| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkRRect.h" |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "src/base/SkBuffer.h" |
| #include "src/core/SkRRectPriv.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkScaleToSides.h" |
| #include "src/core/SkStringUtils.h" |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <iterator> |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkRRect::setOval(const SkRect& oval) { |
| if (!this->initializeRect(oval)) { |
| return; |
| } |
| |
| SkScalar xRad = SkRectPriv::HalfWidth(fRect); |
| SkScalar yRad = SkRectPriv::HalfHeight(fRect); |
| |
| if (xRad == 0.0f || yRad == 0.0f) { |
| // All the corners will be square |
| memset(fRadii, 0, sizeof(fRadii)); |
| fType = kRect_Type; |
| } else { |
| for (int i = 0; i < 4; ++i) { |
| fRadii[i].set(xRad, yRad); |
| } |
| fType = kOval_Type; |
| } |
| |
| SkASSERT(this->isValid()); |
| } |
| |
| void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { |
| if (!this->initializeRect(rect)) { |
| return; |
| } |
| |
| if (!SkScalarsAreFinite(xRad, yRad)) { |
| xRad = yRad = 0; // devolve into a simple rect |
| } |
| |
| if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { |
| // At most one of these two divides will be by zero, and neither numerator is zero. |
| SkScalar scale = std::min(sk_ieee_float_divide(fRect. width(), xRad + xRad), |
| sk_ieee_float_divide(fRect.height(), yRad + yRad)); |
| SkASSERT(scale < SK_Scalar1); |
| xRad *= scale; |
| yRad *= scale; |
| } |
| |
| if (xRad <= 0 || yRad <= 0) { |
| // all corners are square in this case |
| this->setRect(rect); |
| return; |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| fRadii[i].set(xRad, yRad); |
| } |
| fType = kSimple_Type; |
| if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { |
| fType = kOval_Type; |
| // TODO: assert that all the x&y radii are already W/2 & H/2 |
| } |
| |
| SkASSERT(this->isValid()); |
| } |
| |
| void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, |
| SkScalar rightRad, SkScalar bottomRad) { |
| if (!this->initializeRect(rect)) { |
| return; |
| } |
| |
| const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; |
| if (!SkScalarsAreFinite(array, 4)) { |
| this->setRect(rect); // devolve into a simple rect |
| return; |
| } |
| |
| leftRad = std::max(leftRad, 0.0f); |
| topRad = std::max(topRad, 0.0f); |
| rightRad = std::max(rightRad, 0.0f); |
| bottomRad = std::max(bottomRad, 0.0f); |
| |
| SkScalar scale = SK_Scalar1; |
| if (leftRad + rightRad > fRect.width()) { |
| scale = fRect.width() / (leftRad + rightRad); |
| } |
| if (topRad + bottomRad > fRect.height()) { |
| scale = std::min(scale, fRect.height() / (topRad + bottomRad)); |
| } |
| |
| if (scale < SK_Scalar1) { |
| leftRad *= scale; |
| topRad *= scale; |
| rightRad *= scale; |
| bottomRad *= scale; |
| } |
| |
| if (leftRad == rightRad && topRad == bottomRad) { |
| if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { |
| fType = kOval_Type; |
| } else if (0 == leftRad || 0 == topRad) { |
| // If the left and (by equality check above) right radii are zero then it is a rect. |
| // Same goes for top/bottom. |
| fType = kRect_Type; |
| leftRad = 0; |
| topRad = 0; |
| rightRad = 0; |
| bottomRad = 0; |
| } else { |
| fType = kSimple_Type; |
| } |
| } else { |
| fType = kNinePatch_Type; |
| } |
| |
| fRadii[kUpperLeft_Corner].set(leftRad, topRad); |
| fRadii[kUpperRight_Corner].set(rightRad, topRad); |
| fRadii[kLowerRight_Corner].set(rightRad, bottomRad); |
| fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); |
| |
| SkASSERT(this->isValid()); |
| } |
| |
| // These parameters intentionally double. Apropos crbug.com/463920, if one of the |
| // radii is huge while the other is small, single precision math can completely |
| // miss the fact that a scale is required. |
| static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { |
| if ((rad1 + rad2) > limit) { |
| return std::min(curMin, limit / (rad1 + rad2)); |
| } |
| return curMin; |
| } |
| |
| static bool clamp_to_zero(SkVector radii[4]) { |
| bool allCornersSquare = true; |
| |
| // Clamp negative radii to zero |
| for (int i = 0; i < 4; ++i) { |
| if (radii[i].fX <= 0 || radii[i].fY <= 0) { |
| // In this case we are being a little fast & loose. Since one of |
| // the radii is 0 the corner is square. However, the other radii |
| // could still be non-zero and play in the global scale factor |
| // computation. |
| radii[i].fX = 0; |
| radii[i].fY = 0; |
| } else { |
| allCornersSquare = false; |
| } |
| } |
| |
| return allCornersSquare; |
| } |
| |
| void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { |
| if (!this->initializeRect(rect)) { |
| return; |
| } |
| |
| if (!SkScalarsAreFinite(&radii[0].fX, 8)) { |
| this->setRect(rect); // devolve into a simple rect |
| return; |
| } |
| |
| memcpy(fRadii, radii, sizeof(fRadii)); |
| |
| if (clamp_to_zero(fRadii)) { |
| this->setRect(rect); |
| return; |
| } |
| |
| this->scaleRadii(); |
| |
| if (!this->isValid()) { |
| this->setRect(rect); |
| return; |
| } |
| } |
| |
| bool SkRRect::initializeRect(const SkRect& rect) { |
| // Check this before sorting because sorting can hide nans. |
| if (!rect.isFinite()) { |
| *this = SkRRect(); |
| return false; |
| } |
| fRect = rect.makeSorted(); |
| if (fRect.isEmpty()) { |
| memset(fRadii, 0, sizeof(fRadii)); |
| fType = kEmpty_Type; |
| return false; |
| } |
| return true; |
| } |
| |
| // If we can't distinguish one of the radii relative to the other, force it to zero so it |
| // doesn't confuse us later. See crbug.com/850350 |
| // |
| static void flush_to_zero(SkScalar& a, SkScalar& b) { |
| SkASSERT(a >= 0); |
| SkASSERT(b >= 0); |
| if (a + b == a) { |
| b = 0; |
| } else if (a + b == b) { |
| a = 0; |
| } |
| } |
| |
| bool SkRRect::scaleRadii() { |
| // Proportionally scale down all radii to fit. Find the minimum ratio |
| // of a side and the radii on that side (for all four sides) and use |
| // that to scale down _all_ the radii. This algorithm is from the |
| // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping |
| // Curves: |
| // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, |
| // Si is the sum of the two corresponding radii of the corners on side i, |
| // and Ltop = Lbottom = the width of the box, |
| // and Lleft = Lright = the height of the box. |
| // If f < 1, then all corner radii are reduced by multiplying them by f." |
| double scale = 1.0; |
| |
| // The sides of the rectangle may be larger than a float. |
| double width = (double)fRect.fRight - (double)fRect.fLeft; |
| double height = (double)fRect.fBottom - (double)fRect.fTop; |
| scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); |
| scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); |
| scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); |
| scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); |
| |
| flush_to_zero(fRadii[0].fX, fRadii[1].fX); |
| flush_to_zero(fRadii[1].fY, fRadii[2].fY); |
| flush_to_zero(fRadii[2].fX, fRadii[3].fX); |
| flush_to_zero(fRadii[3].fY, fRadii[0].fY); |
| |
| if (scale < 1.0) { |
| SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); |
| SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); |
| SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); |
| SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); |
| } |
| |
| // adjust radii may set x or y to zero; set companion to zero as well |
| clamp_to_zero(fRadii); |
| |
| // May be simple, oval, or complex, or become a rect/empty if the radii adjustment made them 0 |
| this->computeType(); |
| |
| // TODO: Why can't we assert this here? |
| //SkASSERT(this->isValid()); |
| |
| return scale < 1.0; |
| } |
| |
| // This method determines if a point known to be inside the RRect's bounds is |
| // inside all the corners. |
| bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { |
| SkPoint canonicalPt; // (x,y) translated to one of the quadrants |
| int index; |
| |
| if (kOval_Type == this->type()) { |
| canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); |
| index = kUpperLeft_Corner; // any corner will do in this case |
| } else { |
| if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && |
| y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { |
| // UL corner |
| index = kUpperLeft_Corner; |
| canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), |
| y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); |
| SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); |
| } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && |
| y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { |
| // LL corner |
| index = kLowerLeft_Corner; |
| canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), |
| y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); |
| SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); |
| } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && |
| y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { |
| // UR corner |
| index = kUpperRight_Corner; |
| canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), |
| y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); |
| SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); |
| } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && |
| y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { |
| // LR corner |
| index = kLowerRight_Corner; |
| canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), |
| y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); |
| SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); |
| } else { |
| // not in any of the corners |
| return true; |
| } |
| } |
| |
| // A point is in an ellipse (in standard position) if: |
| // x^2 y^2 |
| // ----- + ----- <= 1 |
| // a^2 b^2 |
| // or : |
| // b^2*x^2 + a^2*y^2 <= (ab)^2 |
| SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + |
| SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); |
| return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); |
| } |
| |
| bool SkRRectPriv::IsNearlySimpleCircular(const SkRRect& rr, SkScalar tolerance) { |
| SkScalar simpleRadius = rr.fRadii[0].fX; |
| return SkScalarNearlyEqual(simpleRadius, rr.fRadii[0].fY, tolerance) && |
| SkScalarNearlyEqual(simpleRadius, rr.fRadii[1].fX, tolerance) && |
| SkScalarNearlyEqual(simpleRadius, rr.fRadii[1].fY, tolerance) && |
| SkScalarNearlyEqual(simpleRadius, rr.fRadii[2].fX, tolerance) && |
| SkScalarNearlyEqual(simpleRadius, rr.fRadii[2].fY, tolerance) && |
| SkScalarNearlyEqual(simpleRadius, rr.fRadii[3].fX, tolerance) && |
| SkScalarNearlyEqual(simpleRadius, rr.fRadii[3].fY, tolerance); |
| } |
| |
| bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { |
| return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && |
| SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && |
| SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && |
| SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); |
| } |
| |
| bool SkRRect::contains(const SkRect& rect) const { |
| if (!this->getBounds().contains(rect)) { |
| // If 'rect' isn't contained by the RR's bounds then the |
| // RR definitely doesn't contain it |
| return false; |
| } |
| |
| if (this->isRect()) { |
| // the prior test was sufficient |
| return true; |
| } |
| |
| // At this point we know all four corners of 'rect' are inside the |
| // bounds of of this RR. Check to make sure all the corners are inside |
| // all the curves |
| return this->checkCornerContainment(rect.fLeft, rect.fTop) && |
| this->checkCornerContainment(rect.fRight, rect.fTop) && |
| this->checkCornerContainment(rect.fRight, rect.fBottom) && |
| this->checkCornerContainment(rect.fLeft, rect.fBottom); |
| } |
| |
| static bool radii_are_nine_patch(const SkVector radii[4]) { |
| return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && |
| radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && |
| radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && |
| radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; |
| } |
| |
| // There is a simplified version of this method in setRectXY |
| void SkRRect::computeType() { |
| if (fRect.isEmpty()) { |
| SkASSERT(fRect.isSorted()); |
| for (size_t i = 0; i < std::size(fRadii); ++i) { |
| SkASSERT((fRadii[i] == SkVector{0, 0})); |
| } |
| fType = kEmpty_Type; |
| SkASSERT(this->isValid()); |
| return; |
| } |
| |
| bool allRadiiEqual = true; // are all x radii equal and all y radii? |
| bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY; |
| |
| for (int i = 1; i < 4; ++i) { |
| if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| // if either radius is zero the corner is square so both have to |
| // be non-zero to have a rounded corner |
| allCornersSquare = false; |
| } |
| if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| allRadiiEqual = false; |
| } |
| } |
| |
| if (allCornersSquare) { |
| fType = kRect_Type; |
| SkASSERT(this->isValid()); |
| return; |
| } |
| |
| if (allRadiiEqual) { |
| if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && |
| fRadii[0].fY >= SkScalarHalf(fRect.height())) { |
| fType = kOval_Type; |
| } else { |
| fType = kSimple_Type; |
| } |
| SkASSERT(this->isValid()); |
| return; |
| } |
| |
| if (radii_are_nine_patch(fRadii)) { |
| fType = kNinePatch_Type; |
| } else { |
| fType = kComplex_Type; |
| } |
| |
| if (!this->isValid()) { |
| this->setRect(this->rect()); |
| SkASSERT(this->isValid()); |
| } |
| } |
| |
| bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { |
| if (nullptr == dst) { |
| return false; |
| } |
| |
| // Assert that the caller is not trying to do this in place, which |
| // would violate const-ness. Do not return false though, so that |
| // if they know what they're doing and want to violate it they can. |
| SkASSERT(dst != this); |
| |
| if (matrix.isIdentity()) { |
| *dst = *this; |
| return true; |
| } |
| |
| if (!matrix.preservesAxisAlignment()) { |
| return false; |
| } |
| |
| SkRect newRect; |
| if (!matrix.mapRect(&newRect, fRect)) { |
| return false; |
| } |
| |
| // The matrix may have scaled us to zero (or due to float madness, we now have collapsed |
| // some dimension of the rect, so we need to check for that. Note that matrix must be |
| // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates |
| // loss of precision. |
| if (!newRect.isFinite() || newRect.isEmpty()) { |
| return false; |
| } |
| |
| // At this point, this is guaranteed to succeed, so we can modify dst. |
| dst->fRect = newRect; |
| |
| // Since the only transforms that were allowed are axis aligned, the type |
| // remains unchanged. |
| dst->fType = fType; |
| |
| if (kRect_Type == fType) { |
| SkASSERT(dst->isValid()); |
| return true; |
| } |
| if (kOval_Type == fType) { |
| for (int i = 0; i < 4; ++i) { |
| dst->fRadii[i].fX = SkScalarHalf(newRect.width()); |
| dst->fRadii[i].fY = SkScalarHalf(newRect.height()); |
| } |
| SkASSERT(dst->isValid()); |
| return true; |
| } |
| |
| // Now scale each corner |
| SkScalar xScale = matrix.getScaleX(); |
| SkScalar yScale = matrix.getScaleY(); |
| |
| // There is a rotation of 90 (Clockwise 90) or 270 (Counter clockwise 90). |
| // 180 degrees rotations are simply flipX with a flipY and would come under |
| // a scale transform. |
| if (!matrix.isScaleTranslate()) { |
| const bool isClockwise = matrix.getSkewX() < 0; |
| |
| // The matrix location for scale changes if there is a rotation. |
| xScale = matrix.getSkewY() * (isClockwise ? 1 : -1); |
| yScale = matrix.getSkewX() * (isClockwise ? -1 : 1); |
| |
| const int dir = isClockwise ? 3 : 1; |
| for (int i = 0; i < 4; ++i) { |
| const int src = (i + dir) >= 4 ? (i + dir) % 4 : (i + dir); |
| // Swap X and Y axis for the radii. |
| dst->fRadii[i].fX = fRadii[src].fY; |
| dst->fRadii[i].fY = fRadii[src].fX; |
| } |
| } else { |
| for (int i = 0; i < 4; ++i) { |
| dst->fRadii[i].fX = fRadii[i].fX; |
| dst->fRadii[i].fY = fRadii[i].fY; |
| } |
| } |
| |
| const bool flipX = xScale < 0; |
| if (flipX) { |
| xScale = -xScale; |
| } |
| |
| const bool flipY = yScale < 0; |
| if (flipY) { |
| yScale = -yScale; |
| } |
| |
| // Scale the radii without respecting the flip. |
| for (int i = 0; i < 4; ++i) { |
| dst->fRadii[i].fX *= xScale; |
| dst->fRadii[i].fY *= yScale; |
| } |
| |
| // Now swap as necessary. |
| using std::swap; |
| if (flipX) { |
| if (flipY) { |
| // Swap with opposite corners |
| swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); |
| swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| } else { |
| // Only swap in x |
| swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); |
| swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| } |
| } else if (flipY) { |
| // Only swap in y |
| swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); |
| swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); |
| } |
| |
| if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { |
| return false; |
| } |
| |
| dst->scaleRadii(); |
| dst->isValid(); // TODO: is this meant to be SkASSERT(dst->isValid())? |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { |
| SkRect r = fRect.makeInset(dx, dy); |
| bool degenerate = false; |
| if (r.fRight <= r.fLeft) { |
| degenerate = true; |
| r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); |
| } |
| if (r.fBottom <= r.fTop) { |
| degenerate = true; |
| r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); |
| } |
| if (degenerate) { |
| dst->fRect = r; |
| memset(dst->fRadii, 0, sizeof(dst->fRadii)); |
| dst->fType = kEmpty_Type; |
| return; |
| } |
| if (!r.isFinite()) { |
| *dst = SkRRect(); |
| return; |
| } |
| |
| SkVector radii[4]; |
| memcpy(radii, fRadii, sizeof(radii)); |
| for (int i = 0; i < 4; ++i) { |
| if (radii[i].fX) { |
| radii[i].fX -= dx; |
| } |
| if (radii[i].fY) { |
| radii[i].fY -= dy; |
| } |
| } |
| dst->setRectRadii(r, radii); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| size_t SkRRect::writeToMemory(void* buffer) const { |
| // Serialize only the rect and corners, but not the derived type tag. |
| memcpy(buffer, this, kSizeInMemory); |
| return kSizeInMemory; |
| } |
| |
| void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { |
| // Serialize only the rect and corners, but not the derived type tag. |
| buffer->write(&rr, SkRRect::kSizeInMemory); |
| } |
| |
| size_t SkRRect::readFromMemory(const void* buffer, size_t length) { |
| if (length < kSizeInMemory) { |
| return 0; |
| } |
| |
| // The extra (void*) tells GCC not to worry that kSizeInMemory < sizeof(SkRRect). |
| |
| SkRRect raw; |
| memcpy((void*)&raw, buffer, kSizeInMemory); |
| this->setRectRadii(raw.fRect, raw.fRadii); |
| return kSizeInMemory; |
| } |
| |
| bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { |
| if (buffer->available() < SkRRect::kSizeInMemory) { |
| return false; |
| } |
| SkRRect storage; |
| return buffer->read(&storage, SkRRect::kSizeInMemory) && |
| (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); |
| } |
| |
| SkString SkRRect::dumpToString(bool asHex) const { |
| SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| |
| fRect.dump(asHex); |
| SkString line("const SkPoint corners[] = {\n"); |
| for (int i = 0; i < 4; ++i) { |
| SkString strX, strY; |
| SkAppendScalar(&strX, fRadii[i].x(), asType); |
| SkAppendScalar(&strY, fRadii[i].y(), asType); |
| line.appendf(" { %s, %s },", strX.c_str(), strY.c_str()); |
| if (asHex) { |
| line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y()); |
| } |
| line.append("\n"); |
| } |
| line.append("};"); |
| return line; |
| } |
| |
| void SkRRect::dump(bool asHex) const { SkDebugf("%s\n", this->dumpToString(asHex).c_str()); } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * We need all combinations of predicates to be true to have a "safe" radius value. |
| */ |
| static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { |
| return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && |
| rad >= 0; |
| } |
| |
| bool SkRRect::isValid() const { |
| if (!AreRectAndRadiiValid(fRect, fRadii)) { |
| return false; |
| } |
| |
| bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); |
| bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY); |
| bool allRadiiSame = true; |
| |
| for (int i = 1; i < 4; ++i) { |
| if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { |
| allRadiiZero = false; |
| } |
| |
| if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| allRadiiSame = false; |
| } |
| |
| if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| allCornersSquare = false; |
| } |
| } |
| bool patchesOfNine = radii_are_nine_patch(fRadii); |
| |
| if (fType < 0 || fType > kLastType) { |
| return false; |
| } |
| |
| switch (fType) { |
| case kEmpty_Type: |
| if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| return false; |
| } |
| break; |
| case kRect_Type: |
| if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| return false; |
| } |
| break; |
| case kOval_Type: |
| if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| return false; |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| if (!SkScalarNearlyEqual(fRadii[i].fX, SkRectPriv::HalfWidth(fRect)) || |
| !SkScalarNearlyEqual(fRadii[i].fY, SkRectPriv::HalfHeight(fRect))) { |
| return false; |
| } |
| } |
| break; |
| case kSimple_Type: |
| if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| return false; |
| } |
| break; |
| case kNinePatch_Type: |
| if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| !patchesOfNine) { |
| return false; |
| } |
| break; |
| case kComplex_Type: |
| if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| patchesOfNine) { |
| return false; |
| } |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { |
| if (!rect.isFinite() || !rect.isSorted()) { |
| return false; |
| } |
| for (int i = 0; i < 4; ++i) { |
| if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || |
| !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkRect SkRRectPriv::InnerBounds(const SkRRect& rr) { |
| if (rr.isEmpty() || rr.isRect()) { |
| return rr.rect(); |
| } |
| |
| // We start with the outer bounds of the round rect and consider three subsets and take the |
| // one with maximum area. The first two are the horizontal and vertical rects inset from the |
| // corners, the third is the rect inscribed at the corner curves' maximal point. This forms |
| // the exact solution when all corners have the same radii (the radii do not have to be |
| // circular). |
| SkRect innerBounds = rr.getBounds(); |
| SkVector tl = rr.radii(SkRRect::kUpperLeft_Corner); |
| SkVector tr = rr.radii(SkRRect::kUpperRight_Corner); |
| SkVector bl = rr.radii(SkRRect::kLowerLeft_Corner); |
| SkVector br = rr.radii(SkRRect::kLowerRight_Corner); |
| |
| // Select maximum inset per edge, which may move an adjacent corner of the inscribed |
| // rectangle off of the rounded-rect path, but that is acceptable given that the general |
| // equation for inscribed area is non-trivial to evaluate. |
| SkScalar leftShift = std::max(tl.fX, bl.fX); |
| SkScalar topShift = std::max(tl.fY, tr.fY); |
| SkScalar rightShift = std::max(tr.fX, br.fX); |
| SkScalar bottomShift = std::max(bl.fY, br.fY); |
| |
| SkScalar dw = leftShift + rightShift; |
| SkScalar dh = topShift + bottomShift; |
| |
| // Area removed by shifting left/right |
| SkScalar horizArea = (innerBounds.width() - dw) * innerBounds.height(); |
| // And by shifting top/bottom |
| SkScalar vertArea = (innerBounds.height() - dh) * innerBounds.width(); |
| // And by shifting all edges: just considering a corner ellipse, the maximum inscribed rect has |
| // a corner at sqrt(2)/2 * (rX, rY), so scale all corner shifts by (1 - sqrt(2)/2) to get the |
| // safe shift per edge (since the shifts already are the max radius for that edge). |
| // - We actually scale by a value slightly increased to make it so that the shifted corners are |
| // safely inside the curves, otherwise numerical stability can cause it to fail contains(). |
| static constexpr SkScalar kScale = (1.f - SK_ScalarRoot2Over2) + 1e-5f; |
| SkScalar innerArea = (innerBounds.width() - kScale * dw) * (innerBounds.height() - kScale * dh); |
| |
| if (horizArea > vertArea && horizArea > innerArea) { |
| // Cut off corners by insetting left and right |
| innerBounds.fLeft += leftShift; |
| innerBounds.fRight -= rightShift; |
| } else if (vertArea > innerArea) { |
| // Cut off corners by insetting top and bottom |
| innerBounds.fTop += topShift; |
| innerBounds.fBottom -= bottomShift; |
| } else if (innerArea > 0.f) { |
| // Inset on all sides, scaled to touch |
| innerBounds.fLeft += kScale * leftShift; |
| innerBounds.fRight -= kScale * rightShift; |
| innerBounds.fTop += kScale * topShift; |
| innerBounds.fBottom -= kScale * bottomShift; |
| } else { |
| // Inner region would collapse to empty |
| return SkRect::MakeEmpty(); |
| } |
| |
| SkASSERT(innerBounds.isSorted() && !innerBounds.isEmpty()); |
| return innerBounds; |
| } |
| |
| SkRRect SkRRectPriv::ConservativeIntersect(const SkRRect& a, const SkRRect& b) { |
| // Returns the coordinate of the rect matching the corner enum. |
| auto getCorner = [](const SkRect& r, SkRRect::Corner corner) -> SkPoint { |
| switch(corner) { |
| case SkRRect::kUpperLeft_Corner: return {r.fLeft, r.fTop}; |
| case SkRRect::kUpperRight_Corner: return {r.fRight, r.fTop}; |
| case SkRRect::kLowerLeft_Corner: return {r.fLeft, r.fBottom}; |
| case SkRRect::kLowerRight_Corner: return {r.fRight, r.fBottom}; |
| default: SkUNREACHABLE; |
| } |
| }; |
| // Returns true if shape A's extreme point is contained within shape B's extreme point, relative |
| // to the 'corner' location. If the two shapes' corners have the same ellipse radii, this |
| // is sufficient for A's ellipse arc to be contained by B's ellipse arc. |
| auto insideCorner = [](SkRRect::Corner corner, const SkPoint& a, const SkPoint& b) { |
| switch(corner) { |
| case SkRRect::kUpperLeft_Corner: return a.fX >= b.fX && a.fY >= b.fY; |
| case SkRRect::kUpperRight_Corner: return a.fX <= b.fX && a.fY >= b.fY; |
| case SkRRect::kLowerRight_Corner: return a.fX <= b.fX && a.fY <= b.fY; |
| case SkRRect::kLowerLeft_Corner: return a.fX >= b.fX && a.fY <= b.fY; |
| default: SkUNREACHABLE; |
| } |
| }; |
| |
| auto getIntersectionRadii = [&](const SkRect& r, SkRRect::Corner corner, SkVector* radii) { |
| SkPoint test = getCorner(r, corner); |
| SkPoint aCorner = getCorner(a.rect(), corner); |
| SkPoint bCorner = getCorner(b.rect(), corner); |
| |
| if (test == aCorner && test == bCorner) { |
| // The round rects share a corner anchor, so pick A or B such that its X and Y radii |
| // are both larger than the other rrect's, or return false if neither A or B has the max |
| // corner radii (this is more permissive than the single corner tests below). |
| SkVector aRadii = a.radii(corner); |
| SkVector bRadii = b.radii(corner); |
| if (aRadii.fX >= bRadii.fX && aRadii.fY >= bRadii.fY) { |
| *radii = aRadii; |
| return true; |
| } else if (bRadii.fX >= aRadii.fX && bRadii.fY >= aRadii.fY) { |
| *radii = bRadii; |
| return true; |
| } else { |
| return false; |
| } |
| } else if (test == aCorner) { |
| // Test that A's ellipse is contained by B. This is a non-trivial function to evaluate |
| // so we resrict it to when the corners have the same radii. If not, we use the more |
| // conservative test that the extreme point of A's bounding box is contained in B. |
| *radii = a.radii(corner); |
| if (*radii == b.radii(corner)) { |
| return insideCorner(corner, aCorner, bCorner); // A inside B |
| } else { |
| return b.checkCornerContainment(aCorner.fX, aCorner.fY); |
| } |
| } else if (test == bCorner) { |
| // Mirror of the above |
| *radii = b.radii(corner); |
| if (*radii == a.radii(corner)) { |
| return insideCorner(corner, bCorner, aCorner); // B inside A |
| } else { |
| return a.checkCornerContainment(bCorner.fX, bCorner.fY); |
| } |
| } else { |
| // This is a corner formed by two straight edges of A and B, so confirm that it is |
| // contained in both (if not, then the intersection can't be a round rect). |
| *radii = {0.f, 0.f}; |
| return a.checkCornerContainment(test.fX, test.fY) && |
| b.checkCornerContainment(test.fX, test.fY); |
| } |
| }; |
| |
| // We fill in the SkRRect directly. Since the rect and radii are either 0s or determined by |
| // valid existing SkRRects, we know we are finite. |
| SkRRect intersection; |
| if (!intersection.fRect.intersect(a.rect(), b.rect())) { |
| // Definitely no intersection |
| return SkRRect::MakeEmpty(); |
| } |
| |
| const SkRRect::Corner corners[] = { |
| SkRRect::kUpperLeft_Corner, |
| SkRRect::kUpperRight_Corner, |
| SkRRect::kLowerRight_Corner, |
| SkRRect::kLowerLeft_Corner |
| }; |
| // By definition, edges is contained in the bounds of 'a' and 'b', but now we need to consider |
| // the corners. If the bound's corner point is in both rrects, the corner radii will be 0s. |
| // If the bound's corner point matches a's edges and is inside 'b', we use a's radii. |
| // Same for b's radii. If any corner fails these conditions, we reject the intersection as an |
| // rrect. If after determining radii for all 4 corners, they would overlap, we also reject the |
| // intersection shape. |
| for (auto c : corners) { |
| if (!getIntersectionRadii(intersection.fRect, c, &intersection.fRadii[c])) { |
| return SkRRect::MakeEmpty(); // Resulting intersection is not a rrect |
| } |
| } |
| |
| // Check for radius overlap along the four edges, since the earlier evaluation was only a |
| // one-sided corner check. If they aren't valid, a corner's radii doesn't fit within the rect. |
| // If the radii are scaled, the combination of radii from two adjacent corners doesn't fit. |
| // Normally for a regularly constructed SkRRect, we want this scaling, but in this case it means |
| // the intersection shape is definitively not a round rect. |
| if (!SkRRect::AreRectAndRadiiValid(intersection.fRect, intersection.fRadii) || |
| intersection.scaleRadii()) { |
| return SkRRect::MakeEmpty(); |
| } |
| |
| // The intersection is an rrect of the given radii. Potentially all 4 corners could have |
| // been simplified to (0,0) radii, making the intersection a rectangle. |
| intersection.computeType(); |
| return intersection; |
| } |