| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkDescriptor.h" |
| |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkTo.h" |
| #include "include/private/chromium/SkChromeRemoteGlyphCache.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include <string.h> |
| #include <new> |
| |
| std::unique_ptr<SkDescriptor> SkDescriptor::Alloc(size_t length) { |
| SkASSERT(length >= sizeof(SkDescriptor) && SkAlign4(length) == length); |
| void* allocation = ::operator new(length); |
| return std::unique_ptr<SkDescriptor>(new (allocation) SkDescriptor{}); |
| } |
| |
| void SkDescriptor::operator delete(void* p) { ::operator delete(p); } |
| void* SkDescriptor::operator new(size_t) { |
| SK_ABORT("Descriptors are created with placement new."); |
| } |
| |
| void SkDescriptor::flatten(SkWriteBuffer& buffer) const { |
| buffer.writePad32(static_cast<const void*>(this), this->fLength); |
| } |
| |
| void* SkDescriptor::addEntry(uint32_t tag, size_t length, const void* data) { |
| SkASSERT(tag); |
| SkASSERT(SkAlign4(length) == length); |
| SkASSERT(this->findEntry(tag, nullptr) == nullptr); |
| |
| Entry* entry = (Entry*)((char*)this + fLength); |
| entry->fTag = tag; |
| entry->fLen = SkToU32(length); |
| if (data) { |
| memcpy(entry + 1, data, length); |
| } |
| |
| fCount += 1; |
| fLength = SkToU32(fLength + sizeof(Entry) + length); |
| return (entry + 1); // return its data |
| } |
| |
| void SkDescriptor::computeChecksum() { |
| fChecksum = SkDescriptor::ComputeChecksum(this); |
| } |
| |
| const void* SkDescriptor::findEntry(uint32_t tag, uint32_t* length) const { |
| const Entry* entry = (const Entry*)(this + 1); |
| int count = fCount; |
| |
| while (--count >= 0) { |
| if (entry->fTag == tag) { |
| if (length) { |
| *length = entry->fLen; |
| } |
| return entry + 1; |
| } |
| entry = (const Entry*)((const char*)(entry + 1) + entry->fLen); |
| } |
| return nullptr; |
| } |
| |
| std::unique_ptr<SkDescriptor> SkDescriptor::copy() const { |
| std::unique_ptr<SkDescriptor> desc = SkDescriptor::Alloc(fLength); |
| memcpy(desc.get(), this, fLength); |
| return desc; |
| } |
| |
| bool SkDescriptor::operator==(const SkDescriptor& other) const { |
| // the first value we should look at is the checksum, so this loop |
| // should terminate early if they descriptors are different. |
| // NOTE: if we wrote a sentinel value at the end of each, we could |
| // remove the aa < stop test in the loop... |
| const uint32_t* aa = (const uint32_t*)this; |
| const uint32_t* bb = (const uint32_t*)&other; |
| const uint32_t* stop = (const uint32_t*)((const char*)aa + fLength); |
| do { |
| if (*aa++ != *bb++) |
| return false; |
| } while (aa < stop); |
| return true; |
| } |
| |
| SkString SkDescriptor::dumpRec() const { |
| const SkScalerContextRec* rec = static_cast<const SkScalerContextRec*>( |
| this->findEntry(kRec_SkDescriptorTag, nullptr)); |
| |
| SkString result; |
| result.appendf(" Checksum: %x\n", fChecksum); |
| if (rec != nullptr) { |
| result.append(rec->dump()); |
| } |
| return result; |
| } |
| |
| uint32_t SkDescriptor::ComputeChecksum(const SkDescriptor* desc) { |
| const uint32_t* ptr = (const uint32_t*)desc + 1; // skip the checksum field |
| size_t len = desc->fLength - sizeof(uint32_t); |
| return SkOpts::hash(ptr, len); |
| } |
| |
| bool SkDescriptor::isValid() const { |
| uint32_t count = fCount; |
| size_t lengthRemaining = this->fLength; |
| if (lengthRemaining < sizeof(SkDescriptor)) { |
| return false; |
| } |
| lengthRemaining -= sizeof(SkDescriptor); |
| size_t offset = sizeof(SkDescriptor); |
| |
| while (lengthRemaining > 0 && count > 0) { |
| if (lengthRemaining < sizeof(Entry)) { |
| return false; |
| } |
| lengthRemaining -= sizeof(Entry); |
| |
| const Entry* entry = (const Entry*)(reinterpret_cast<const char*>(this) + offset); |
| |
| if (lengthRemaining < entry->fLen) { |
| return false; |
| } |
| lengthRemaining -= entry->fLen; |
| |
| // rec tags are always a known size. |
| if (entry->fTag == kRec_SkDescriptorTag && entry->fLen != sizeof(SkScalerContextRec)) { |
| return false; |
| } |
| |
| offset += sizeof(Entry) + entry->fLen; |
| count--; |
| } |
| return lengthRemaining == 0 && count == 0; |
| } |
| |
| SkAutoDescriptor::SkAutoDescriptor() = default; |
| SkAutoDescriptor::SkAutoDescriptor(size_t size) { this->reset(size); } |
| SkAutoDescriptor::SkAutoDescriptor(const SkDescriptor& desc) { this->reset(desc); } |
| SkAutoDescriptor::SkAutoDescriptor(const SkAutoDescriptor& that) { |
| this->reset(*that.getDesc()); |
| } |
| SkAutoDescriptor& SkAutoDescriptor::operator=(const SkAutoDescriptor& that) { |
| this->reset(*that.getDesc()); |
| return *this; |
| } |
| SkAutoDescriptor::SkAutoDescriptor(SkAutoDescriptor&& that) { |
| if (that.fDesc == (SkDescriptor*)&that.fStorage) { |
| this->reset(*that.getDesc()); |
| } else { |
| fDesc = that.fDesc; |
| that.fDesc = nullptr; |
| } |
| } |
| SkAutoDescriptor& SkAutoDescriptor::operator=(SkAutoDescriptor&& that) { |
| if (that.fDesc == (SkDescriptor*)&that.fStorage) { |
| this->reset(*that.getDesc()); |
| } else { |
| this->free(); |
| fDesc = that.fDesc; |
| that.fDesc = nullptr; |
| } |
| return *this; |
| } |
| |
| SkAutoDescriptor::~SkAutoDescriptor() { this->free(); } |
| |
| std::optional<SkAutoDescriptor> SkAutoDescriptor::MakeFromBuffer(SkReadBuffer& buffer) { |
| SkDescriptor descriptorHeader; |
| if (!buffer.readPad32(&descriptorHeader, sizeof(SkDescriptor))) { return {}; } |
| |
| // Basic bounds check on header length to make sure that bodyLength calculation does not |
| // underflow. |
| if (descriptorHeader.getLength() < sizeof(SkDescriptor)) { return {}; } |
| uint32_t bodyLength = descriptorHeader.getLength() - sizeof(SkDescriptor); |
| |
| // Make sure the fLength makes sense with respect to the incoming data. |
| if (bodyLength > buffer.available()) { |
| return {}; |
| } |
| |
| SkAutoDescriptor ad{descriptorHeader.getLength()}; |
| memcpy(ad.fDesc, &descriptorHeader, sizeof(SkDescriptor)); |
| if (!buffer.readPad32(SkTAddOffset<void>(ad.fDesc, sizeof(SkDescriptor)), bodyLength)) { |
| return {}; |
| } |
| |
| // If the fuzzer produces data but the checksum does not match, let it continue. This will boost |
| // fuzzing speed. We leave the actual checksum computation in for fuzzing builds to make sure |
| // the ComputeChecksum function is covered. |
| #if defined(SK_BUILD_FOR_FUZZER) |
| SkDescriptor::ComputeChecksum(ad.getDesc()); |
| #else |
| if (SkDescriptor::ComputeChecksum(ad.getDesc()) != ad.getDesc()->fChecksum) { return {}; } |
| #endif |
| if (!ad.getDesc()->isValid()) { return {}; } |
| |
| return {ad}; |
| } |
| |
| void SkAutoDescriptor::reset(size_t size) { |
| this->free(); |
| if (size <= sizeof(fStorage)) { |
| fDesc = new (&fStorage) SkDescriptor{}; |
| } else { |
| fDesc = SkDescriptor::Alloc(size).release(); |
| } |
| } |
| |
| void SkAutoDescriptor::reset(const SkDescriptor& desc) { |
| size_t size = desc.getLength(); |
| this->reset(size); |
| memcpy(fDesc, &desc, size); |
| } |
| |
| void SkAutoDescriptor::free() { |
| if (fDesc == (SkDescriptor*)&fStorage) { |
| fDesc->~SkDescriptor(); |
| } else { |
| delete fDesc; |
| } |
| } |
| |
| |