blob: 786cf831049c8fed45519b1453d79993dd9bfa8b [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkImageEncoder.h"
#include "include/core/SkPaint.h"
#include "include/core/SkShader.h"
#include "include/private/SkColorData.h"
#include "include/private/base/SkMacros.h"
#include "include/private/base/SkTPin.h"
#include "src/core/SkBitmapCache.h"
#include "src/core/SkBitmapProcState.h"
#include "src/core/SkMipmap.h"
#include "src/core/SkMipmapAccessor.h"
#include "src/core/SkOpts.h"
#include "src/core/SkResourceCache.h"
// One-stop-shop shader for,
// - nearest-neighbor sampling (_nofilter_),
// - clamp tiling in X and Y both (Clamp_),
// - with at most a scale and translate matrix (_DX_),
// - and no extra alpha applied (_opaque_),
// - sampling from 8888 (_S32_) and drawing to 8888 (_S32_).
static void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y,
SkPMColor* dst, int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT(s.fInvMatrix.isScaleTranslate());
SkASSERT(s.fAlphaScale == 256);
const unsigned maxX = s.fPixmap.width() - 1;
SkFractionalInt fx;
int dstY;
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const unsigned maxY = s.fPixmap.height() - 1;
dstY = SkTPin<int>(mapper.intY(), 0, maxY);
fx = mapper.fractionalIntX();
}
const SkPMColor* src = s.fPixmap.addr32(0, dstY);
const SkFractionalInt dx = s.fInvSxFractionalInt;
// Check if we're safely inside [0...maxX] so no need to clamp each computed index.
//
if ((uint64_t)SkFractionalIntToInt(fx) <= maxX &&
(uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX)
{
int count4 = count >> 2;
for (int i = 0; i < count4; ++i) {
SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx;
SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx;
SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx;
SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx;
dst[0] = src0;
dst[1] = src1;
dst[2] = src2;
dst[3] = src3;
dst += 4;
}
for (int i = (count4 << 2); i < count; ++i) {
unsigned index = SkFractionalIntToInt(fx);
SkASSERT(index <= maxX);
*dst++ = src[index];
fx += dx;
}
} else {
for (int i = 0; i < count; ++i) {
dst[i] = src[SkTPin<int>(SkFractionalIntToInt(fx), 0, maxX)];
fx += dx;
}
}
}
static void S32_alpha_D32_nofilter_DX(const SkBitmapProcState& s,
const uint32_t* xy, int count, SkPMColor* colors) {
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(s.fInvMatrix.isScaleTranslate());
SkASSERT(!s.fBilerp);
SkASSERT(4 == s.fPixmap.info().bytesPerPixel());
SkASSERT(s.fAlphaScale <= 256);
// xy is a 32-bit y-coordinate, followed by 16-bit x-coordinates.
unsigned y = *xy++;
SkASSERT(y < (unsigned)s.fPixmap.height());
auto row = (const SkPMColor*)( (const char*)s.fPixmap.addr() + y * s.fPixmap.rowBytes() );
if (1 == s.fPixmap.width()) {
SkOpts::memset32(colors, SkAlphaMulQ(row[0], s.fAlphaScale), count);
return;
}
// Step 4 xs == 2 uint32_t at a time.
while (count >= 4) {
uint32_t x01 = *xy++,
x23 = *xy++;
SkPMColor p0 = row[UNPACK_PRIMARY_SHORT (x01)];
SkPMColor p1 = row[UNPACK_SECONDARY_SHORT(x01)];
SkPMColor p2 = row[UNPACK_PRIMARY_SHORT (x23)];
SkPMColor p3 = row[UNPACK_SECONDARY_SHORT(x23)];
*colors++ = SkAlphaMulQ(p0, s.fAlphaScale);
*colors++ = SkAlphaMulQ(p1, s.fAlphaScale);
*colors++ = SkAlphaMulQ(p2, s.fAlphaScale);
*colors++ = SkAlphaMulQ(p3, s.fAlphaScale);
count -= 4;
}
// Step 1 x == 1 uint16_t at a time.
auto x = (const uint16_t*)xy;
while (count --> 0) {
*colors++ = SkAlphaMulQ(row[*x++], s.fAlphaScale);
}
}
static void S32_alpha_D32_nofilter_DXDY(const SkBitmapProcState& s,
const uint32_t* xy, int count, SkPMColor* colors) {
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(!s.fBilerp);
SkASSERT(4 == s.fPixmap.info().bytesPerPixel());
SkASSERT(s.fAlphaScale <= 256);
auto src = (const char*)s.fPixmap.addr();
size_t rb = s.fPixmap.rowBytes();
while (count --> 0) {
uint32_t XY = *xy++,
x = XY & 0xffff,
y = XY >> 16;
SkASSERT(x < (unsigned)s.fPixmap.width ());
SkASSERT(y < (unsigned)s.fPixmap.height());
*colors++ = ((const SkPMColor*)(src + y*rb))[x];
}
}
SkBitmapProcState::SkBitmapProcState(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy)
: fImage(image)
, fTileModeX(tmx)
, fTileModeY(tmy)
{}
// true iff the matrix has a scale and no more than an optional translate.
static bool matrix_only_scale_translate(const SkMatrix& m) {
return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask;
}
/**
* For the purposes of drawing bitmaps, if a matrix is "almost" translate
* go ahead and treat it as if it were, so that subsequent code can go fast.
*/
static bool just_trans_general(const SkMatrix& matrix) {
SkASSERT(matrix_only_scale_translate(matrix));
const SkScalar tol = SK_Scalar1 / 32768;
return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)
&& SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol);
}
/**
* Determine if the matrix can be treated as integral-only-translate,
* for the purpose of filtering.
*/
static bool just_trans_integral(const SkMatrix& m) {
static constexpr SkScalar tol = SK_Scalar1 / 256;
return m.getType() <= SkMatrix::kTranslate_Mask
&& SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol)
&& SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol);
}
static bool valid_for_filtering(unsigned dimension) {
// for filtering, width and height must fit in 14bits, since we use steal
// 2 bits from each to store our 4bit subpixel data
return (dimension & ~0x3FFF) == 0;
}
bool SkBitmapProcState::init(const SkMatrix& inv, SkAlpha paintAlpha,
const SkSamplingOptions& sampling) {
SkASSERT(!inv.hasPerspective());
SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || inv.isScaleTranslate());
SkASSERT(!sampling.isAniso());
SkASSERT(!sampling.useCubic);
SkASSERT(sampling.mipmap != SkMipmapMode::kLinear);
fPixmap.reset();
fBilerp = false;
auto* access = SkMipmapAccessor::Make(&fAlloc, (const SkImage*)fImage, inv, sampling.mipmap);
if (!access) {
return false;
}
std::tie(fPixmap, fInvMatrix) = access->level();
fInvMatrix.preConcat(inv);
fPaintAlpha = paintAlpha;
fBilerp = sampling.filter == SkFilterMode::kLinear;
SkASSERT(fPixmap.addr());
bool integral_translate_only = just_trans_integral(fInvMatrix);
if (!integral_translate_only) {
// Most of the scanline procs deal with "unit" texture coordinates, as this
// makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate
// those, we divide the matrix by its dimensions here.
//
// We don't do this if we're either trivial (can ignore the matrix) or clamping
// in both X and Y since clamping to width,height is just as easy as to 0xFFFF.
if (fTileModeX != SkTileMode::kClamp || fTileModeY != SkTileMode::kClamp) {
SkMatrixPriv::PostIDiv(&fInvMatrix, fPixmap.width(), fPixmap.height());
}
// Now that all possible changes to the matrix have taken place, check
// to see if we're really close to a no-scale matrix. If so, explicitly
// set it to be so. Subsequent code may inspect this matrix to choose
// a faster path in this case.
// This code will only execute if the matrix has some scale component;
// if it's already pure translate then we won't do this inversion.
if (matrix_only_scale_translate(fInvMatrix)) {
SkMatrix forward;
if (fInvMatrix.invert(&forward) && just_trans_general(forward)) {
fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY());
}
}
// Recompute the flag after matrix adjustments.
integral_translate_only = just_trans_integral(fInvMatrix);
}
if (fBilerp &&
(!valid_for_filtering(fPixmap.width() | fPixmap.height()) || integral_translate_only)) {
fBilerp = false;
}
return true;
}
/*
* Analyze filter-quality and matrix, and decide how to implement that.
*
* In general, we cascade down the request level [ High ... None ]
* - for a given level, if we can fulfill it, fine, else
* - else we downgrade to the next lower level and try again.
* We can always fulfill requests for Low and None
* - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack
* and may be removed.
*/
bool SkBitmapProcState::chooseProcs() {
SkASSERT(!fInvMatrix.hasPerspective());
SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || fInvMatrix.isScaleTranslate());
SkASSERT(fPixmap.colorType() == kN32_SkColorType);
SkASSERT(fPixmap.alphaType() == kPremul_SkAlphaType ||
fPixmap.alphaType() == kOpaque_SkAlphaType);
SkASSERT(fTileModeX != SkTileMode::kDecal);
fInvProc = SkMatrixPriv::GetMapXYProc(fInvMatrix);
fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX());
fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY ());
fAlphaScale = SkAlpha255To256(fPaintAlpha);
bool translate_only = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
fMatrixProc = this->chooseMatrixProc(translate_only);
SkASSERT(fMatrixProc);
if (fInvMatrix.isScaleTranslate()) {
fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DX : S32_alpha_D32_nofilter_DX ;
} else {
fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DXDY : S32_alpha_D32_nofilter_DXDY;
}
SkASSERT(fSampleProc32);
// our special-case shaderprocs
// TODO: move this one into chooseShaderProc32() or pull all that in here.
if (fAlphaScale == 256
&& !fBilerp
&& SkTileMode::kClamp == fTileModeX
&& SkTileMode::kClamp == fTileModeY
&& fInvMatrix.isScaleTranslate()) {
fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc;
} else {
fShaderProc32 = this->chooseShaderProc32();
}
return true;
}
static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn,
int x, int y,
SkPMColor* colors,
int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT(s.fInvMatrix.isTranslate());
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(!s.fBilerp);
const int maxX = s.fPixmap.width() - 1;
const int maxY = s.fPixmap.height() - 1;
int ix = s.fFilterOneX + x;
int iy = SkTPin(s.fFilterOneY + y, 0, maxY);
const SkPMColor* row = s.fPixmap.addr32(0, iy);
// clamp to the left
if (ix < 0) {
int n = std::min(-ix, count);
SkOpts::memset32(colors, row[0], n);
count -= n;
if (0 == count) {
return;
}
colors += n;
SkASSERT(-ix == n);
ix = 0;
}
// copy the middle
if (ix <= maxX) {
int n = std::min(maxX - ix + 1, count);
memcpy(colors, row + ix, n * sizeof(SkPMColor));
count -= n;
if (0 == count) {
return;
}
colors += n;
}
SkASSERT(count > 0);
// clamp to the right
SkOpts::memset32(colors, row[maxX], count);
}
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
static inline int sk_int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn,
int x, int y,
SkPMColor* colors,
int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT(s.fInvMatrix.isTranslate());
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(!s.fBilerp);
const int stopX = s.fPixmap.width();
const int stopY = s.fPixmap.height();
int ix = s.fFilterOneX + x;
int iy = sk_int_mod(s.fFilterOneY + y, stopY);
const SkPMColor* row = s.fPixmap.addr32(0, iy);
ix = sk_int_mod(ix, stopX);
for (;;) {
int n = std::min(stopX - ix, count);
memcpy(colors, row + ix, n * sizeof(SkPMColor));
count -= n;
if (0 == count) {
return;
}
colors += n;
ix = 0;
}
}
static inline void filter_32_alpha(unsigned t,
SkPMColor color0,
SkPMColor color1,
SkPMColor* dstColor,
unsigned alphaScale) {
SkASSERT((unsigned)t <= 0xF);
SkASSERT(alphaScale <= 256);
const uint32_t mask = 0xFF00FF;
int scale = 256 - 16*t;
uint32_t lo = (color0 & mask) * scale;
uint32_t hi = ((color0 >> 8) & mask) * scale;
scale = 16*t;
lo += (color1 & mask) * scale;
hi += ((color1 >> 8) & mask) * scale;
// TODO: if (alphaScale < 256) ...
lo = ((lo >> 8) & mask) * alphaScale;
hi = ((hi >> 8) & mask) * alphaScale;
*dstColor = ((lo >> 8) & mask) | (hi & ~mask);
}
static void S32_D32_constX_shaderproc(const void* sIn,
int x, int y,
SkPMColor* colors,
int count) {
const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
SkASSERT(s.fInvMatrix.isScaleTranslate());
SkASSERT(count > 0 && colors != nullptr);
SkASSERT(1 == s.fPixmap.width());
int iY0;
int iY1 SK_INIT_TO_AVOID_WARNING;
int iSubY SK_INIT_TO_AVOID_WARNING;
if (s.fBilerp) {
SkBitmapProcState::MatrixProc mproc = s.getMatrixProc();
uint32_t xy[2];
mproc(s, xy, 1, x, y);
iY0 = xy[0] >> 18;
iY1 = xy[0] & 0x3FFF;
iSubY = (xy[0] >> 14) & 0xF;
} else {
int yTemp;
if (s.fInvMatrix.isTranslate()) {
yTemp = s.fFilterOneY + y;
} else{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
// When the matrix has a scale component the setup code in
// chooseProcs multiples the inverse matrix by the inverse of the
// bitmap's width and height. Since this method is going to do
// its own tiling and sampling we need to undo that here.
if (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY) {
yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
} else {
yTemp = mapper.intY();
}
}
const int stopY = s.fPixmap.height();
switch (s.fTileModeY) {
case SkTileMode::kClamp:
iY0 = SkTPin(yTemp, 0, stopY-1);
break;
case SkTileMode::kRepeat:
iY0 = sk_int_mod(yTemp, stopY);
break;
case SkTileMode::kMirror:
default:
iY0 = sk_int_mirror(yTemp, stopY);
break;
}
#ifdef SK_DEBUG
{
const SkBitmapProcStateAutoMapper mapper(s, x, y);
int iY2;
if (!s.fInvMatrix.isTranslate() &&
(SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY)) {
iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
} else {
iY2 = mapper.intY();
}
switch (s.fTileModeY) {
case SkTileMode::kClamp:
iY2 = SkTPin(iY2, 0, stopY-1);
break;
case SkTileMode::kRepeat:
iY2 = sk_int_mod(iY2, stopY);
break;
case SkTileMode::kMirror:
default:
iY2 = sk_int_mirror(iY2, stopY);
break;
}
SkASSERT(iY0 == iY2);
}
#endif
}
const SkPMColor* row0 = s.fPixmap.addr32(0, iY0);
SkPMColor color;
if (s.fBilerp) {
const SkPMColor* row1 = s.fPixmap.addr32(0, iY1);
filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale);
} else {
if (s.fAlphaScale < 256) {
color = SkAlphaMulQ(*row0, s.fAlphaScale);
} else {
color = *row0;
}
}
SkOpts::memset32(colors, color, count);
}
static void DoNothing_shaderproc(const void*, int x, int y,
SkPMColor* colors, int count) {
// if we get called, the matrix is too tricky, so we just draw nothing
SkOpts::memset32(colors, 0, count);
}
bool SkBitmapProcState::setupForTranslate() {
SkPoint pt;
const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt);
/*
* if the translate is larger than our ints, we can get random results, or
* worse, we might get 0x80000000, which wreaks havoc on us, since we can't
* negate it.
*/
const SkScalar too_big = SkIntToScalar(1 << 30);
if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) {
return false;
}
// Since we know we're not filtered, we re-purpose these fields allow
// us to go from device -> src coordinates w/ just an integer add,
// rather than running through the inverse-matrix
fFilterOneX = mapper.intX();
fFilterOneY = mapper.intY();
return true;
}
SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() {
if (kN32_SkColorType != fPixmap.colorType()) {
return nullptr;
}
if (1 == fPixmap.width() && fInvMatrix.isScaleTranslate()) {
if (!fBilerp && fInvMatrix.isTranslate() && !this->setupForTranslate()) {
return DoNothing_shaderproc;
}
return S32_D32_constX_shaderproc;
}
if (fAlphaScale < 256) {
return nullptr;
}
if (!fInvMatrix.isTranslate()) {
return nullptr;
}
if (fBilerp) {
return nullptr;
}
SkTileMode tx = fTileModeX;
SkTileMode ty = fTileModeY;
if (SkTileMode::kClamp == tx && SkTileMode::kClamp == ty) {
if (this->setupForTranslate()) {
return Clamp_S32_D32_nofilter_trans_shaderproc;
}
return DoNothing_shaderproc;
}
if (SkTileMode::kRepeat == tx && SkTileMode::kRepeat == ty) {
if (this->setupForTranslate()) {
return Repeat_S32_D32_nofilter_trans_shaderproc;
}
return DoNothing_shaderproc;
}
return nullptr;
}
#ifdef SK_DEBUG
static void check_scale_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
unsigned y = *bitmapXY++;
SkASSERT(y < my);
const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
for (int i = 0; i < count; ++i) {
SkASSERT(xptr[i] < mx);
}
}
static void check_scale_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
for (int i = 0; i < count; ++i) {
uint32_t XX = bitmapXY[i];
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t XY = bitmapXY[i];
unsigned x = XY & 0xFFFF;
unsigned y = XY >> 16;
SkASSERT(x < mx);
SkASSERT(y < my);
}
}
static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
uint32_t XX = *bitmapXY++;
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
uint32_t bitmapXY[], int count,
int x, int y) {
SkASSERT(bitmapXY);
SkASSERT(count > 0);
state.fMatrixProc(state, bitmapXY, count, x, y);
void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);
if (state.fInvMatrix.isScaleTranslate()) {
proc = state.fBilerp ? check_scale_filter : check_scale_nofilter;
} else {
proc = state.fBilerp ? check_affine_filter : check_affine_nofilter;
}
proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height());
}
SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
return DebugMatrixProc;
}
#endif
/*
The storage requirements for the different matrix procs are as follows,
where each X or Y is 2 bytes, and N is the number of pixels/elements:
scale/translate nofilter Y(4bytes) + N * X
affine/perspective nofilter N * (X Y)
scale/translate filter Y Y + N * (X X)
affine filter N * (Y Y X X)
*/
int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
int32_t size = static_cast<int32_t>(bufferSize);
size &= ~3; // only care about 4-byte aligned chunks
if (fInvMatrix.isScaleTranslate()) {
size -= 4; // the shared Y (or YY) coordinate
if (size < 0) {
size = 0;
}
size >>= 1;
} else {
size >>= 2;
}
if (fBilerp) {
size >>= 1;
}
return size;
}