|  | /* | 
|  | * Copyright 2006 The Android Open Source Project | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkGeometry.h" | 
|  | #include "SkMatrix.h" | 
|  |  | 
|  | bool SkXRayCrossesLine(const SkXRay& pt, | 
|  | const SkPoint pts[2], | 
|  | bool* ambiguous) { | 
|  | if (ambiguous) { | 
|  | *ambiguous = false; | 
|  | } | 
|  | // Determine quick discards. | 
|  | // Consider query line going exactly through point 0 to not | 
|  | // intersect, for symmetry with SkXRayCrossesMonotonicCubic. | 
|  | if (pt.fY == pts[0].fY) { | 
|  | if (ambiguous) { | 
|  | *ambiguous = true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (pt.fY < pts[0].fY && pt.fY < pts[1].fY) | 
|  | return false; | 
|  | if (pt.fY > pts[0].fY && pt.fY > pts[1].fY) | 
|  | return false; | 
|  | if (pt.fX > pts[0].fX && pt.fX > pts[1].fX) | 
|  | return false; | 
|  | // Determine degenerate cases | 
|  | if (SkScalarNearlyZero(pts[0].fY - pts[1].fY)) | 
|  | return false; | 
|  | if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) { | 
|  | // We've already determined the query point lies within the | 
|  | // vertical range of the line segment. | 
|  | if (pt.fX <= pts[0].fX) { | 
|  | if (ambiguous) { | 
|  | *ambiguous = (pt.fY == pts[1].fY); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // Ambiguity check | 
|  | if (pt.fY == pts[1].fY) { | 
|  | if (pt.fX <= pts[1].fX) { | 
|  | if (ambiguous) { | 
|  | *ambiguous = true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | // Full line segment evaluation | 
|  | SkScalar delta_y = pts[1].fY - pts[0].fY; | 
|  | SkScalar delta_x = pts[1].fX - pts[0].fX; | 
|  | SkScalar slope = SkScalarDiv(delta_y, delta_x); | 
|  | SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX); | 
|  | // Solve for x coordinate at y = pt.fY | 
|  | SkScalar x = SkScalarDiv(pt.fY - b, slope); | 
|  | return pt.fX <= x; | 
|  | } | 
|  |  | 
|  | /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes | 
|  | involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul. | 
|  | May also introduce overflow of fixed when we compute our setup. | 
|  | */ | 
|  | //    #define DIRECT_EVAL_OF_POLYNOMIALS | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) { | 
|  | SkScalar ab = a - b; | 
|  | SkScalar bc = b - c; | 
|  | if (ab < 0) { | 
|  | bc = -bc; | 
|  | } | 
|  | return ab == 0 || bc < 0; | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static bool is_unit_interval(SkScalar x) { | 
|  | return x > 0 && x < SK_Scalar1; | 
|  | } | 
|  |  | 
|  | static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) { | 
|  | SkASSERT(ratio); | 
|  |  | 
|  | if (numer < 0) { | 
|  | numer = -numer; | 
|  | denom = -denom; | 
|  | } | 
|  |  | 
|  | if (denom == 0 || numer == 0 || numer >= denom) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SkScalar r = SkScalarDiv(numer, denom); | 
|  | if (SkScalarIsNaN(r)) { | 
|  | return 0; | 
|  | } | 
|  | SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r); | 
|  | if (r == 0) { // catch underflow if numer <<<< denom | 
|  | return 0; | 
|  | } | 
|  | *ratio = r; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** From Numerical Recipes in C. | 
|  |  | 
|  | Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) | 
|  | x1 = Q / A | 
|  | x2 = C / Q | 
|  | */ | 
|  | int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { | 
|  | SkASSERT(roots); | 
|  |  | 
|  | if (A == 0) { | 
|  | return valid_unit_divide(-C, B, roots); | 
|  | } | 
|  |  | 
|  | SkScalar* r = roots; | 
|  |  | 
|  | SkScalar R = B*B - 4*A*C; | 
|  | if (R < 0 || SkScalarIsNaN(R)) {  // complex roots | 
|  | return 0; | 
|  | } | 
|  | R = SkScalarSqrt(R); | 
|  |  | 
|  | SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; | 
|  | r += valid_unit_divide(Q, A, r); | 
|  | r += valid_unit_divide(C, Q, r); | 
|  | if (r - roots == 2) { | 
|  | if (roots[0] > roots[1]) | 
|  | SkTSwap<SkScalar>(roots[0], roots[1]); | 
|  | else if (roots[0] == roots[1])  // nearly-equal? | 
|  | r -= 1; // skip the double root | 
|  | } | 
|  | return (int)(r - roots); | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static SkScalar eval_quad(const SkScalar src[], SkScalar t) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | #ifdef DIRECT_EVAL_OF_POLYNOMIALS | 
|  | SkScalar    C = src[0]; | 
|  | SkScalar    A = src[4] - 2 * src[2] + C; | 
|  | SkScalar    B = 2 * (src[2] - C); | 
|  | return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 
|  | #else | 
|  | SkScalar    ab = SkScalarInterp(src[0], src[2], t); | 
|  | SkScalar    bc = SkScalarInterp(src[2], src[4], t); | 
|  | return SkScalarInterp(ab, bc, t); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) { | 
|  | SkScalar A = src[4] - 2 * src[2] + src[0]; | 
|  | SkScalar B = src[2] - src[0]; | 
|  |  | 
|  | return 2 * SkScalarMulAdd(A, t, B); | 
|  | } | 
|  |  | 
|  | static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) { | 
|  | SkScalar A = src[4] - 2 * src[2] + src[0]; | 
|  | SkScalar B = src[2] - src[0]; | 
|  | return A + 2 * B; | 
|  | } | 
|  |  | 
|  | void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, | 
|  | SkVector* tangent) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | if (pt) { | 
|  | pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); | 
|  | } | 
|  | if (tangent) { | 
|  | tangent->set(eval_quad_derivative(&src[0].fX, t), | 
|  | eval_quad_derivative(&src[0].fY, t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) { | 
|  | SkASSERT(src); | 
|  |  | 
|  | if (pt) { | 
|  | SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); | 
|  | SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); | 
|  | SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); | 
|  | SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); | 
|  | pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); | 
|  | } | 
|  | if (tangent) { | 
|  | tangent->set(eval_quad_derivative_at_half(&src[0].fX), | 
|  | eval_quad_derivative_at_half(&src[0].fY)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) { | 
|  | SkScalar    ab = SkScalarInterp(src[0], src[2], t); | 
|  | SkScalar    bc = SkScalarInterp(src[2], src[4], t); | 
|  |  | 
|  | dst[0] = src[0]; | 
|  | dst[2] = ab; | 
|  | dst[4] = SkScalarInterp(ab, bc, t); | 
|  | dst[6] = bc; | 
|  | dst[8] = src[4]; | 
|  | } | 
|  |  | 
|  | void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) { | 
|  | SkASSERT(t > 0 && t < SK_Scalar1); | 
|  |  | 
|  | interp_quad_coords(&src[0].fX, &dst[0].fX, t); | 
|  | interp_quad_coords(&src[0].fY, &dst[0].fY, t); | 
|  | } | 
|  |  | 
|  | void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) { | 
|  | SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); | 
|  | SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); | 
|  | SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); | 
|  | SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); | 
|  |  | 
|  | dst[0] = src[0]; | 
|  | dst[1].set(x01, y01); | 
|  | dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); | 
|  | dst[3].set(x12, y12); | 
|  | dst[4] = src[2]; | 
|  | } | 
|  |  | 
|  | /** Quad'(t) = At + B, where | 
|  | A = 2(a - 2b + c) | 
|  | B = 2(b - a) | 
|  | Solve for t, only if it fits between 0 < t < 1 | 
|  | */ | 
|  | int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) { | 
|  | /*  At + B == 0 | 
|  | t = -B / A | 
|  | */ | 
|  | return valid_unit_divide(a - b, a - b - b + c, tValue); | 
|  | } | 
|  |  | 
|  | static inline void flatten_double_quad_extrema(SkScalar coords[14]) { | 
|  | coords[2] = coords[6] = coords[4]; | 
|  | } | 
|  |  | 
|  | /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is | 
|  | stored in dst[]. Guarantees that the 1/2 quads will be monotonic. | 
|  | */ | 
|  | int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(dst); | 
|  |  | 
|  | SkScalar a = src[0].fY; | 
|  | SkScalar b = src[1].fY; | 
|  | SkScalar c = src[2].fY; | 
|  |  | 
|  | if (is_not_monotonic(a, b, c)) { | 
|  | SkScalar    tValue; | 
|  | if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { | 
|  | SkChopQuadAt(src, dst, tValue); | 
|  | flatten_double_quad_extrema(&dst[0].fY); | 
|  | return 1; | 
|  | } | 
|  | // if we get here, we need to force dst to be monotonic, even though | 
|  | // we couldn't compute a unit_divide value (probably underflow). | 
|  | b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; | 
|  | } | 
|  | dst[0].set(src[0].fX, a); | 
|  | dst[1].set(src[1].fX, b); | 
|  | dst[2].set(src[2].fX, c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is | 
|  | stored in dst[]. Guarantees that the 1/2 quads will be monotonic. | 
|  | */ | 
|  | int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(dst); | 
|  |  | 
|  | SkScalar a = src[0].fX; | 
|  | SkScalar b = src[1].fX; | 
|  | SkScalar c = src[2].fX; | 
|  |  | 
|  | if (is_not_monotonic(a, b, c)) { | 
|  | SkScalar tValue; | 
|  | if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { | 
|  | SkChopQuadAt(src, dst, tValue); | 
|  | flatten_double_quad_extrema(&dst[0].fX); | 
|  | return 1; | 
|  | } | 
|  | // if we get here, we need to force dst to be monotonic, even though | 
|  | // we couldn't compute a unit_divide value (probably underflow). | 
|  | b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; | 
|  | } | 
|  | dst[0].set(a, src[0].fY); | 
|  | dst[1].set(b, src[1].fY); | 
|  | dst[2].set(c, src[2].fY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 | 
|  | //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t | 
|  | //  F''(t)  = 2 (a - 2b + c) | 
|  | // | 
|  | //  A = 2 (b - a) | 
|  | //  B = 2 (a - 2b + c) | 
|  | // | 
|  | //  Maximum curvature for a quadratic means solving | 
|  | //  Fx' Fx'' + Fy' Fy'' = 0 | 
|  | // | 
|  | //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) | 
|  | // | 
|  | SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) { | 
|  | SkScalar    Ax = src[1].fX - src[0].fX; | 
|  | SkScalar    Ay = src[1].fY - src[0].fY; | 
|  | SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; | 
|  | SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; | 
|  | SkScalar    t = 0;  // 0 means don't chop | 
|  |  | 
|  | (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) { | 
|  | SkScalar t = SkFindQuadMaxCurvature(src); | 
|  | if (t == 0) { | 
|  | memcpy(dst, src, 3 * sizeof(SkPoint)); | 
|  | return 1; | 
|  | } else { | 
|  | SkChopQuadAt(src, dst, t); | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SK_ScalarTwoThirds  (0.666666666f) | 
|  |  | 
|  | void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) { | 
|  | const SkScalar scale = SK_ScalarTwoThirds; | 
|  | dst[0] = src[0]; | 
|  | dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale), | 
|  | src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale)); | 
|  | dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale), | 
|  | src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale)); | 
|  | dst[3] = src[2]; | 
|  | } | 
|  |  | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  | ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// | 
|  | ////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) { | 
|  | coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0]; | 
|  | coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]); | 
|  | coeff[2] = 3*(pt[2] - pt[0]); | 
|  | coeff[3] = pt[0]; | 
|  | } | 
|  |  | 
|  | void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) { | 
|  | SkASSERT(pts); | 
|  |  | 
|  | if (cx) { | 
|  | get_cubic_coeff(&pts[0].fX, cx); | 
|  | } | 
|  | if (cy) { | 
|  | get_cubic_coeff(&pts[0].fY, cy); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SkScalar eval_cubic(const SkScalar src[], SkScalar t) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | if (t == 0) { | 
|  | return src[0]; | 
|  | } | 
|  |  | 
|  | #ifdef DIRECT_EVAL_OF_POLYNOMIALS | 
|  | SkScalar D = src[0]; | 
|  | SkScalar A = src[6] + 3*(src[2] - src[4]) - D; | 
|  | SkScalar B = 3*(src[4] - src[2] - src[2] + D); | 
|  | SkScalar C = 3*(src[2] - D); | 
|  |  | 
|  | return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); | 
|  | #else | 
|  | SkScalar    ab = SkScalarInterp(src[0], src[2], t); | 
|  | SkScalar    bc = SkScalarInterp(src[2], src[4], t); | 
|  | SkScalar    cd = SkScalarInterp(src[4], src[6], t); | 
|  | SkScalar    abc = SkScalarInterp(ab, bc, t); | 
|  | SkScalar    bcd = SkScalarInterp(bc, cd, t); | 
|  | return SkScalarInterp(abc, bcd, t); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** return At^2 + Bt + C | 
|  | */ | 
|  | static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) { | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 
|  | } | 
|  |  | 
|  | static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) { | 
|  | SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; | 
|  | SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); | 
|  | SkScalar C = src[2] - src[0]; | 
|  |  | 
|  | return eval_quadratic(A, B, C, t); | 
|  | } | 
|  |  | 
|  | static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) { | 
|  | SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; | 
|  | SkScalar B = src[4] - 2 * src[2] + src[0]; | 
|  |  | 
|  | return SkScalarMulAdd(A, t, B); | 
|  | } | 
|  |  | 
|  | void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, | 
|  | SkVector* tangent, SkVector* curvature) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | if (loc) { | 
|  | loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); | 
|  | } | 
|  | if (tangent) { | 
|  | tangent->set(eval_cubic_derivative(&src[0].fX, t), | 
|  | eval_cubic_derivative(&src[0].fY, t)); | 
|  | } | 
|  | if (curvature) { | 
|  | curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), | 
|  | eval_cubic_2ndDerivative(&src[0].fY, t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Cubic'(t) = At^2 + Bt + C, where | 
|  | A = 3(-a + 3(b - c) + d) | 
|  | B = 6(a - 2b + c) | 
|  | C = 3(b - a) | 
|  | Solve for t, keeping only those that fit betwee 0 < t < 1 | 
|  | */ | 
|  | int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, | 
|  | SkScalar tValues[2]) { | 
|  | // we divide A,B,C by 3 to simplify | 
|  | SkScalar A = d - a + 3*(b - c); | 
|  | SkScalar B = 2*(a - b - b + c); | 
|  | SkScalar C = b - a; | 
|  |  | 
|  | return SkFindUnitQuadRoots(A, B, C, tValues); | 
|  | } | 
|  |  | 
|  | static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, | 
|  | SkScalar t) { | 
|  | SkScalar    ab = SkScalarInterp(src[0], src[2], t); | 
|  | SkScalar    bc = SkScalarInterp(src[2], src[4], t); | 
|  | SkScalar    cd = SkScalarInterp(src[4], src[6], t); | 
|  | SkScalar    abc = SkScalarInterp(ab, bc, t); | 
|  | SkScalar    bcd = SkScalarInterp(bc, cd, t); | 
|  | SkScalar    abcd = SkScalarInterp(abc, bcd, t); | 
|  |  | 
|  | dst[0] = src[0]; | 
|  | dst[2] = ab; | 
|  | dst[4] = abc; | 
|  | dst[6] = abcd; | 
|  | dst[8] = bcd; | 
|  | dst[10] = cd; | 
|  | dst[12] = src[6]; | 
|  | } | 
|  |  | 
|  | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) { | 
|  | SkASSERT(t > 0 && t < SK_Scalar1); | 
|  |  | 
|  | interp_cubic_coords(&src[0].fX, &dst[0].fX, t); | 
|  | interp_cubic_coords(&src[0].fY, &dst[0].fY, t); | 
|  | } | 
|  |  | 
|  | /*  http://code.google.com/p/skia/issues/detail?id=32 | 
|  |  | 
|  | This test code would fail when we didn't check the return result of | 
|  | valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is | 
|  | that after the first chop, the parameters to valid_unit_divide are equal | 
|  | (thanks to finite float precision and rounding in the subtracts). Thus | 
|  | even though the 2nd tValue looks < 1.0, after we renormalize it, we end | 
|  | up with 1.0, hence the need to check and just return the last cubic as | 
|  | a degenerate clump of 4 points in the sampe place. | 
|  |  | 
|  | static void test_cubic() { | 
|  | SkPoint src[4] = { | 
|  | { 556.25000, 523.03003 }, | 
|  | { 556.23999, 522.96002 }, | 
|  | { 556.21997, 522.89001 }, | 
|  | { 556.21997, 522.82001 } | 
|  | }; | 
|  | SkPoint dst[10]; | 
|  | SkScalar tval[] = { 0.33333334f, 0.99999994f }; | 
|  | SkChopCubicAt(src, dst, tval, 2); | 
|  | } | 
|  | */ | 
|  |  | 
|  | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], | 
|  | const SkScalar tValues[], int roots) { | 
|  | #ifdef SK_DEBUG | 
|  | { | 
|  | for (int i = 0; i < roots - 1; i++) | 
|  | { | 
|  | SkASSERT(is_unit_interval(tValues[i])); | 
|  | SkASSERT(is_unit_interval(tValues[i+1])); | 
|  | SkASSERT(tValues[i] < tValues[i+1]); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (dst) { | 
|  | if (roots == 0) { // nothing to chop | 
|  | memcpy(dst, src, 4*sizeof(SkPoint)); | 
|  | } else { | 
|  | SkScalar    t = tValues[0]; | 
|  | SkPoint     tmp[4]; | 
|  |  | 
|  | for (int i = 0; i < roots; i++) { | 
|  | SkChopCubicAt(src, dst, t); | 
|  | if (i == roots - 1) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | dst += 3; | 
|  | // have src point to the remaining cubic (after the chop) | 
|  | memcpy(tmp, dst, 4 * sizeof(SkPoint)); | 
|  | src = tmp; | 
|  |  | 
|  | // watch out in case the renormalized t isn't in range | 
|  | if (!valid_unit_divide(tValues[i+1] - tValues[i], | 
|  | SK_Scalar1 - tValues[i], &t)) { | 
|  | // if we can't, just create a degenerate cubic | 
|  | dst[4] = dst[5] = dst[6] = src[3]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) { | 
|  | SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); | 
|  | SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); | 
|  | SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); | 
|  | SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); | 
|  | SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX); | 
|  | SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY); | 
|  |  | 
|  | SkScalar x012 = SkScalarAve(x01, x12); | 
|  | SkScalar y012 = SkScalarAve(y01, y12); | 
|  | SkScalar x123 = SkScalarAve(x12, x23); | 
|  | SkScalar y123 = SkScalarAve(y12, y23); | 
|  |  | 
|  | dst[0] = src[0]; | 
|  | dst[1].set(x01, y01); | 
|  | dst[2].set(x012, y012); | 
|  | dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123)); | 
|  | dst[4].set(x123, y123); | 
|  | dst[5].set(x23, y23); | 
|  | dst[6] = src[3]; | 
|  | } | 
|  |  | 
|  | static void flatten_double_cubic_extrema(SkScalar coords[14]) { | 
|  | coords[4] = coords[8] = coords[6]; | 
|  | } | 
|  |  | 
|  | /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that | 
|  | the resulting beziers are monotonic in Y. This is called by the scan | 
|  | converter.  Depending on what is returned, dst[] is treated as follows: | 
|  | 0   dst[0..3] is the original cubic | 
|  | 1   dst[0..3] and dst[3..6] are the two new cubics | 
|  | 2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics | 
|  | If dst == null, it is ignored and only the count is returned. | 
|  | */ | 
|  | int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) { | 
|  | SkScalar    tValues[2]; | 
|  | int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, | 
|  | src[3].fY, tValues); | 
|  |  | 
|  | SkChopCubicAt(src, dst, tValues, roots); | 
|  | if (dst && roots > 0) { | 
|  | // we do some cleanup to ensure our Y extrema are flat | 
|  | flatten_double_cubic_extrema(&dst[0].fY); | 
|  | if (roots == 2) { | 
|  | flatten_double_cubic_extrema(&dst[3].fY); | 
|  | } | 
|  | } | 
|  | return roots; | 
|  | } | 
|  |  | 
|  | int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) { | 
|  | SkScalar    tValues[2]; | 
|  | int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX, | 
|  | src[3].fX, tValues); | 
|  |  | 
|  | SkChopCubicAt(src, dst, tValues, roots); | 
|  | if (dst && roots > 0) { | 
|  | // we do some cleanup to ensure our Y extrema are flat | 
|  | flatten_double_cubic_extrema(&dst[0].fX); | 
|  | if (roots == 2) { | 
|  | flatten_double_cubic_extrema(&dst[3].fX); | 
|  | } | 
|  | } | 
|  | return roots; | 
|  | } | 
|  |  | 
|  | /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html | 
|  |  | 
|  | Inflection means that curvature is zero. | 
|  | Curvature is [F' x F''] / [F'^3] | 
|  | So we solve F'x X F''y - F'y X F''y == 0 | 
|  | After some canceling of the cubic term, we get | 
|  | A = b - a | 
|  | B = c - 2b + a | 
|  | C = d - 3c + 3b - a | 
|  | (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 | 
|  | */ | 
|  | int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) { | 
|  | SkScalar    Ax = src[1].fX - src[0].fX; | 
|  | SkScalar    Ay = src[1].fY - src[0].fY; | 
|  | SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX; | 
|  | SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY; | 
|  | SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; | 
|  | SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; | 
|  |  | 
|  | return SkFindUnitQuadRoots(Bx*Cy - By*Cx, | 
|  | Ax*Cy - Ay*Cx, | 
|  | Ax*By - Ay*Bx, | 
|  | tValues); | 
|  | } | 
|  |  | 
|  | int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) { | 
|  | SkScalar    tValues[2]; | 
|  | int         count = SkFindCubicInflections(src, tValues); | 
|  |  | 
|  | if (dst) { | 
|  | if (count == 0) { | 
|  | memcpy(dst, src, 4 * sizeof(SkPoint)); | 
|  | } else { | 
|  | SkChopCubicAt(src, dst, tValues, count); | 
|  | } | 
|  | } | 
|  | return count + 1; | 
|  | } | 
|  |  | 
|  | // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3) | 
|  | // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2) | 
|  | // Classification: | 
|  | // discr(I) > 0        Serpentine | 
|  | // discr(I) = 0        Cusp | 
|  | // discr(I) < 0        Loop | 
|  | // d0 = d1 = 0         Quadratic | 
|  | // d0 = d1 = d2 = 0    Line | 
|  | // p0 = p1 = p2 = p3   Point | 
|  | static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) { | 
|  | if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) { | 
|  | return kPoint_SkCubicType; | 
|  | } | 
|  | const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]); | 
|  | if (discr > SK_ScalarNearlyZero) { | 
|  | return kSerpentine_SkCubicType; | 
|  | } else if (discr < -SK_ScalarNearlyZero) { | 
|  | return kLoop_SkCubicType; | 
|  | } else { | 
|  | if (0.f == d[0] && 0.f == d[1]) { | 
|  | return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType); | 
|  | } else { | 
|  | return kCusp_SkCubicType; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assumes the third component of points is 1. | 
|  | // Calcs p0 . (p1 x p2) | 
|  | static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { | 
|  | const SkScalar xComp = p0.fX * (p1.fY - p2.fY); | 
|  | const SkScalar yComp = p0.fY * (p2.fX - p1.fX); | 
|  | const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX; | 
|  | return (xComp + yComp + wComp); | 
|  | } | 
|  |  | 
|  | // Calc coefficients of I(s,t) where roots of I are inflection points of curve | 
|  | // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2) | 
|  | // d0 = a1 - 2*a2+3*a3 | 
|  | // d1 = -a2 + 3*a3 | 
|  | // d2 = 3*a3 | 
|  | // a1 = p0 . (p3 x p2) | 
|  | // a2 = p1 . (p0 x p3) | 
|  | // a3 = p2 . (p1 x p0) | 
|  | // Places the values of d1, d2, d3 in array d passed in | 
|  | static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) { | 
|  | SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]); | 
|  | SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]); | 
|  | SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]); | 
|  |  | 
|  | // need to scale a's or values in later calculations will grow to high | 
|  | SkScalar max = SkScalarAbs(a1); | 
|  | max = SkMaxScalar(max, SkScalarAbs(a2)); | 
|  | max = SkMaxScalar(max, SkScalarAbs(a3)); | 
|  | max = 1.f/max; | 
|  | a1 = a1 * max; | 
|  | a2 = a2 * max; | 
|  | a3 = a3 * max; | 
|  |  | 
|  | d[2] = 3.f * a3; | 
|  | d[1] = d[2] - a2; | 
|  | d[0] = d[1] - a2 + a1; | 
|  | } | 
|  |  | 
|  | SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) { | 
|  | calc_cubic_inflection_func(src, d); | 
|  | return classify_cubic(src, d); | 
|  | } | 
|  |  | 
|  | template <typename T> void bubble_sort(T array[], int count) { | 
|  | for (int i = count - 1; i > 0; --i) | 
|  | for (int j = i; j > 0; --j) | 
|  | if (array[j] < array[j-1]) | 
|  | { | 
|  | T   tmp(array[j]); | 
|  | array[j] = array[j-1]; | 
|  | array[j-1] = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Given an array and count, remove all pair-wise duplicates from the array, | 
|  | *  keeping the existing sorting, and return the new count | 
|  | */ | 
|  | static int collaps_duplicates(SkScalar array[], int count) { | 
|  | for (int n = count; n > 1; --n) { | 
|  | if (array[0] == array[1]) { | 
|  | for (int i = 1; i < n; ++i) { | 
|  | array[i - 1] = array[i]; | 
|  | } | 
|  | count -= 1; | 
|  | } else { | 
|  | array += 1; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #ifdef SK_DEBUG | 
|  |  | 
|  | #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array) | 
|  |  | 
|  | static void test_collaps_duplicates() { | 
|  | static bool gOnce; | 
|  | if (gOnce) { return; } | 
|  | gOnce = true; | 
|  | const SkScalar src0[] = { 0 }; | 
|  | const SkScalar src1[] = { 0, 0 }; | 
|  | const SkScalar src2[] = { 0, 1 }; | 
|  | const SkScalar src3[] = { 0, 0, 0 }; | 
|  | const SkScalar src4[] = { 0, 0, 1 }; | 
|  | const SkScalar src5[] = { 0, 1, 1 }; | 
|  | const SkScalar src6[] = { 0, 1, 2 }; | 
|  | const struct { | 
|  | const SkScalar* fData; | 
|  | int fCount; | 
|  | int fCollapsedCount; | 
|  | } data[] = { | 
|  | { TEST_COLLAPS_ENTRY(src0), 1 }, | 
|  | { TEST_COLLAPS_ENTRY(src1), 1 }, | 
|  | { TEST_COLLAPS_ENTRY(src2), 2 }, | 
|  | { TEST_COLLAPS_ENTRY(src3), 1 }, | 
|  | { TEST_COLLAPS_ENTRY(src4), 2 }, | 
|  | { TEST_COLLAPS_ENTRY(src5), 2 }, | 
|  | { TEST_COLLAPS_ENTRY(src6), 3 }, | 
|  | }; | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) { | 
|  | SkScalar dst[3]; | 
|  | memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0])); | 
|  | int count = collaps_duplicates(dst, data[i].fCount); | 
|  | SkASSERT(data[i].fCollapsedCount == count); | 
|  | for (int j = 1; j < count; ++j) { | 
|  | SkASSERT(dst[j-1] < dst[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static SkScalar SkScalarCubeRoot(SkScalar x) { | 
|  | return SkScalarPow(x, 0.3333333f); | 
|  | } | 
|  |  | 
|  | /*  Solve coeff(t) == 0, returning the number of roots that | 
|  | lie withing 0 < t < 1. | 
|  | coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] | 
|  |  | 
|  | Eliminates repeated roots (so that all tValues are distinct, and are always | 
|  | in increasing order. | 
|  | */ | 
|  | static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) { | 
|  | if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic | 
|  | return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); | 
|  | } | 
|  |  | 
|  | SkScalar a, b, c, Q, R; | 
|  |  | 
|  | { | 
|  | SkASSERT(coeff[0] != 0); | 
|  |  | 
|  | SkScalar inva = SkScalarInvert(coeff[0]); | 
|  | a = coeff[1] * inva; | 
|  | b = coeff[2] * inva; | 
|  | c = coeff[3] * inva; | 
|  | } | 
|  | Q = (a*a - b*3) / 9; | 
|  | R = (2*a*a*a - 9*a*b + 27*c) / 54; | 
|  |  | 
|  | SkScalar Q3 = Q * Q * Q; | 
|  | SkScalar R2MinusQ3 = R * R - Q3; | 
|  | SkScalar adiv3 = a / 3; | 
|  |  | 
|  | SkScalar*   roots = tValues; | 
|  | SkScalar    r; | 
|  |  | 
|  | if (R2MinusQ3 < 0) { // we have 3 real roots | 
|  | SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3)); | 
|  | SkScalar neg2RootQ = -2 * SkScalarSqrt(Q); | 
|  |  | 
|  | r = neg2RootQ * SkScalarCos(theta/3) - adiv3; | 
|  | if (is_unit_interval(r)) { | 
|  | *roots++ = r; | 
|  | } | 
|  | r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3; | 
|  | if (is_unit_interval(r)) { | 
|  | *roots++ = r; | 
|  | } | 
|  | r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3; | 
|  | if (is_unit_interval(r)) { | 
|  | *roots++ = r; | 
|  | } | 
|  | SkDEBUGCODE(test_collaps_duplicates();) | 
|  |  | 
|  | // now sort the roots | 
|  | int count = (int)(roots - tValues); | 
|  | SkASSERT((unsigned)count <= 3); | 
|  | bubble_sort(tValues, count); | 
|  | count = collaps_duplicates(tValues, count); | 
|  | roots = tValues + count;    // so we compute the proper count below | 
|  | } else {              // we have 1 real root | 
|  | SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3); | 
|  | A = SkScalarCubeRoot(A); | 
|  | if (R > 0) { | 
|  | A = -A; | 
|  | } | 
|  | if (A != 0) { | 
|  | A += Q / A; | 
|  | } | 
|  | r = A - adiv3; | 
|  | if (is_unit_interval(r)) { | 
|  | *roots++ = r; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (int)(roots - tValues); | 
|  | } | 
|  |  | 
|  | /*  Looking for F' dot F'' == 0 | 
|  |  | 
|  | A = b - a | 
|  | B = c - 2b + a | 
|  | C = d - 3c + 3b - a | 
|  |  | 
|  | F' = 3Ct^2 + 6Bt + 3A | 
|  | F'' = 6Ct + 6B | 
|  |  | 
|  | F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB | 
|  | */ | 
|  | static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) { | 
|  | SkScalar    a = src[2] - src[0]; | 
|  | SkScalar    b = src[4] - 2 * src[2] + src[0]; | 
|  | SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0]; | 
|  |  | 
|  | coeff[0] = c * c; | 
|  | coeff[1] = 3 * b * c; | 
|  | coeff[2] = 2 * b * b + c * a; | 
|  | coeff[3] = a * b; | 
|  | } | 
|  |  | 
|  | /*  Looking for F' dot F'' == 0 | 
|  |  | 
|  | A = b - a | 
|  | B = c - 2b + a | 
|  | C = d - 3c + 3b - a | 
|  |  | 
|  | F' = 3Ct^2 + 6Bt + 3A | 
|  | F'' = 6Ct + 6B | 
|  |  | 
|  | F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB | 
|  | */ | 
|  | int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) { | 
|  | SkScalar coeffX[4], coeffY[4]; | 
|  | int      i; | 
|  |  | 
|  | formulate_F1DotF2(&src[0].fX, coeffX); | 
|  | formulate_F1DotF2(&src[0].fY, coeffY); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | coeffX[i] += coeffY[i]; | 
|  | } | 
|  |  | 
|  | SkScalar    t[3]; | 
|  | int         count = solve_cubic_poly(coeffX, t); | 
|  | int         maxCount = 0; | 
|  |  | 
|  | // now remove extrema where the curvature is zero (mins) | 
|  | // !!!! need a test for this !!!! | 
|  | for (i = 0; i < count; i++) { | 
|  | // if (not_min_curvature()) | 
|  | if (t[i] > 0 && t[i] < SK_Scalar1) { | 
|  | tValues[maxCount++] = t[i]; | 
|  | } | 
|  | } | 
|  | return maxCount; | 
|  | } | 
|  |  | 
|  | int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], | 
|  | SkScalar tValues[3]) { | 
|  | SkScalar    t_storage[3]; | 
|  |  | 
|  | if (tValues == NULL) { | 
|  | tValues = t_storage; | 
|  | } | 
|  |  | 
|  | int count = SkFindCubicMaxCurvature(src, tValues); | 
|  |  | 
|  | if (dst) { | 
|  | if (count == 0) { | 
|  | memcpy(dst, src, 4 * sizeof(SkPoint)); | 
|  | } else { | 
|  | SkChopCubicAt(src, dst, tValues, count); | 
|  | } | 
|  | } | 
|  | return count + 1; | 
|  | } | 
|  |  | 
|  | bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], | 
|  | bool* ambiguous) { | 
|  | if (ambiguous) { | 
|  | *ambiguous = false; | 
|  | } | 
|  |  | 
|  | // Find the minimum and maximum y of the extrema, which are the | 
|  | // first and last points since this cubic is monotonic | 
|  | SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY); | 
|  | SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY); | 
|  |  | 
|  | if (pt.fY == cubic[0].fY | 
|  | || pt.fY < min_y | 
|  | || pt.fY > max_y) { | 
|  | // The query line definitely does not cross the curve | 
|  | if (ambiguous) { | 
|  | *ambiguous = (pt.fY == cubic[0].fY); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool pt_at_extremum = (pt.fY == cubic[3].fY); | 
|  |  | 
|  | SkScalar min_x = | 
|  | SkMinScalar( | 
|  | SkMinScalar( | 
|  | SkMinScalar(cubic[0].fX, cubic[1].fX), | 
|  | cubic[2].fX), | 
|  | cubic[3].fX); | 
|  | if (pt.fX < min_x) { | 
|  | // The query line definitely crosses the curve | 
|  | if (ambiguous) { | 
|  | *ambiguous = pt_at_extremum; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SkScalar max_x = | 
|  | SkMaxScalar( | 
|  | SkMaxScalar( | 
|  | SkMaxScalar(cubic[0].fX, cubic[1].fX), | 
|  | cubic[2].fX), | 
|  | cubic[3].fX); | 
|  | if (pt.fX > max_x) { | 
|  | // The query line definitely does not cross the curve | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do a binary search to find the parameter value which makes y as | 
|  | // close as possible to the query point. See whether the query | 
|  | // line's origin is to the left of the associated x coordinate. | 
|  |  | 
|  | // kMaxIter is chosen as the number of mantissa bits for a float, | 
|  | // since there's no way we are going to get more precision by | 
|  | // iterating more times than that. | 
|  | const int kMaxIter = 23; | 
|  | SkPoint eval; | 
|  | int iter = 0; | 
|  | SkScalar upper_t; | 
|  | SkScalar lower_t; | 
|  | // Need to invert direction of t parameter if cubic goes up | 
|  | // instead of down | 
|  | if (cubic[3].fY > cubic[0].fY) { | 
|  | upper_t = SK_Scalar1; | 
|  | lower_t = 0; | 
|  | } else { | 
|  | upper_t = 0; | 
|  | lower_t = SK_Scalar1; | 
|  | } | 
|  | do { | 
|  | SkScalar t = SkScalarAve(upper_t, lower_t); | 
|  | SkEvalCubicAt(cubic, t, &eval, NULL, NULL); | 
|  | if (pt.fY > eval.fY) { | 
|  | lower_t = t; | 
|  | } else { | 
|  | upper_t = t; | 
|  | } | 
|  | } while (++iter < kMaxIter | 
|  | && !SkScalarNearlyZero(eval.fY - pt.fY)); | 
|  | if (pt.fX <= eval.fX) { | 
|  | if (ambiguous) { | 
|  | *ambiguous = pt_at_extremum; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int SkNumXRayCrossingsForCubic(const SkXRay& pt, | 
|  | const SkPoint cubic[4], | 
|  | bool* ambiguous) { | 
|  | int num_crossings = 0; | 
|  | SkPoint monotonic_cubics[10]; | 
|  | int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics); | 
|  | if (ambiguous) { | 
|  | *ambiguous = false; | 
|  | } | 
|  | bool locally_ambiguous; | 
|  | if (SkXRayCrossesMonotonicCubic(pt, | 
|  | &monotonic_cubics[0], | 
|  | &locally_ambiguous)) | 
|  | ++num_crossings; | 
|  | if (ambiguous) { | 
|  | *ambiguous |= locally_ambiguous; | 
|  | } | 
|  | if (num_monotonic_cubics > 0) | 
|  | if (SkXRayCrossesMonotonicCubic(pt, | 
|  | &monotonic_cubics[3], | 
|  | &locally_ambiguous)) | 
|  | ++num_crossings; | 
|  | if (ambiguous) { | 
|  | *ambiguous |= locally_ambiguous; | 
|  | } | 
|  | if (num_monotonic_cubics > 1) | 
|  | if (SkXRayCrossesMonotonicCubic(pt, | 
|  | &monotonic_cubics[6], | 
|  | &locally_ambiguous)) | 
|  | ++num_crossings; | 
|  | if (ambiguous) { | 
|  | *ambiguous |= locally_ambiguous; | 
|  | } | 
|  | return num_crossings; | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | /*  Find t value for quadratic [a, b, c] = d. | 
|  | Return 0 if there is no solution within [0, 1) | 
|  | */ | 
|  | static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) { | 
|  | // At^2 + Bt + C = d | 
|  | SkScalar A = a - 2 * b + c; | 
|  | SkScalar B = 2 * (b - a); | 
|  | SkScalar C = a - d; | 
|  |  | 
|  | SkScalar    roots[2]; | 
|  | int         count = SkFindUnitQuadRoots(A, B, C, roots); | 
|  |  | 
|  | SkASSERT(count <= 1); | 
|  | return count == 1 ? roots[0] : 0; | 
|  | } | 
|  |  | 
|  | /*  given a quad-curve and a point (x,y), chop the quad at that point and place | 
|  | the new off-curve point and endpoint into 'dest'. | 
|  | Should only return false if the computed pos is the start of the curve | 
|  | (i.e. root == 0) | 
|  | */ | 
|  | static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, | 
|  | SkPoint* dest) { | 
|  | const SkScalar* base; | 
|  | SkScalar        value; | 
|  |  | 
|  | if (SkScalarAbs(x) < SkScalarAbs(y)) { | 
|  | base = &quad[0].fX; | 
|  | value = x; | 
|  | } else { | 
|  | base = &quad[0].fY; | 
|  | value = y; | 
|  | } | 
|  |  | 
|  | // note: this returns 0 if it thinks value is out of range, meaning the | 
|  | // root might return something outside of [0, 1) | 
|  | SkScalar t = quad_solve(base[0], base[2], base[4], value); | 
|  |  | 
|  | if (t > 0) { | 
|  | SkPoint tmp[5]; | 
|  | SkChopQuadAt(quad, tmp, t); | 
|  | dest[0] = tmp[1]; | 
|  | dest[1].set(x, y); | 
|  | return true; | 
|  | } else { | 
|  | /*  t == 0 means either the value triggered a root outside of [0, 1) | 
|  | For our purposes, we can ignore the <= 0 roots, but we want to | 
|  | catch the >= 1 roots (which given our caller, will basically mean | 
|  | a root of 1, give-or-take numerical instability). If we are in the | 
|  | >= 1 case, return the existing offCurve point. | 
|  |  | 
|  | The test below checks to see if we are close to the "end" of the | 
|  | curve (near base[4]). Rather than specifying a tolerance, I just | 
|  | check to see if value is on to the right/left of the middle point | 
|  | (depending on the direction/sign of the end points). | 
|  | */ | 
|  | if ((base[0] < base[4] && value > base[2]) || | 
|  | (base[0] > base[4] && value < base[2]))   // should root have been 1 | 
|  | { | 
|  | dest[0] = quad[1]; | 
|  | dest[1].set(x, y); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = { | 
|  | // The mid point of the quadratic arc approximation is half way between the two | 
|  | // control points. The float epsilon adjustment moves the on curve point out by | 
|  | // two bits, distributing the convex test error between the round rect | 
|  | // approximation and the convex cross product sign equality test. | 
|  | #define SK_MID_RRECT_OFFSET \ | 
|  | (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2 | 
|  | { SK_Scalar1,            0                      }, | 
|  | { SK_Scalar1,            SK_ScalarTanPIOver8    }, | 
|  | { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    }, | 
|  | { SK_ScalarTanPIOver8,   SK_Scalar1             }, | 
|  |  | 
|  | { 0,                     SK_Scalar1             }, | 
|  | { -SK_ScalarTanPIOver8,  SK_Scalar1             }, | 
|  | { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    }, | 
|  | { -SK_Scalar1,           SK_ScalarTanPIOver8    }, | 
|  |  | 
|  | { -SK_Scalar1,           0                      }, | 
|  | { -SK_Scalar1,           -SK_ScalarTanPIOver8   }, | 
|  | { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   }, | 
|  | { -SK_ScalarTanPIOver8,  -SK_Scalar1            }, | 
|  |  | 
|  | { 0,                     -SK_Scalar1            }, | 
|  | { SK_ScalarTanPIOver8,   -SK_Scalar1            }, | 
|  | { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   }, | 
|  | { SK_Scalar1,            -SK_ScalarTanPIOver8   }, | 
|  |  | 
|  | { SK_Scalar1,            0                      } | 
|  | #undef SK_MID_RRECT_OFFSET | 
|  | }; | 
|  |  | 
|  | int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, | 
|  | SkRotationDirection dir, const SkMatrix* userMatrix, | 
|  | SkPoint quadPoints[]) { | 
|  | // rotate by x,y so that uStart is (1.0) | 
|  | SkScalar x = SkPoint::DotProduct(uStart, uStop); | 
|  | SkScalar y = SkPoint::CrossProduct(uStart, uStop); | 
|  |  | 
|  | SkScalar absX = SkScalarAbs(x); | 
|  | SkScalar absY = SkScalarAbs(y); | 
|  |  | 
|  | int pointCount; | 
|  |  | 
|  | // check for (effectively) coincident vectors | 
|  | // this can happen if our angle is nearly 0 or nearly 180 (y == 0) | 
|  | // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) | 
|  | if (absY <= SK_ScalarNearlyZero && x > 0 && | 
|  | ((y >= 0 && kCW_SkRotationDirection == dir) || | 
|  | (y <= 0 && kCCW_SkRotationDirection == dir))) { | 
|  |  | 
|  | // just return the start-point | 
|  | quadPoints[0].set(SK_Scalar1, 0); | 
|  | pointCount = 1; | 
|  | } else { | 
|  | if (dir == kCCW_SkRotationDirection) { | 
|  | y = -y; | 
|  | } | 
|  | // what octant (quadratic curve) is [xy] in? | 
|  | int oct = 0; | 
|  | bool sameSign = true; | 
|  |  | 
|  | if (0 == y) { | 
|  | oct = 4;        // 180 | 
|  | SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); | 
|  | } else if (0 == x) { | 
|  | SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); | 
|  | oct = y > 0 ? 2 : 6; // 90 : 270 | 
|  | } else { | 
|  | if (y < 0) { | 
|  | oct += 4; | 
|  | } | 
|  | if ((x < 0) != (y < 0)) { | 
|  | oct += 2; | 
|  | sameSign = false; | 
|  | } | 
|  | if ((absX < absY) == sameSign) { | 
|  | oct += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | int wholeCount = oct << 1; | 
|  | memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint)); | 
|  |  | 
|  | const SkPoint* arc = &gQuadCirclePts[wholeCount]; | 
|  | if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) { | 
|  | wholeCount += 2; | 
|  | } | 
|  | pointCount = wholeCount + 1; | 
|  | } | 
|  |  | 
|  | // now handle counter-clockwise and the initial unitStart rotation | 
|  | SkMatrix    matrix; | 
|  | matrix.setSinCos(uStart.fY, uStart.fX); | 
|  | if (dir == kCCW_SkRotationDirection) { | 
|  | matrix.preScale(SK_Scalar1, -SK_Scalar1); | 
|  | } | 
|  | if (userMatrix) { | 
|  | matrix.postConcat(*userMatrix); | 
|  | } | 
|  | matrix.mapPoints(quadPoints, pointCount); | 
|  | return pointCount; | 
|  | } | 
|  |  | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  | // | 
|  | // NURB representation for conics.  Helpful explanations at: | 
|  | // | 
|  | // http://citeseerx.ist.psu.edu/viewdoc/ | 
|  | //   download?doi=10.1.1.44.5740&rep=rep1&type=ps | 
|  | // and | 
|  | // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html | 
|  | // | 
|  | // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w) | 
|  | //     ------------------------------------------ | 
|  | //         ((1 - t)^2 + t^2 + 2 (1 - t) t w) | 
|  | // | 
|  | //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0} | 
|  | //     ------------------------------------------------ | 
|  | //             {t^2 (2 - 2 w), t (-2 + 2 w), 1} | 
|  | // | 
|  |  | 
|  | static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | SkScalar    src2w = SkScalarMul(src[2], w); | 
|  | SkScalar    C = src[0]; | 
|  | SkScalar    A = src[4] - 2 * src2w + C; | 
|  | SkScalar    B = 2 * (src2w - C); | 
|  | SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 
|  |  | 
|  | B = 2 * (w - SK_Scalar1); | 
|  | C = SK_Scalar1; | 
|  | A = -B; | 
|  | SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | 
|  |  | 
|  | return SkScalarDiv(numer, denom); | 
|  | } | 
|  |  | 
|  | // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w) | 
|  | // | 
|  | //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w) | 
|  | //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w) | 
|  | //  t^0 : -2 P0 w + 2 P1 w | 
|  | // | 
|  | //  We disregard magnitude, so we can freely ignore the denominator of F', and | 
|  | //  divide the numerator by 2 | 
|  | // | 
|  | //    coeff[0] for t^2 | 
|  | //    coeff[1] for t^1 | 
|  | //    coeff[2] for t^0 | 
|  | // | 
|  | static void conic_deriv_coeff(const SkScalar src[], | 
|  | SkScalar w, | 
|  | SkScalar coeff[3]) { | 
|  | const SkScalar P20 = src[4] - src[0]; | 
|  | const SkScalar P10 = src[2] - src[0]; | 
|  | const SkScalar wP10 = w * P10; | 
|  | coeff[0] = w * P20 - P20; | 
|  | coeff[1] = P20 - 2 * wP10; | 
|  | coeff[2] = wP10; | 
|  | } | 
|  |  | 
|  | static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) { | 
|  | SkScalar coeff[3]; | 
|  | conic_deriv_coeff(coord, w, coeff); | 
|  | return t * (t * coeff[0] + coeff[1]) + coeff[2]; | 
|  | } | 
|  |  | 
|  | static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) { | 
|  | SkScalar coeff[3]; | 
|  | conic_deriv_coeff(src, w, coeff); | 
|  |  | 
|  | SkScalar tValues[2]; | 
|  | int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues); | 
|  | SkASSERT(0 == roots || 1 == roots); | 
|  |  | 
|  | if (1 == roots) { | 
|  | *t = tValues[0]; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | struct SkP3D { | 
|  | SkScalar fX, fY, fZ; | 
|  |  | 
|  | void set(SkScalar x, SkScalar y, SkScalar z) { | 
|  | fX = x; fY = y; fZ = z; | 
|  | } | 
|  |  | 
|  | void projectDown(SkPoint* dst) const { | 
|  | dst->set(fX / fZ, fY / fZ); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // We only interpolate one dimension at a time (the first, at +0, +3, +6). | 
|  | static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) { | 
|  | SkScalar ab = SkScalarInterp(src[0], src[3], t); | 
|  | SkScalar bc = SkScalarInterp(src[3], src[6], t); | 
|  | dst[0] = ab; | 
|  | dst[3] = SkScalarInterp(ab, bc, t); | 
|  | dst[6] = bc; | 
|  | } | 
|  |  | 
|  | static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) { | 
|  | dst[0].set(src[0].fX * 1, src[0].fY * 1, 1); | 
|  | dst[1].set(src[1].fX * w, src[1].fY * w, w); | 
|  | dst[2].set(src[2].fX * 1, src[2].fY * 1, 1); | 
|  | } | 
|  |  | 
|  | void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const { | 
|  | SkASSERT(t >= 0 && t <= SK_Scalar1); | 
|  |  | 
|  | if (pt) { | 
|  | pt->set(conic_eval_pos(&fPts[0].fX, fW, t), | 
|  | conic_eval_pos(&fPts[0].fY, fW, t)); | 
|  | } | 
|  | if (tangent) { | 
|  | tangent->set(conic_eval_tan(&fPts[0].fX, fW, t), | 
|  | conic_eval_tan(&fPts[0].fY, fW, t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SkConic::chopAt(SkScalar t, SkConic dst[2]) const { | 
|  | SkP3D tmp[3], tmp2[3]; | 
|  |  | 
|  | ratquad_mapTo3D(fPts, fW, tmp); | 
|  |  | 
|  | p3d_interp(&tmp[0].fX, &tmp2[0].fX, t); | 
|  | p3d_interp(&tmp[0].fY, &tmp2[0].fY, t); | 
|  | p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t); | 
|  |  | 
|  | dst[0].fPts[0] = fPts[0]; | 
|  | tmp2[0].projectDown(&dst[0].fPts[1]); | 
|  | tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2]; | 
|  | tmp2[2].projectDown(&dst[1].fPts[1]); | 
|  | dst[1].fPts[2] = fPts[2]; | 
|  |  | 
|  | // to put in "standard form", where w0 and w2 are both 1, we compute the | 
|  | // new w1 as sqrt(w1*w1/w0*w2) | 
|  | // or | 
|  | // w1 /= sqrt(w0*w2) | 
|  | // | 
|  | // However, in our case, we know that for dst[0]: | 
|  | //     w0 == 1, and for dst[1], w2 == 1 | 
|  | // | 
|  | SkScalar root = SkScalarSqrt(tmp2[1].fZ); | 
|  | dst[0].fW = tmp2[0].fZ / root; | 
|  | dst[1].fW = tmp2[2].fZ / root; | 
|  | } | 
|  |  | 
|  | static SkScalar subdivide_w_value(SkScalar w) { | 
|  | return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf); | 
|  | } | 
|  |  | 
|  | void SkConic::chop(SkConic dst[2]) const { | 
|  | SkScalar scale = SkScalarInvert(SK_Scalar1 + fW); | 
|  | SkScalar p1x = fW * fPts[1].fX; | 
|  | SkScalar p1y = fW * fPts[1].fY; | 
|  | SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf; | 
|  | SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf; | 
|  |  | 
|  | dst[0].fPts[0] = fPts[0]; | 
|  | dst[0].fPts[1].set((fPts[0].fX + p1x) * scale, | 
|  | (fPts[0].fY + p1y) * scale); | 
|  | dst[0].fPts[2].set(mx, my); | 
|  |  | 
|  | dst[1].fPts[0].set(mx, my); | 
|  | dst[1].fPts[1].set((p1x + fPts[2].fX) * scale, | 
|  | (p1y + fPts[2].fY) * scale); | 
|  | dst[1].fPts[2] = fPts[2]; | 
|  |  | 
|  | dst[0].fW = dst[1].fW = subdivide_w_value(fW); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  "High order approximation of conic sections by quadratic splines" | 
|  | *      by Michael Floater, 1993 | 
|  | */ | 
|  | #define AS_QUAD_ERROR_SETUP                                         \ | 
|  | SkScalar a = fW - 1;                                            \ | 
|  | SkScalar k = a / (4 * (2 + a));                                 \ | 
|  | SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \ | 
|  | SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY); | 
|  |  | 
|  | void SkConic::computeAsQuadError(SkVector* err) const { | 
|  | AS_QUAD_ERROR_SETUP | 
|  | err->set(x, y); | 
|  | } | 
|  |  | 
|  | bool SkConic::asQuadTol(SkScalar tol) const { | 
|  | AS_QUAD_ERROR_SETUP | 
|  | return (x * x + y * y) <= tol * tol; | 
|  | } | 
|  |  | 
|  | int SkConic::computeQuadPOW2(SkScalar tol) const { | 
|  | AS_QUAD_ERROR_SETUP | 
|  | SkScalar error = SkScalarSqrt(x * x + y * y) - tol; | 
|  |  | 
|  | if (error <= 0) { | 
|  | return 0; | 
|  | } | 
|  | uint32_t ierr = (uint32_t)error; | 
|  | return (34 - SkCLZ(ierr)) >> 1; | 
|  | } | 
|  |  | 
|  | static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) { | 
|  | SkASSERT(level >= 0); | 
|  |  | 
|  | if (0 == level) { | 
|  | memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint)); | 
|  | return pts + 2; | 
|  | } else { | 
|  | SkConic dst[2]; | 
|  | src.chop(dst); | 
|  | --level; | 
|  | pts = subdivide(dst[0], pts, level); | 
|  | return subdivide(dst[1], pts, level); | 
|  | } | 
|  | } | 
|  |  | 
|  | int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const { | 
|  | SkASSERT(pow2 >= 0); | 
|  | *pts = fPts[0]; | 
|  | SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2); | 
|  | SkASSERT(endPts - pts == (2 * (1 << pow2) + 1)); | 
|  | return 1 << pow2; | 
|  | } | 
|  |  | 
|  | bool SkConic::findXExtrema(SkScalar* t) const { | 
|  | return conic_find_extrema(&fPts[0].fX, fW, t); | 
|  | } | 
|  |  | 
|  | bool SkConic::findYExtrema(SkScalar* t) const { | 
|  | return conic_find_extrema(&fPts[0].fY, fW, t); | 
|  | } | 
|  |  | 
|  | bool SkConic::chopAtXExtrema(SkConic dst[2]) const { | 
|  | SkScalar t; | 
|  | if (this->findXExtrema(&t)) { | 
|  | this->chopAt(t, dst); | 
|  | // now clean-up the middle, since we know t was meant to be at | 
|  | // an X-extrema | 
|  | SkScalar value = dst[0].fPts[2].fX; | 
|  | dst[0].fPts[1].fX = value; | 
|  | dst[1].fPts[0].fX = value; | 
|  | dst[1].fPts[1].fX = value; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SkConic::chopAtYExtrema(SkConic dst[2]) const { | 
|  | SkScalar t; | 
|  | if (this->findYExtrema(&t)) { | 
|  | this->chopAt(t, dst); | 
|  | // now clean-up the middle, since we know t was meant to be at | 
|  | // an Y-extrema | 
|  | SkScalar value = dst[0].fPts[2].fY; | 
|  | dst[0].fPts[1].fY = value; | 
|  | dst[1].fPts[0].fY = value; | 
|  | dst[1].fPts[1].fY = value; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void SkConic::computeTightBounds(SkRect* bounds) const { | 
|  | SkPoint pts[4]; | 
|  | pts[0] = fPts[0]; | 
|  | pts[1] = fPts[2]; | 
|  | int count = 2; | 
|  |  | 
|  | SkScalar t; | 
|  | if (this->findXExtrema(&t)) { | 
|  | this->evalAt(t, &pts[count++]); | 
|  | } | 
|  | if (this->findYExtrema(&t)) { | 
|  | this->evalAt(t, &pts[count++]); | 
|  | } | 
|  | bounds->set(pts, count); | 
|  | } | 
|  |  | 
|  | void SkConic::computeFastBounds(SkRect* bounds) const { | 
|  | bounds->set(fPts, 3); | 
|  | } | 
|  |  | 
|  | bool SkConic::findMaxCurvature(SkScalar* t) const { | 
|  | // TODO: Implement me | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, | 
|  | const SkMatrix& matrix) { | 
|  | if (!matrix.hasPerspective()) { | 
|  | return w; | 
|  | } | 
|  |  | 
|  | SkP3D src[3], dst[3]; | 
|  |  | 
|  | ratquad_mapTo3D(pts, w, src); | 
|  |  | 
|  | matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3); | 
|  |  | 
|  | // w' = sqrt(w1*w1/w0*w2) | 
|  | SkScalar w0 = dst[0].fZ; | 
|  | SkScalar w1 = dst[1].fZ; | 
|  | SkScalar w2 = dst[2].fZ; | 
|  | w = SkScalarSqrt((w1 * w1) / (w0 * w2)); | 
|  | return w; | 
|  | } |