|  | /* | 
|  | * Copyright 2014 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkBitmap.h" | 
|  | #include "SkData.h" | 
|  | #include "SkEndian.h" | 
|  | #include "SkImageInfo.h" | 
|  | #include "SkTextureCompressor.h" | 
|  | #include "Test.h" | 
|  |  | 
|  | // TODO: Create separate tests for RGB and RGBA data once | 
|  | // ASTC and ETC1 decompression is implemented. | 
|  |  | 
|  | static bool decompresses_a8(SkTextureCompressor::Format fmt) { | 
|  | switch (fmt) { | 
|  | case SkTextureCompressor::kLATC_Format: | 
|  | case SkTextureCompressor::kR11_EAC_Format: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool compresses_a8(SkTextureCompressor::Format fmt) { | 
|  | switch (fmt) { | 
|  | case SkTextureCompressor::kLATC_Format: | 
|  | case SkTextureCompressor::kR11_EAC_Format: | 
|  | case SkTextureCompressor::kASTC_12x12_Format: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Make sure that we properly fail when we don't have multiple of four image dimensions. | 
|  | */ | 
|  | DEF_TEST(CompressAlphaFailDimensions, reporter) { | 
|  | SkBitmap bitmap; | 
|  | static const int kWidth = 17; | 
|  | static const int kHeight = 17; | 
|  | SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight); | 
|  |  | 
|  | // R11_EAC and LATC are both dimensions of 4, so we need to make sure that we | 
|  | // are violating those assumptions. And if we are, then we're also violating the | 
|  | // assumptions of ASTC, which is 12x12 since any number not divisible by 4 is | 
|  | // also not divisible by 12. Our dimensions are prime, so any block dimension | 
|  | // larger than 1 should fail. | 
|  | REPORTER_ASSERT(reporter, kWidth % 4 != 0); | 
|  | REPORTER_ASSERT(reporter, kHeight % 4 != 0); | 
|  |  | 
|  | bool setInfoSuccess = bitmap.setInfo(info); | 
|  | REPORTER_ASSERT(reporter, setInfoSuccess); | 
|  |  | 
|  | bitmap.allocPixels(info); | 
|  | bitmap.unlockPixels(); | 
|  |  | 
|  | for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { | 
|  | const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); | 
|  | if (!compresses_a8(fmt)) { | 
|  | continue; | 
|  | } | 
|  | SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(bitmap, fmt)); | 
|  | REPORTER_ASSERT(reporter, NULL == data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Make sure that we properly fail when we don't have the correct bitmap type. | 
|  | * compressed textures can (currently) only be created from A8 bitmaps. | 
|  | */ | 
|  | DEF_TEST(CompressAlphaFailColorType, reporter) { | 
|  | SkBitmap bitmap; | 
|  | static const int kWidth = 12; | 
|  | static const int kHeight = 12; | 
|  | SkImageInfo info = SkImageInfo::MakeN32Premul(kWidth, kHeight); | 
|  |  | 
|  | // ASTC is at most 12x12, and any dimension divisible by 12 is also divisible | 
|  | // by 4, which is the dimensions of R11_EAC and LATC. In the future, we might | 
|  | // support additional variants of ASTC, such as 5x6 and 8x8, in which case this would | 
|  | // need to be updated. | 
|  | REPORTER_ASSERT(reporter, kWidth % 12 == 0); | 
|  | REPORTER_ASSERT(reporter, kHeight % 12 == 0); | 
|  |  | 
|  | bool setInfoSuccess = bitmap.setInfo(info); | 
|  | REPORTER_ASSERT(reporter, setInfoSuccess); | 
|  |  | 
|  | bitmap.allocPixels(info); | 
|  | bitmap.unlockPixels(); | 
|  |  | 
|  | for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { | 
|  | const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); | 
|  | if (!compresses_a8(fmt)) { | 
|  | continue; | 
|  | } | 
|  | SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(bitmap, fmt)); | 
|  | REPORTER_ASSERT(reporter, NULL == data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Make sure that if you compress a texture with alternating black/white pixels, and | 
|  | * then decompress it, you get what you started with. | 
|  | */ | 
|  | DEF_TEST(CompressCheckerboard, reporter) { | 
|  | SkBitmap bitmap; | 
|  | static const int kWidth = 48;  // We need the number to be divisible by both | 
|  | static const int kHeight = 48; // 12 (ASTC) and 16 (ARM NEON R11 EAC). | 
|  | SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight); | 
|  |  | 
|  | // ASTC is at most 12x12, and any dimension divisible by 12 is also divisible | 
|  | // by 4, which is the dimensions of R11_EAC and LATC. In the future, we might | 
|  | // support additional variants of ASTC, such as 5x6 and 8x8, in which case this would | 
|  | // need to be updated. Additionally, ARM NEON and SSE code paths support up to | 
|  | // four blocks of R11 EAC at once, so they operate on 16-wide blocks. Hence, the | 
|  | // valid width and height is going to be the LCM of 12 and 16 which is 4*4*3 = 48 | 
|  | REPORTER_ASSERT(reporter, kWidth % 48 == 0); | 
|  | REPORTER_ASSERT(reporter, kHeight % 48 == 0); | 
|  |  | 
|  | bool setInfoSuccess = bitmap.setInfo(info); | 
|  | REPORTER_ASSERT(reporter, setInfoSuccess); | 
|  |  | 
|  | bitmap.allocPixels(info); | 
|  | bitmap.unlockPixels(); | 
|  |  | 
|  | // Populate bitmap | 
|  | { | 
|  | SkAutoLockPixels alp(bitmap); | 
|  |  | 
|  | uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels()); | 
|  | REPORTER_ASSERT(reporter, pixels); | 
|  | if (NULL == pixels) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int y = 0; y < kHeight; ++y) { | 
|  | for (int x = 0; x < kWidth; ++x) { | 
|  | if ((x ^ y) & 1) { | 
|  | pixels[x] = 0xFF; | 
|  | } else { | 
|  | pixels[x] = 0; | 
|  | } | 
|  | } | 
|  | pixels += bitmap.rowBytes(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkAutoMalloc decompMemory(kWidth*kHeight); | 
|  | uint8_t* decompBuffer = reinterpret_cast<uint8_t*>(decompMemory.get()); | 
|  | REPORTER_ASSERT(reporter, decompBuffer); | 
|  | if (NULL == decompBuffer) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < SkTextureCompressor::kFormatCnt; ++i) { | 
|  | const SkTextureCompressor::Format fmt = static_cast<SkTextureCompressor::Format>(i); | 
|  |  | 
|  | // Ignore formats for RGBA data, since the decompressed buffer | 
|  | // won't match the size and contents of the original. | 
|  | if (!decompresses_a8(fmt) || !compresses_a8(fmt)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SkAutoDataUnref data(SkTextureCompressor::CompressBitmapToFormat(bitmap, fmt)); | 
|  | REPORTER_ASSERT(reporter, data); | 
|  | if (NULL == data) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool decompResult = | 
|  | SkTextureCompressor::DecompressBufferFromFormat( | 
|  | decompBuffer, kWidth, | 
|  | data->bytes(), | 
|  | kWidth, kHeight, fmt); | 
|  | REPORTER_ASSERT(reporter, decompResult); | 
|  |  | 
|  | SkAutoLockPixels alp(bitmap); | 
|  | uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels()); | 
|  | REPORTER_ASSERT(reporter, pixels); | 
|  | if (NULL == pixels) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (int y = 0; y < kHeight; ++y) { | 
|  | for (int x = 0; x < kWidth; ++x) { | 
|  | bool ok = pixels[y*bitmap.rowBytes() + x] == decompBuffer[y*kWidth + x]; | 
|  | REPORTER_ASSERT(reporter, ok); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Make sure that if we pass in a solid color bitmap that we get the appropriate results | 
|  | */ | 
|  | DEF_TEST(CompressLATC, reporter) { | 
|  |  | 
|  | const SkTextureCompressor::Format kLATCFormat = SkTextureCompressor::kLATC_Format; | 
|  | static const int kLATCEncodedBlockSize = 8; | 
|  |  | 
|  | SkBitmap bitmap; | 
|  | static const int kWidth = 8; | 
|  | static const int kHeight = 8; | 
|  | SkImageInfo info = SkImageInfo::MakeA8(kWidth, kHeight); | 
|  |  | 
|  | bool setInfoSuccess = bitmap.setInfo(info); | 
|  | REPORTER_ASSERT(reporter, setInfoSuccess); | 
|  |  | 
|  | bitmap.allocPixels(info); | 
|  | bitmap.unlockPixels(); | 
|  |  | 
|  | int latcDimX, latcDimY; | 
|  | SkTextureCompressor::GetBlockDimensions(kLATCFormat, &latcDimX, &latcDimY); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, kWidth % latcDimX == 0); | 
|  | REPORTER_ASSERT(reporter, kHeight % latcDimY == 0); | 
|  | const size_t kSizeToBe = | 
|  | SkTextureCompressor::GetCompressedDataSize(kLATCFormat, kWidth, kHeight); | 
|  | REPORTER_ASSERT(reporter, kSizeToBe == ((kWidth*kHeight*kLATCEncodedBlockSize)/16)); | 
|  | REPORTER_ASSERT(reporter, (kSizeToBe % kLATCEncodedBlockSize) == 0); | 
|  |  | 
|  | for (int lum = 0; lum < 256; ++lum) { | 
|  | bitmap.lockPixels(); | 
|  | uint8_t* pixels = reinterpret_cast<uint8_t*>(bitmap.getPixels()); | 
|  | REPORTER_ASSERT(reporter, pixels); | 
|  | if (NULL == pixels) { | 
|  | bitmap.unlockPixels(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < kWidth*kHeight; ++i) { | 
|  | pixels[i] = lum; | 
|  | } | 
|  | bitmap.unlockPixels(); | 
|  |  | 
|  | SkAutoDataUnref latcData( | 
|  | SkTextureCompressor::CompressBitmapToFormat(bitmap, kLATCFormat)); | 
|  | REPORTER_ASSERT(reporter, latcData); | 
|  | if (NULL == latcData) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | REPORTER_ASSERT(reporter, kSizeToBe == latcData->size()); | 
|  |  | 
|  | // Make sure that it all matches a given block encoding. Since we have | 
|  | // COMPRESS_LATC_FAST defined in SkTextureCompressor_LATC.cpp, we are using | 
|  | // an approximation scheme that optimizes for speed against coverage maps. | 
|  | // That means that each palette in the encoded block is exactly the same, | 
|  | // and that the three bits saved per pixel are computed from the top three | 
|  | // bits of the luminance value. | 
|  | const uint64_t kIndexEncodingMap[8] = { 1, 7, 6, 5, 4, 3, 2, 0 }; | 
|  |  | 
|  | // Quantize to three bits in the same way that we do our LATC compression: | 
|  | // 1. Divide by two | 
|  | // 2. Add 9 | 
|  | // 3. Divide by two | 
|  | // 4. Approximate division by three twice | 
|  | uint32_t quant = static_cast<uint32_t>(lum); | 
|  | quant >>= 1; // 1 | 
|  | quant += 9;  // 2 | 
|  | quant >>= 1; // 3 | 
|  |  | 
|  | uint32_t a, b, c, ar, br, cr; | 
|  |  | 
|  | // First division by three | 
|  | a = quant >> 2; | 
|  | ar = (quant & 0x3) << 4; | 
|  | b = quant >> 4; | 
|  | br = (quant & 0xF) << 2; | 
|  | c = quant >> 6; | 
|  | cr = (quant & 0x3F); | 
|  | quant = (a + b + c) + ((ar + br + cr) >> 6); | 
|  |  | 
|  | // Second division by three | 
|  | a = quant >> 2; | 
|  | ar = (quant & 0x3) << 4; | 
|  | b = quant >> 4; | 
|  | br = (quant & 0xF) << 2; | 
|  | c = quant >> 6; | 
|  | cr = (quant & 0x3F); | 
|  | quant = (a + b + c) + ((ar + br + cr) >> 6); | 
|  |  | 
|  | const uint64_t kIndex = kIndexEncodingMap[quant]; | 
|  |  | 
|  | const uint64_t kConstColorEncoding = | 
|  | SkEndian_SwapLE64( | 
|  | 255 | | 
|  | (kIndex << 16) | (kIndex << 19) | (kIndex << 22) | (kIndex << 25) | | 
|  | (kIndex << 28) | (kIndex << 31) | (kIndex << 34) | (kIndex << 37) | | 
|  | (kIndex << 40) | (kIndex << 43) | (kIndex << 46) | (kIndex << 49) | | 
|  | (kIndex << 52) | (kIndex << 55) | (kIndex << 58) | (kIndex << 61)); | 
|  |  | 
|  | const uint64_t* blockPtr = reinterpret_cast<const uint64_t*>(latcData->data()); | 
|  | for (size_t i = 0; i < (kSizeToBe/8); ++i) { | 
|  | REPORTER_ASSERT(reporter, blockPtr[i] == kConstColorEncoding); | 
|  | } | 
|  | } | 
|  | } |