|  | 
 | /* | 
 |  * Copyright 2012 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "SkWriteBuffer.h" | 
 | #include "SkBitmap.h" | 
 | #include "SkBitmapHeap.h" | 
 | #include "SkData.h" | 
 | #include "SkPixelRef.h" | 
 | #include "SkPtrRecorder.h" | 
 | #include "SkStream.h" | 
 | #include "SkTypeface.h" | 
 |  | 
 | SkWriteBuffer::SkWriteBuffer(uint32_t flags) | 
 |     : fFlags(flags) | 
 |     , fFactorySet(NULL) | 
 |     , fNamedFactorySet(NULL) | 
 |     , fBitmapHeap(NULL) | 
 |     , fTFSet(NULL) { | 
 | } | 
 |  | 
 | SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags) | 
 |     : fFlags(flags) | 
 |     , fFactorySet(NULL) | 
 |     , fNamedFactorySet(NULL) | 
 |     , fWriter(storage, storageSize) | 
 |     , fBitmapHeap(NULL) | 
 |     , fTFSet(NULL) { | 
 | } | 
 |  | 
 | SkWriteBuffer::~SkWriteBuffer() { | 
 |     SkSafeUnref(fFactorySet); | 
 |     SkSafeUnref(fNamedFactorySet); | 
 |     SkSafeUnref(fBitmapHeap); | 
 |     SkSafeUnref(fTFSet); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeByteArray(const void* data, size_t size) { | 
 |     fWriter.write32(SkToU32(size)); | 
 |     fWriter.writePad(data, size); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeBool(bool value) { | 
 |     fWriter.writeBool(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeFixed(SkFixed value) { | 
 |     fWriter.write32(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeScalar(SkScalar value) { | 
 |     fWriter.writeScalar(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { | 
 |     fWriter.write32(count); | 
 |     fWriter.write(value, count * sizeof(SkScalar)); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeInt(int32_t value) { | 
 |     fWriter.write32(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { | 
 |     fWriter.write32(count); | 
 |     fWriter.write(value, count * sizeof(int32_t)); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeUInt(uint32_t value) { | 
 |     fWriter.write32(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::write32(int32_t value) { | 
 |     fWriter.write32(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeString(const char* value) { | 
 |     fWriter.writeString(value); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength, | 
 |                                               SkPaint::TextEncoding encoding) { | 
 |     fWriter.writeInt(encoding); | 
 |     fWriter.writeInt(SkToU32(byteLength)); | 
 |     fWriter.write(value, byteLength); | 
 | } | 
 |  | 
 |  | 
 | void SkWriteBuffer::writeColor(const SkColor& color) { | 
 |     fWriter.write32(color); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { | 
 |     fWriter.write32(count); | 
 |     fWriter.write(color, count * sizeof(SkColor)); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writePoint(const SkPoint& point) { | 
 |     fWriter.writeScalar(point.fX); | 
 |     fWriter.writeScalar(point.fY); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { | 
 |     fWriter.write32(count); | 
 |     fWriter.write(point, count * sizeof(SkPoint)); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) { | 
 |     fWriter.writeMatrix(matrix); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeIRect(const SkIRect& rect) { | 
 |     fWriter.write(&rect, sizeof(SkIRect)); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeRect(const SkRect& rect) { | 
 |     fWriter.writeRect(rect); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeRegion(const SkRegion& region) { | 
 |     fWriter.writeRegion(region); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writePath(const SkPath& path) { | 
 |     fWriter.writePath(path); | 
 | } | 
 |  | 
 | size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) { | 
 |     fWriter.write32(SkToU32(length)); | 
 |     size_t bytesWritten = fWriter.readFromStream(stream, length); | 
 |     if (bytesWritten < length) { | 
 |         fWriter.reservePad(length - bytesWritten); | 
 |     } | 
 |     return bytesWritten; | 
 | } | 
 |  | 
 | bool SkWriteBuffer::writeToStream(SkWStream* stream) { | 
 |     return fWriter.writeToStream(stream); | 
 | } | 
 |  | 
 | static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data, | 
 |                                  const SkIPoint& origin) { | 
 |     buffer->writeUInt(SkToU32(data->size())); | 
 |     buffer->getWriter32()->writePad(data->data(), data->size()); | 
 |     buffer->write32(origin.fX); | 
 |     buffer->write32(origin.fY); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) { | 
 |     // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the | 
 |     // right size. | 
 |     this->writeInt(bitmap.width()); | 
 |     this->writeInt(bitmap.height()); | 
 |  | 
 |     // Record information about the bitmap in one of three ways, in order of priority: | 
 |     // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the | 
 |     //    bitmap entirely or serialize it later as desired. A boolean value of true will be written | 
 |     //    to the stream to signify that a heap was used. | 
 |     // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the | 
 |     //    bitmap. After writing a boolean value of false, signifying that a heap was not used, write | 
 |     //    the size of the encoded data. A non-zero size signifies that encoded data was written. | 
 |     // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was | 
 |     //    not used, write a zero to signify that the data was not encoded. | 
 |     bool useBitmapHeap = fBitmapHeap != NULL; | 
 |     // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an | 
 |     // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way. | 
 |     this->writeBool(useBitmapHeap); | 
 |     if (useBitmapHeap) { | 
 |         SkASSERT(NULL == fPixelSerializer); | 
 |         int32_t slot = fBitmapHeap->insert(bitmap); | 
 |         fWriter.write32(slot); | 
 |         // crbug.com/155875 | 
 |         // The generation ID is not required information. We write it to prevent collisions | 
 |         // in SkFlatDictionary.  It is possible to get a collision when a previously | 
 |         // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary | 
 |         // and the instance currently being written is re-using the same slot from the | 
 |         // bitmap heap. | 
 |         fWriter.write32(bitmap.getGenerationID()); | 
 |         return; | 
 |     } | 
 |  | 
 |     SkPixelRef* pixelRef = bitmap.pixelRef(); | 
 |     if (pixelRef) { | 
 |         // see if the pixelref already has an encoded version | 
 |         SkAutoDataUnref existingData(pixelRef->refEncodedData()); | 
 |         if (existingData.get() != NULL) { | 
 |             // Assumes that if the client did not set a serializer, they are | 
 |             // happy to get the encoded data. | 
 |             if (!fPixelSerializer || fPixelSerializer->useEncodedData(existingData->data(), | 
 |                                                                       existingData->size())) { | 
 |                 write_encoded_bitmap(this, existingData, bitmap.pixelRefOrigin()); | 
 |                 return; | 
 |             } | 
 |         } | 
 |  | 
 |         // see if the caller wants to manually encode | 
 |         if (fPixelSerializer) { | 
 |             SkASSERT(NULL == fBitmapHeap); | 
 |             SkAutoLockPixels alp(bitmap); | 
 |             SkAutoDataUnref data(fPixelSerializer->encodePixels(bitmap.info(), | 
 |                                                                 bitmap.getPixels(), | 
 |                                                                 bitmap.rowBytes())); | 
 |             if (data.get() != NULL) { | 
 |                 // if we have to "encode" the bitmap, then we assume there is no | 
 |                 // offset to share, since we are effectively creating a new pixelref | 
 |                 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); | 
 |                 return; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     this->writeUInt(0); // signal raw pixels | 
 |     SkBitmap::WriteRawPixels(this, bitmap); | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeTypeface(SkTypeface* obj) { | 
 |     if (NULL == obj || NULL == fTFSet) { | 
 |         fWriter.write32(0); | 
 |     } else { | 
 |         fWriter.write32(fTFSet->add(obj)); | 
 |     } | 
 | } | 
 |  | 
 | SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { | 
 |     SkRefCnt_SafeAssign(fFactorySet, rec); | 
 |     if (fNamedFactorySet != NULL) { | 
 |         fNamedFactorySet->unref(); | 
 |         fNamedFactorySet = NULL; | 
 |     } | 
 |     return rec; | 
 | } | 
 |  | 
 | SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) { | 
 |     SkRefCnt_SafeAssign(fNamedFactorySet, rec); | 
 |     if (fFactorySet != NULL) { | 
 |         fFactorySet->unref(); | 
 |         fFactorySet = NULL; | 
 |     } | 
 |     return rec; | 
 | } | 
 |  | 
 | SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { | 
 |     SkRefCnt_SafeAssign(fTFSet, rec); | 
 |     return rec; | 
 | } | 
 |  | 
 | void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { | 
 |     SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); | 
 |     if (bitmapHeap != NULL) { | 
 |         SkASSERT(NULL == fPixelSerializer); | 
 |         fPixelSerializer.reset(NULL); | 
 |     } | 
 | } | 
 |  | 
 | void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) { | 
 |     fPixelSerializer.reset(serializer); | 
 |     if (serializer) { | 
 |         serializer->ref(); | 
 |         SkASSERT(NULL == fBitmapHeap); | 
 |         SkSafeUnref(fBitmapHeap); | 
 |         fBitmapHeap = NULL; | 
 |     } | 
 | } | 
 |  | 
 | void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { | 
 |     /* | 
 |      *  If we have a factoryset, then the first 32bits tell us... | 
 |      *       0: failure to write the flattenable | 
 |      *      >0: (1-based) index into the SkFactorySet or SkNamedFactorySet | 
 |      *  If we don't have a factoryset, then the first "ptr" is either the | 
 |      *  factory, or null for failure. | 
 |      * | 
 |      *  The distinction is important, since 0-index is 32bits (always), but a | 
 |      *  0-functionptr might be 32 or 64 bits. | 
 |      */ | 
 |     if (NULL == flattenable) { | 
 |         if (this->isValidating()) { | 
 |             this->writeString(""); | 
 |         } else if (fFactorySet != NULL || fNamedFactorySet != NULL) { | 
 |             this->write32(0); | 
 |         } else { | 
 |             this->writeFunctionPtr(NULL); | 
 |         } | 
 |         return; | 
 |     } | 
 |  | 
 |     SkFlattenable::Factory factory = flattenable->getFactory(); | 
 |     SkASSERT(factory != NULL); | 
 |  | 
 |     /* | 
 |      *  We can write 1 of 3 versions of the flattenable: | 
 |      *  1.  function-ptr : this is the fastest for the reader, but assumes that | 
 |      *      the writer and reader are in the same process. | 
 |      *  2.  index into fFactorySet : This is assumes the writer will later | 
 |      *      resolve the function-ptrs into strings for its reader. SkPicture | 
 |      *      does exactly this, by writing a table of names (matching the indices) | 
 |      *      up front in its serialized form. | 
 |      *  3.  index into fNamedFactorySet. fNamedFactorySet will also store the | 
 |      *      name. SkGPipe uses this technique so it can write the name to its | 
 |      *      stream before writing the flattenable. | 
 |      */ | 
 |     if (this->isValidating()) { | 
 |         this->writeString(flattenable->getTypeName()); | 
 |     } else if (fFactorySet) { | 
 |         this->write32(fFactorySet->add(factory)); | 
 |     } else if (fNamedFactorySet) { | 
 |         int32_t index = fNamedFactorySet->find(factory); | 
 |         this->write32(index); | 
 |         if (0 == index) { | 
 |             return; | 
 |         } | 
 |     } else { | 
 |         this->writeFunctionPtr((void*)factory); | 
 |     } | 
 |  | 
 |     // make room for the size of the flattened object | 
 |     (void)fWriter.reserve(sizeof(uint32_t)); | 
 |     // record the current size, so we can subtract after the object writes. | 
 |     size_t offset = fWriter.bytesWritten(); | 
 |     // now flatten the object | 
 |     flattenable->flatten(*this); | 
 |     size_t objSize = fWriter.bytesWritten() - offset; | 
 |     // record the obj's size | 
 |     fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); | 
 | } |