|  | #include "SkXfermode.h" | 
|  | #include "SkXfermode_proccoeff.h" | 
|  | #include "SkColorPriv.h" | 
|  |  | 
|  | #include <arm_neon.h> | 
|  | #include "SkColor_opts_neon.h" | 
|  | #include "SkXfermode_opts_arm_neon.h" | 
|  |  | 
|  | #define SkAlphaMulAlpha(a, b)   SkMulDiv255Round(a, b) | 
|  |  | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // NEONized skia functions | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) { | 
|  | uint16x8_t tmp; | 
|  | uint8x8_t ret; | 
|  |  | 
|  | tmp = vmull_u8(color, alpha); | 
|  | tmp = vaddq_u16(tmp, vdupq_n_u16(128)); | 
|  | tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8)); | 
|  |  | 
|  | ret = vshrn_n_u16(tmp, 8); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alpha) { | 
|  | uint16x8_t ret; | 
|  |  | 
|  | ret = vmull_u8(color, alpha); | 
|  | ret = vaddq_u16(ret, vdupq_n_u16(128)); | 
|  | ret = vaddq_u16(ret, vshrq_n_u16(ret, 8)); | 
|  |  | 
|  | ret = vshrq_n_u16(ret, 8); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) { | 
|  | uint16x8_t tmp; | 
|  |  | 
|  | #ifdef SK_CPU_ARM64 | 
|  | tmp = vmovn_high_u32(vmovn_u32(vreinterpretq_u32_s32(p1)), | 
|  | vreinterpretq_u32_s32(p2)); | 
|  | #else | 
|  | tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)), | 
|  | vmovn_u32(vreinterpretq_u32_s32(p2))); | 
|  | #endif | 
|  |  | 
|  | tmp += vdupq_n_u16(128); | 
|  | tmp += vshrq_n_u16(tmp, 8); | 
|  |  | 
|  | return vshrn_n_u16(tmp, 8); | 
|  | } | 
|  |  | 
|  | static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) { | 
|  | prod += vdupq_n_u16(128); | 
|  | prod += vshrq_n_u16(prod, 8); | 
|  |  | 
|  | return vshrq_n_u16(prod, 8); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val2) { | 
|  | uint8x8_t ret; | 
|  | uint32x4_t cmp1, cmp2; | 
|  | uint16x8_t cmp16; | 
|  | uint8x8_t cmp8, cmp8_1; | 
|  |  | 
|  | // Test if <= 0 | 
|  | cmp1 = vcleq_s32(val1, vdupq_n_s32(0)); | 
|  | cmp2 = vcleq_s32(val2, vdupq_n_s32(0)); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2); | 
|  | #else | 
|  | cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2)); | 
|  | #endif | 
|  | cmp8_1 = vmovn_u16(cmp16); | 
|  |  | 
|  | // Init to zero | 
|  | ret = vdup_n_u8(0); | 
|  |  | 
|  | // Test if >= 255*255 | 
|  | cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255)); | 
|  | cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255)); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2); | 
|  | #else | 
|  | cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2)); | 
|  | #endif | 
|  | cmp8 = vmovn_u16(cmp16); | 
|  |  | 
|  | // Insert 255 where true | 
|  | ret = vbsl_u8(cmp8, vdup_n_u8(255), ret); | 
|  |  | 
|  | // Calc SkDiv255Round | 
|  | uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2); | 
|  |  | 
|  | // Insert where false and previous test false | 
|  | cmp8 = cmp8 | cmp8_1; | 
|  | ret = vbsl_u8(cmp8, ret, div); | 
|  |  | 
|  | // Return the final combination | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // 1 pixel modeprocs | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | //  kSrcATop_Mode,  //!< [Da, Sc * Da + (1 - Sa) * Dc] | 
|  | SkPMColor srcatop_modeproc_neon(SkPMColor src, SkPMColor dst) { | 
|  | unsigned sa = SkGetPackedA32(src); | 
|  | unsigned da = SkGetPackedA32(dst); | 
|  | unsigned isa = 255 - sa; | 
|  |  | 
|  | uint8x8_t vda, visa, vsrc, vdst; | 
|  |  | 
|  | vda = vdup_n_u8(da); | 
|  | visa = vdup_n_u8(isa); | 
|  |  | 
|  | uint16x8_t vsrc_wide, vdst_wide; | 
|  | vsrc_wide = vmull_u8(vda, vreinterpret_u8_u32(vdup_n_u32(src))); | 
|  | vdst_wide = vmull_u8(visa, vreinterpret_u8_u32(vdup_n_u32(dst))); | 
|  |  | 
|  | vsrc_wide += vdupq_n_u16(128); | 
|  | vsrc_wide += vshrq_n_u16(vsrc_wide, 8); | 
|  |  | 
|  | vdst_wide += vdupq_n_u16(128); | 
|  | vdst_wide += vshrq_n_u16(vdst_wide, 8); | 
|  |  | 
|  | vsrc = vshrn_n_u16(vsrc_wide, 8); | 
|  | vdst = vshrn_n_u16(vdst_wide, 8); | 
|  |  | 
|  | vsrc += vdst; | 
|  | vsrc = vset_lane_u8(da, vsrc, 3); | 
|  |  | 
|  | return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); | 
|  | } | 
|  |  | 
|  | //  kDstATop_Mode,  //!< [Sa, Sa * Dc + Sc * (1 - Da)] | 
|  | SkPMColor dstatop_modeproc_neon(SkPMColor src, SkPMColor dst) { | 
|  | unsigned sa = SkGetPackedA32(src); | 
|  | unsigned da = SkGetPackedA32(dst); | 
|  | unsigned ida = 255 - da; | 
|  |  | 
|  | uint8x8_t vsa, vida, vsrc, vdst; | 
|  |  | 
|  | vsa = vdup_n_u8(sa); | 
|  | vida = vdup_n_u8(ida); | 
|  |  | 
|  | uint16x8_t vsrc_wide, vdst_wide; | 
|  | vsrc_wide = vmull_u8(vida, vreinterpret_u8_u32(vdup_n_u32(src))); | 
|  | vdst_wide = vmull_u8(vsa, vreinterpret_u8_u32(vdup_n_u32(dst))); | 
|  |  | 
|  | vsrc_wide += vdupq_n_u16(128); | 
|  | vsrc_wide += vshrq_n_u16(vsrc_wide, 8); | 
|  |  | 
|  | vdst_wide += vdupq_n_u16(128); | 
|  | vdst_wide += vshrq_n_u16(vdst_wide, 8); | 
|  |  | 
|  | vsrc = vshrn_n_u16(vsrc_wide, 8); | 
|  | vdst = vshrn_n_u16(vdst_wide, 8); | 
|  |  | 
|  | vsrc += vdst; | 
|  | vsrc = vset_lane_u8(sa, vsrc, 3); | 
|  |  | 
|  | return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); | 
|  | } | 
|  |  | 
|  | //  kXor_Mode   [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc] | 
|  | SkPMColor xor_modeproc_neon(SkPMColor src, SkPMColor dst) { | 
|  | unsigned sa = SkGetPackedA32(src); | 
|  | unsigned da = SkGetPackedA32(dst); | 
|  | unsigned ret_alpha = sa + da - (SkAlphaMulAlpha(sa, da) << 1); | 
|  | unsigned isa = 255 - sa; | 
|  | unsigned ida = 255 - da; | 
|  |  | 
|  | uint8x8_t vsrc, vdst, visa, vida; | 
|  | uint16x8_t vsrc_wide, vdst_wide; | 
|  |  | 
|  | visa = vdup_n_u8(isa); | 
|  | vida = vdup_n_u8(ida); | 
|  | vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); | 
|  | vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); | 
|  |  | 
|  | vsrc_wide = vmull_u8(vsrc, vida); | 
|  | vdst_wide = vmull_u8(vdst, visa); | 
|  |  | 
|  | vsrc_wide += vdupq_n_u16(128); | 
|  | vsrc_wide += vshrq_n_u16(vsrc_wide, 8); | 
|  |  | 
|  | vdst_wide += vdupq_n_u16(128); | 
|  | vdst_wide += vshrq_n_u16(vdst_wide, 8); | 
|  |  | 
|  | vsrc = vshrn_n_u16(vsrc_wide, 8); | 
|  | vdst = vshrn_n_u16(vdst_wide, 8); | 
|  |  | 
|  | vsrc += vdst; | 
|  |  | 
|  | vsrc = vset_lane_u8(ret_alpha, vsrc, 3); | 
|  |  | 
|  | return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); | 
|  | } | 
|  |  | 
|  | // kPlus_Mode | 
|  | SkPMColor plus_modeproc_neon(SkPMColor src, SkPMColor dst) { | 
|  | uint8x8_t vsrc, vdst; | 
|  | vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); | 
|  | vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); | 
|  | vsrc = vqadd_u8(vsrc, vdst); | 
|  |  | 
|  | return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0); | 
|  | } | 
|  |  | 
|  | // kModulate_Mode | 
|  | SkPMColor modulate_modeproc_neon(SkPMColor src, SkPMColor dst) { | 
|  | uint8x8_t vsrc, vdst, vres; | 
|  | uint16x8_t vres_wide; | 
|  |  | 
|  | vsrc = vreinterpret_u8_u32(vdup_n_u32(src)); | 
|  | vdst = vreinterpret_u8_u32(vdup_n_u32(dst)); | 
|  |  | 
|  | vres_wide = vmull_u8(vsrc, vdst); | 
|  |  | 
|  | vres_wide += vdupq_n_u16(128); | 
|  | vres_wide += vshrq_n_u16(vres_wide, 8); | 
|  |  | 
|  | vres = vshrn_n_u16(vres_wide, 8); | 
|  |  | 
|  | return vget_lane_u32(vreinterpret_u32_u8(vres), 0); | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // 8 pixels modeprocs | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint16x8_t src_scale; | 
|  |  | 
|  | src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]); | 
|  |  | 
|  | ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_scale); | 
|  | ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_scale); | 
|  | ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_scale); | 
|  | ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_scale); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint16x8_t scale; | 
|  |  | 
|  | scale = SkAlpha255To256_neon8(dst.val[NEON_A]); | 
|  |  | 
|  | ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale); | 
|  | ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale); | 
|  | ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale); | 
|  | ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint16x8_t scale; | 
|  |  | 
|  | scale = SkAlpha255To256_neon8(src.val[NEON_A]); | 
|  |  | 
|  | ret = SkAlphaMulQ_neon8(dst, scale); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]); | 
|  |  | 
|  | ret = SkAlphaMulQ_neon8(src, scale); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]); | 
|  |  | 
|  | ret = SkAlphaMulQ_neon8(dst, scale); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint8x8_t isa; | 
|  |  | 
|  | isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]); | 
|  |  | 
|  | ret.val[NEON_A] = dst.val[NEON_A]; | 
|  | ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A]) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa); | 
|  | ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A]) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa); | 
|  | ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A]) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint8x8_t ida; | 
|  |  | 
|  | ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]); | 
|  |  | 
|  | ret.val[NEON_A] = src.val[NEON_A]; | 
|  | ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]); | 
|  | ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]); | 
|  | ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  | uint8x8_t isa, ida; | 
|  | uint16x8_t tmp_wide, tmp_wide2; | 
|  |  | 
|  | isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]); | 
|  | ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]); | 
|  |  | 
|  | // First calc alpha | 
|  | tmp_wide = vmovl_u8(src.val[NEON_A]); | 
|  | tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]); | 
|  | tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]), 1); | 
|  | tmp_wide = vsubq_u16(tmp_wide, tmp_wide2); | 
|  | ret.val[NEON_A] = vmovn_u16(tmp_wide); | 
|  |  | 
|  | // Then colors | 
|  | ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa); | 
|  | ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa); | 
|  | ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida) | 
|  | + SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]); | 
|  | ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]); | 
|  | ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]); | 
|  | ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]); | 
|  | ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) { | 
|  | uint16x8_t tmp; | 
|  |  | 
|  | tmp = vaddl_u8(a, b); | 
|  | tmp -= SkAlphaMulAlpha_neon8_16(a, b); | 
|  |  | 
|  | return vmovn_u16(tmp); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]); | 
|  | ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]); | 
|  | ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | template <bool overlay> | 
|  | static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | /* | 
|  | * In the end we're gonna use (rc + tmp) with a different rc | 
|  | * coming from an alternative. | 
|  | * The whole value (rc + tmp) can always be expressed as | 
|  | * VAL = COM - SUB in the if case | 
|  | * VAL = COM + SUB - sa*da in the else case | 
|  | * | 
|  | * with COM = 255 * (sc + dc) | 
|  | * and  SUB = sc*da + dc*sa - 2*dc*sc | 
|  | */ | 
|  |  | 
|  | // Prepare common subexpressions | 
|  | uint16x8_t const255 = vdupq_n_u16(255); | 
|  | uint16x8_t sc_plus_dc = vaddl_u8(sc, dc); | 
|  | uint16x8_t scda = vmull_u8(sc, da); | 
|  | uint16x8_t dcsa = vmull_u8(dc, sa); | 
|  | uint16x8_t sada = vmull_u8(sa, da); | 
|  |  | 
|  | // Prepare non common subexpressions | 
|  | uint16x8_t dc2, sc2; | 
|  | uint32x4_t scdc2_1, scdc2_2; | 
|  | if (overlay) { | 
|  | dc2 = vshll_n_u8(dc, 1); | 
|  | scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc))); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | scdc2_2 = vmull_high_u16(dc2, vmovl_u8(sc)); | 
|  | #else | 
|  | scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc))); | 
|  | #endif | 
|  | } else { | 
|  | sc2 = vshll_n_u8(sc, 1); | 
|  | scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc))); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | scdc2_2 = vmull_high_u16(sc2, vmovl_u8(dc)); | 
|  | #else | 
|  | scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Calc COM | 
|  | int32x4_t com1, com2; | 
|  | com1 = vreinterpretq_s32_u32( | 
|  | vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc))); | 
|  | com2 = vreinterpretq_s32_u32( | 
|  | #ifdef SK_CPU_ARM64 | 
|  | vmull_high_u16(const255, sc_plus_dc)); | 
|  | #else | 
|  | vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc))); | 
|  | #endif | 
|  |  | 
|  | // Calc SUB | 
|  | int32x4_t sub1, sub2; | 
|  | sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa))); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | sub2 = vreinterpretq_s32_u32(vaddl_high_u16(scda, dcsa)); | 
|  | #else | 
|  | sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dcsa))); | 
|  | #endif | 
|  | sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1)); | 
|  | sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2)); | 
|  |  | 
|  | // Compare 2*dc <= da | 
|  | uint16x8_t cmp; | 
|  |  | 
|  | if (overlay) { | 
|  | cmp = vcleq_u16(dc2, vmovl_u8(da)); | 
|  | } else { | 
|  | cmp = vcleq_u16(sc2, vmovl_u8(sa)); | 
|  | } | 
|  |  | 
|  | // Prepare variables | 
|  | int32x4_t val1_1, val1_2; | 
|  | int32x4_t val2_1, val2_2; | 
|  | uint32x4_t cmp1, cmp2; | 
|  |  | 
|  | // Doing a signed lengthening allows to save a few instructions | 
|  | // thanks to sign extension. | 
|  | cmp1 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_low_u16(cmp)))); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | cmp2 = vreinterpretq_u32_s32(vmovl_high_s16(vreinterpretq_s16_u16(cmp))); | 
|  | #else | 
|  | cmp2 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_high_u16(cmp)))); | 
|  | #endif | 
|  |  | 
|  | // Calc COM - SUB | 
|  | val1_1 = com1 - sub1; | 
|  | val1_2 = com2 - sub2; | 
|  |  | 
|  | // Calc COM + SUB - sa*da | 
|  | val2_1 = com1 + sub1; | 
|  | val2_2 = com2 + sub2; | 
|  |  | 
|  | val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada)))); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_high_u16(sada))); | 
|  | #else | 
|  | val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sada)))); | 
|  | #endif | 
|  |  | 
|  | // Insert where needed | 
|  | val1_1 = vbslq_s32(cmp1, val1_1, val2_1); | 
|  | val1_2 = vbslq_s32(cmp2, val1_2, val2_2); | 
|  |  | 
|  | // Call the clamp_div255round function | 
|  | return clamp_div255round_simd8_32(val1_1, val1_2); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | return overlay_hardlight_color<true>(sc, dc, sa, da); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | template <bool lighten> | 
|  | static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | uint16x8_t sd, ds, cmp, tmp, tmp2; | 
|  |  | 
|  | // Prepare | 
|  | sd = vmull_u8(sc, da); | 
|  | ds = vmull_u8(dc, sa); | 
|  |  | 
|  | // Do test | 
|  | if (lighten) { | 
|  | cmp = vcgtq_u16(sd, ds); | 
|  | } else { | 
|  | cmp = vcltq_u16(sd, ds); | 
|  | } | 
|  |  | 
|  | // Assign if | 
|  | tmp = vaddl_u8(sc, dc); | 
|  | tmp2 = tmp; | 
|  | tmp -= SkDiv255Round_neon8_16_16(ds); | 
|  |  | 
|  | // Calc else | 
|  | tmp2 -= SkDiv255Round_neon8_16_16(sd); | 
|  |  | 
|  | // Insert where needed | 
|  | tmp = vbslq_u16(cmp, tmp, tmp2); | 
|  |  | 
|  | return vmovn_u16(tmp); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | return lighten_darken_color<false>(sc, dc, sa, da); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | return lighten_darken_color<true>(sc, dc, sa, da); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | return overlay_hardlight_color<false>(sc, dc, sa, da); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | uint16x8_t sd, ds, tmp; | 
|  | int16x8_t val; | 
|  |  | 
|  | sd = vmull_u8(sc, da); | 
|  | ds = vmull_u8(dc, sa); | 
|  |  | 
|  | tmp = vminq_u16(sd, ds); | 
|  | tmp = SkDiv255Round_neon8_16_16(tmp); | 
|  | tmp = vshlq_n_u16(tmp, 1); | 
|  |  | 
|  | val = vreinterpretq_s16_u16(vaddl_u8(sc, dc)); | 
|  |  | 
|  | val -= vreinterpretq_s16_u16(tmp); | 
|  |  | 
|  | val = vmaxq_s16(val, vdupq_n_s16(0)); | 
|  | val = vminq_s16(val, vdupq_n_s16(255)); | 
|  |  | 
|  | return vmovn_u16(vreinterpretq_u16_s16(val)); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | /* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */ | 
|  |  | 
|  | uint16x8_t sc_plus_dc, scdc, const255; | 
|  | int32x4_t term1_1, term1_2, term2_1, term2_2; | 
|  |  | 
|  | /* Calc (sc + dc) and (sc * dc) */ | 
|  | sc_plus_dc = vaddl_u8(sc, dc); | 
|  | scdc = vmull_u8(sc, dc); | 
|  |  | 
|  | /* Prepare constants */ | 
|  | const255 = vdupq_n_u16(255); | 
|  |  | 
|  | /* Calc the first term */ | 
|  | term1_1 = vreinterpretq_s32_u32( | 
|  | vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc))); | 
|  | term1_2 = vreinterpretq_s32_u32( | 
|  | #ifdef SK_CPU_ARM64 | 
|  | vmull_high_u16(const255, sc_plus_dc)); | 
|  | #else | 
|  | vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc))); | 
|  | #endif | 
|  |  | 
|  | /* Calc the second term */ | 
|  | term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1)); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | term2_2 = vreinterpretq_s32_u32(vshll_high_n_u16(scdc, 1)); | 
|  | #else | 
|  | term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1)); | 
|  | #endif | 
|  |  | 
|  | return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc, | 
|  | uint8x8_t sa, uint8x8_t da) { | 
|  | uint32x4_t val1, val2; | 
|  | uint16x8_t scdc, t1, t2; | 
|  |  | 
|  | t1 = vmull_u8(sc, vdup_n_u8(255) - da); | 
|  | t2 = vmull_u8(dc, vdup_n_u8(255) - sa); | 
|  | scdc = vmull_u8(sc, dc); | 
|  |  | 
|  | val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2)); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | val2 = vaddl_high_u16(t1, t2); | 
|  | #else | 
|  | val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2)); | 
|  | #endif | 
|  |  | 
|  | val1 = vaddw_u16(val1, vget_low_u16(scdc)); | 
|  | #ifdef SK_CPU_ARM64 | 
|  | val2 = vaddw_high_u16(val2, scdc); | 
|  | #else | 
|  | val2 = vaddw_u16(val2, vget_high_u16(scdc)); | 
|  | #endif | 
|  |  | 
|  | return clamp_div255round_simd8_32( | 
|  | vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2)); | 
|  | } | 
|  |  | 
|  | uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) { | 
|  | uint8x8x4_t ret; | 
|  |  | 
|  | ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  | ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B], | 
|  | src.val[NEON_A], dst.val[NEON_A]); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst); | 
|  |  | 
|  | extern SkXfermodeProcSIMD gNEONXfermodeProcs[]; | 
|  |  | 
|  | SkNEONProcCoeffXfermode::SkNEONProcCoeffXfermode(SkReadBuffer& buffer) | 
|  | : INHERITED(buffer) { | 
|  | fProcSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[this->getMode()]); | 
|  | } | 
|  |  | 
|  | void SkNEONProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst, | 
|  | const SkPMColor* SK_RESTRICT src, int count, | 
|  | const SkAlpha* SK_RESTRICT aa) const { | 
|  | SkASSERT(dst && src && count >= 0); | 
|  |  | 
|  | SkXfermodeProc proc = this->getProc(); | 
|  | SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); | 
|  | SkASSERT(procSIMD != NULL); | 
|  |  | 
|  | if (NULL == aa) { | 
|  | // Unrolled NEON code | 
|  | // We'd like to just do this (modulo a few casts): | 
|  | // vst4_u8(dst, procSIMD(vld4_u8(src), vld4_u8(dst))); | 
|  | // src += 8; | 
|  | // dst += 8; | 
|  | // but that tends to generate miserable code. Here are a bunch of faster | 
|  | // workarounds for different architectures and compilers. | 
|  | while (count >= 8) { | 
|  |  | 
|  | #ifdef SK_CPU_ARM32 | 
|  | uint8x8x4_t vsrc, vdst, vres; | 
|  | #if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) | 
|  | asm volatile ( | 
|  | "vld4.u8    %h[vsrc], [%[src]]!  \t\n" | 
|  | "vld4.u8    %h[vdst], [%[dst]]   \t\n" | 
|  | : [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+&r" (src) | 
|  | : [dst] "r" (dst) | 
|  | : | 
|  | ); | 
|  | #else | 
|  | register uint8x8_t d0 asm("d0"); | 
|  | register uint8x8_t d1 asm("d1"); | 
|  | register uint8x8_t d2 asm("d2"); | 
|  | register uint8x8_t d3 asm("d3"); | 
|  | register uint8x8_t d4 asm("d4"); | 
|  | register uint8x8_t d5 asm("d5"); | 
|  | register uint8x8_t d6 asm("d6"); | 
|  | register uint8x8_t d7 asm("d7"); | 
|  |  | 
|  | asm volatile ( | 
|  | "vld4.u8    {d0-d3},[%[src]]!;" | 
|  | "vld4.u8    {d4-d7},[%[dst]];" | 
|  | : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), | 
|  | "=w" (d4), "=w" (d5), "=w" (d6), "=w" (d7), | 
|  | [src] "+&r" (src) | 
|  | : [dst] "r" (dst) | 
|  | : | 
|  | ); | 
|  | vsrc.val[0] = d0; vdst.val[0] = d4; | 
|  | vsrc.val[1] = d1; vdst.val[1] = d5; | 
|  | vsrc.val[2] = d2; vdst.val[2] = d6; | 
|  | vsrc.val[3] = d3; vdst.val[3] = d7; | 
|  | #endif | 
|  |  | 
|  | vres = procSIMD(vsrc, vdst); | 
|  |  | 
|  | vst4_u8((uint8_t*)dst, vres); | 
|  |  | 
|  | dst += 8; | 
|  |  | 
|  | #else // #ifdef SK_CPU_ARM32 | 
|  |  | 
|  | asm volatile ( | 
|  | "ld4    {v0.8b - v3.8b}, [%[src]], #32 \t\n" | 
|  | "ld4    {v4.8b - v7.8b}, [%[dst]]      \t\n" | 
|  | "blr    %[proc]                        \t\n" | 
|  | "st4    {v0.8b - v3.8b}, [%[dst]], #32 \t\n" | 
|  | : [src] "+&r" (src), [dst] "+&r" (dst) | 
|  | : [proc] "r" (procSIMD) | 
|  | : "cc", "memory", | 
|  | /* We don't know what proc is going to clobber so we must | 
|  | * add everything that is not callee-saved. | 
|  | */ | 
|  | "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", | 
|  | "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", | 
|  | "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", | 
|  | "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", | 
|  | "v27", "v28", "v29", "v30", "v31" | 
|  | ); | 
|  |  | 
|  | #endif // #ifdef SK_CPU_ARM32 | 
|  |  | 
|  | count -= 8; | 
|  | } | 
|  | // Leftovers | 
|  | for (int i = 0; i < count; i++) { | 
|  | dst[i] = proc(src[i], dst[i]); | 
|  | } | 
|  | } else { | 
|  | for (int i = count - 1; i >= 0; --i) { | 
|  | unsigned a = aa[i]; | 
|  | if (0 != a) { | 
|  | SkPMColor dstC = dst[i]; | 
|  | SkPMColor C = proc(src[i], dstC); | 
|  | if (a != 0xFF) { | 
|  | C = SkFourByteInterp_neon(C, dstC, a); | 
|  | } | 
|  | dst[i] = C; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkNEONProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst, | 
|  | const SkPMColor* SK_RESTRICT src, int count, | 
|  | const SkAlpha* SK_RESTRICT aa) const { | 
|  | SkASSERT(dst && src && count >= 0); | 
|  |  | 
|  | SkXfermodeProc proc = this->getProc(); | 
|  | SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); | 
|  | SkASSERT(procSIMD != NULL); | 
|  |  | 
|  | if (NULL == aa) { | 
|  | while(count >= 8) { | 
|  | uint16x8_t vdst, vres16; | 
|  | uint8x8x4_t vdst32, vsrc, vres; | 
|  |  | 
|  | vdst = vld1q_u16(dst); | 
|  |  | 
|  | #ifdef SK_CPU_ARM64 | 
|  | vsrc = vld4_u8((uint8_t*)src); | 
|  | #else | 
|  | #if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)) | 
|  | asm volatile ( | 
|  | "vld4.u8    %h[vsrc], [%[src]]!  \t\n" | 
|  | : [vsrc] "=w" (vsrc), [src] "+&r" (src) | 
|  | : : | 
|  | ); | 
|  | #else | 
|  | register uint8x8_t d0 asm("d0"); | 
|  | register uint8x8_t d1 asm("d1"); | 
|  | register uint8x8_t d2 asm("d2"); | 
|  | register uint8x8_t d3 asm("d3"); | 
|  |  | 
|  | asm volatile ( | 
|  | "vld4.u8    {d0-d3},[%[src]]!;" | 
|  | : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3), | 
|  | [src] "+&r" (src) | 
|  | : : | 
|  | ); | 
|  | vsrc.val[0] = d0; | 
|  | vsrc.val[1] = d1; | 
|  | vsrc.val[2] = d2; | 
|  | vsrc.val[3] = d3; | 
|  | #endif | 
|  | #endif // #ifdef SK_CPU_ARM64 | 
|  |  | 
|  | vdst32 = SkPixel16ToPixel32_neon8(vdst); | 
|  | vres = procSIMD(vsrc, vdst32); | 
|  | vres16 = SkPixel32ToPixel16_neon8(vres); | 
|  |  | 
|  | vst1q_u16(dst, vres16); | 
|  |  | 
|  | count -= 8; | 
|  | dst += 8; | 
|  | #ifdef SK_CPU_ARM64 | 
|  | src += 8; | 
|  | #endif | 
|  | } | 
|  | for (int i = 0; i < count; i++) { | 
|  | SkPMColor dstC = SkPixel16ToPixel32(dst[i]); | 
|  | dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC)); | 
|  | } | 
|  | } else { | 
|  | for (int i = count - 1; i >= 0; --i) { | 
|  | unsigned a = aa[i]; | 
|  | if (0 != a) { | 
|  | SkPMColor dstC = SkPixel16ToPixel32(dst[i]); | 
|  | SkPMColor C = proc(src[i], dstC); | 
|  | if (0xFF != a) { | 
|  | C = SkFourByteInterp_neon(C, dstC, a); | 
|  | } | 
|  | dst[i] = SkPixel32ToPixel16_ToU16(C); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef SK_IGNORE_TO_STRING | 
|  | void SkNEONProcCoeffXfermode::toString(SkString* str) const { | 
|  | this->INHERITED::toString(str); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | SkXfermodeProcSIMD gNEONXfermodeProcs[] = { | 
|  | NULL, // kClear_Mode | 
|  | NULL, // kSrc_Mode | 
|  | NULL, // kDst_Mode | 
|  | NULL, // kSrcOver_Mode | 
|  | dstover_modeproc_neon8, | 
|  | srcin_modeproc_neon8, | 
|  | dstin_modeproc_neon8, | 
|  | srcout_modeproc_neon8, | 
|  | dstout_modeproc_neon8, | 
|  | srcatop_modeproc_neon8, | 
|  | dstatop_modeproc_neon8, | 
|  | xor_modeproc_neon8, | 
|  | plus_modeproc_neon8, | 
|  | modulate_modeproc_neon8, | 
|  | screen_modeproc_neon8, | 
|  |  | 
|  | overlay_modeproc_neon8, | 
|  | darken_modeproc_neon8, | 
|  | lighten_modeproc_neon8, | 
|  | NULL, // kColorDodge_Mode | 
|  | NULL, // kColorBurn_Mode | 
|  | hardlight_modeproc_neon8, | 
|  | NULL, // kSoftLight_Mode | 
|  | difference_modeproc_neon8, | 
|  | exclusion_modeproc_neon8, | 
|  | multiply_modeproc_neon8, | 
|  |  | 
|  | NULL, // kHue_Mode | 
|  | NULL, // kSaturation_Mode | 
|  | NULL, // kColor_Mode | 
|  | NULL, // kLuminosity_Mode | 
|  | }; | 
|  |  | 
|  | SK_COMPILE_ASSERT( | 
|  | SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1, | 
|  | mode_count_arm | 
|  | ); | 
|  |  | 
|  | SkXfermodeProc gNEONXfermodeProcs1[] = { | 
|  | NULL, // kClear_Mode | 
|  | NULL, // kSrc_Mode | 
|  | NULL, // kDst_Mode | 
|  | NULL, // kSrcOver_Mode | 
|  | NULL, // kDstOver_Mode | 
|  | NULL, // kSrcIn_Mode | 
|  | NULL, // kDstIn_Mode | 
|  | NULL, // kSrcOut_Mode | 
|  | NULL, // kDstOut_Mode | 
|  | srcatop_modeproc_neon, | 
|  | dstatop_modeproc_neon, | 
|  | xor_modeproc_neon, | 
|  | plus_modeproc_neon, | 
|  | modulate_modeproc_neon, | 
|  | NULL, // kScreen_Mode | 
|  |  | 
|  | NULL, // kOverlay_Mode | 
|  | NULL, // kDarken_Mode | 
|  | NULL, // kLighten_Mode | 
|  | NULL, // kColorDodge_Mode | 
|  | NULL, // kColorBurn_Mode | 
|  | NULL, // kHardLight_Mode | 
|  | NULL, // kSoftLight_Mode | 
|  | NULL, // kDifference_Mode | 
|  | NULL, // kExclusion_Mode | 
|  | NULL, // kMultiply_Mode | 
|  |  | 
|  | NULL, // kHue_Mode | 
|  | NULL, // kSaturation_Mode | 
|  | NULL, // kColor_Mode | 
|  | NULL, // kLuminosity_Mode | 
|  | }; | 
|  |  | 
|  | SK_COMPILE_ASSERT( | 
|  | SK_ARRAY_COUNT(gNEONXfermodeProcs1) == SkXfermode::kLastMode + 1, | 
|  | mode1_count_arm | 
|  | ); | 
|  |  | 
|  | SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec, | 
|  | SkXfermode::Mode mode) { | 
|  |  | 
|  | void* procSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[mode]); | 
|  |  | 
|  | if (procSIMD != NULL) { | 
|  | return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, procSIMD)); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SkXfermodeProc SkPlatformXfermodeProcFactory_impl_neon(SkXfermode::Mode mode) { | 
|  | return gNEONXfermodeProcs1[mode]; | 
|  | } |