cusps are only possible if it's a flat line with two 180-degree
// turnarounds.
writer.writeLine(chops[0], chops[3]);
writer.writeLine(chops[3], chops[6]);
writer.writeLine(chops[6], chops[9]);
} else {
writer.writeCubic(chops);
writer.writeCubic(chops + 3);
writer.writeCubic(chops + 6);
}
}
break;
}
}
}
void TessellateStrokesRenderStep::writeUniformsAndTextures(const DrawParams& params,
PipelineDataGatherer* gatherer) const {
SkASSERT(params.transform().type() < Transform::Type::kProjection); // TODO: Implement perspective
SkDEBUGCODE(UniformExpectationsValidator uev(gatherer, this->uniforms());)
// affineMatrix = float4 (2x2 of transform), translate = float2, maxScale = float
// Column-major 2x2 of the transform.
SkV4 upper = {params.transform().matrix().rc(0, 0), params.transform().matrix().rc(1, 0),
params.transform().matrix().rc(0, 1), params.transform().matrix().rc(1, 1)};
gatherer->write(upper);
gatherer->write(SkPoint{params.transform().matrix().rc(0, 3),
params.transform().matrix().rc(1, 3)});
gatherer->write(params.transform().maxScaleFactor());
}
} // namespace skgpu::graphite