| // It is important _not_ to put header guards here. |
| // This file will be intentionally included three times. |
| |
| #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
| |
| #if defined(SK4X_PREAMBLE) |
| #include <arm_neon.h> |
| |
| // Template metaprogramming to map scalar types to vector types. |
| template <typename T> struct SkScalarToSIMD; |
| template <> struct SkScalarToSIMD<float> { typedef float32x4_t Type; }; |
| template <> struct SkScalarToSIMD<int32_t> { typedef int32x4_t Type; }; |
| |
| #elif defined(SK4X_PRIVATE) |
| Sk4x(float32x4_t); |
| Sk4x(int32x4_t); |
| |
| typename SkScalarToSIMD<T>::Type fVec; |
| |
| #else |
| |
| // Vector Constructors |
| //template <> inline Sk4f::Sk4x(int32x4_t v) : fVec(vcvtq_f32_s32(v)) {} |
| template <> inline Sk4f::Sk4x(float32x4_t v) : fVec(v) {} |
| template <> inline Sk4i::Sk4x(int32x4_t v) : fVec(v) {} |
| //template <> inline Sk4i::Sk4x(float32x4_t v) : fVec(vcvtq_s32_f32(v)) {} |
| |
| // Generic Methods |
| template <typename T> Sk4x<T>::Sk4x() {} |
| template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; } |
| template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) { |
| fVec = other.fVec; |
| return *this; |
| } |
| |
| // Sk4f Methods |
| #define M(...) template <> inline __VA_ARGS__ Sk4f:: |
| |
| M() Sk4x(float v) : fVec(vdupq_n_f32(v)) {} |
| M() Sk4x(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } |
| |
| // As far as I can tell, it's not possible to provide an alignment hint to |
| // NEON using intrinsics. However, I think it is possible at the assembly |
| // level if we want to get into that. |
| // TODO: Write our own aligned load and store. |
| M(Sk4f) Load (const float fs[4]) { return vld1q_f32(fs); } |
| M(Sk4f) LoadAligned(const float fs[4]) { return vld1q_f32(fs); } |
| M(void) store (float fs[4]) const { vst1q_f32(fs, fVec); } |
| M(void) storeAligned(float fs[4]) const { vst1q_f32 (fs, fVec); } |
| |
| template <> |
| M(Sk4i) reinterpret<Sk4i>() const { return vreinterpretq_s32_f32(fVec); } |
| |
| template <> |
| M(Sk4i) cast<Sk4i>() const { return vcvtq_s32_f32(fVec); } |
| |
| // We're going to skip allTrue(), anyTrue(), and bit-manipulators |
| // for Sk4f. Code that calls them probably does so accidentally. |
| // Ask msarett or mtklein to fill these in if you really need them. |
| M(Sk4f) add (const Sk4f& o) const { return vaddq_f32(fVec, o.fVec); } |
| M(Sk4f) subtract(const Sk4f& o) const { return vsubq_f32(fVec, o.fVec); } |
| M(Sk4f) multiply(const Sk4f& o) const { return vmulq_f32(fVec, o.fVec); } |
| |
| M(Sk4f) divide (const Sk4f& o) const { |
| #if defined(SK_CPU_ARM64) |
| return vdivq_f32(fVec, o.fVec); |
| #else |
| float32x4_t est0 = vrecpeq_f32(o.fVec), |
| est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0), |
| est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1); |
| return vmulq_f32(est2, fVec); |
| #endif |
| } |
| |
| M(Sk4f) rsqrt() const { |
| float32x4_t est0 = vrsqrteq_f32(fVec), |
| est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); |
| return est1; |
| } |
| |
| M(Sk4f) sqrt() const { |
| #if defined(SK_CPU_ARM64) |
| return vsqrtq_f32(fVec); |
| #else |
| float32x4_t est1 = this->rsqrt().fVec, |
| // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
| est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); |
| return vmulq_f32(fVec, est2); |
| #endif |
| } |
| |
| M(Sk4i) equal (const Sk4f& o) const { return vreinterpretq_s32_u32(vceqq_f32(fVec, o.fVec)); } |
| M(Sk4i) notEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); } |
| M(Sk4i) lessThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcltq_f32(fVec, o.fVec)); } |
| M(Sk4i) greaterThan (const Sk4f& o) const { return vreinterpretq_s32_u32(vcgtq_f32(fVec, o.fVec)); } |
| M(Sk4i) lessThanEqual (const Sk4f& o) const { return vreinterpretq_s32_u32(vcleq_f32(fVec, o.fVec)); } |
| M(Sk4i) greaterThanEqual(const Sk4f& o) const { return vreinterpretq_s32_u32(vcgeq_f32(fVec, o.fVec)); } |
| |
| M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return vminq_f32(a.fVec, b.fVec); } |
| M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return vmaxq_f32(a.fVec, b.fVec); } |
| |
| M(Sk4f) badc() const { return vrev64q_f32(fVec); } |
| |
| // Sk4i Methods |
| #undef M |
| #define M(...) template <> inline __VA_ARGS__ Sk4i:: |
| |
| M() Sk4x(int32_t v) : fVec(vdupq_n_s32(v)) {} |
| M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) { fVec = (int32x4_t) { a, b, c, d }; } |
| |
| // As far as I can tell, it's not possible to provide an alignment hint to |
| // NEON using intrinsics. However, I think it is possible at the assembly |
| // level if we want to get into that. |
| M(Sk4i) Load (const int32_t is[4]) { return vld1q_s32(is); } |
| M(Sk4i) LoadAligned(const int32_t is[4]) { return vld1q_s32(is); } |
| M(void) store (int32_t is[4]) const { vst1q_s32(is, fVec); } |
| M(void) storeAligned(int32_t is[4]) const { vst1q_s32 (is, fVec); } |
| |
| template <> |
| M(Sk4f) reinterpret<Sk4f>() const { return vreinterpretq_f32_s32(fVec); } |
| |
| template <> |
| M(Sk4f) cast<Sk4f>() const { return vcvtq_f32_s32(fVec); } |
| |
| M(bool) allTrue() const { |
| int32_t a = vgetq_lane_s32(fVec, 0); |
| int32_t b = vgetq_lane_s32(fVec, 1); |
| int32_t c = vgetq_lane_s32(fVec, 2); |
| int32_t d = vgetq_lane_s32(fVec, 3); |
| return a & b & c & d; |
| } |
| M(bool) anyTrue() const { |
| int32_t a = vgetq_lane_s32(fVec, 0); |
| int32_t b = vgetq_lane_s32(fVec, 1); |
| int32_t c = vgetq_lane_s32(fVec, 2); |
| int32_t d = vgetq_lane_s32(fVec, 3); |
| return a | b | c | d; |
| } |
| |
| M(Sk4i) bitNot() const { return vmvnq_s32(fVec); } |
| M(Sk4i) bitAnd(const Sk4i& o) const { return vandq_s32(fVec, o.fVec); } |
| M(Sk4i) bitOr (const Sk4i& o) const { return vorrq_s32(fVec, o.fVec); } |
| |
| M(Sk4i) equal (const Sk4i& o) const { return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec)); } |
| M(Sk4i) notEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_s32(fVec, o.fVec))); } |
| M(Sk4i) lessThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec)); } |
| M(Sk4i) greaterThan (const Sk4i& o) const { return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec)); } |
| M(Sk4i) lessThanEqual (const Sk4i& o) const { return vreinterpretq_s32_u32(vcleq_s32(fVec, o.fVec)); } |
| M(Sk4i) greaterThanEqual(const Sk4i& o) const { return vreinterpretq_s32_u32(vcgeq_s32(fVec, o.fVec)); } |
| |
| M(Sk4i) add (const Sk4i& o) const { return vaddq_s32(fVec, o.fVec); } |
| M(Sk4i) subtract(const Sk4i& o) const { return vsubq_s32(fVec, o.fVec); } |
| M(Sk4i) multiply(const Sk4i& o) const { return vmulq_s32(fVec, o.fVec); } |
| // NEON does not have integer reciprocal, sqrt, or division. |
| M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return vminq_s32(a.fVec, b.fVec); } |
| M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return vmaxq_s32(a.fVec, b.fVec); } |
| |
| M(Sk4i) badc() const { return vrev64q_s32(fVec); } |
| |
| #undef M |
| |
| #endif |