|  | 
 | /* | 
 |  * Copyright 2009 The Android Open Source Project | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 |  | 
 | #include "SkEdgeClipper.h" | 
 | #include "SkGeometry.h" | 
 |  | 
 | static bool quick_reject(const SkRect& bounds, const SkRect& clip) { | 
 |     return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop; | 
 | } | 
 |  | 
 | static inline void clamp_le(SkScalar& value, SkScalar max) { | 
 |     if (value > max) { | 
 |         value = max; | 
 |     } | 
 | } | 
 |  | 
 | static inline void clamp_ge(SkScalar& value, SkScalar min) { | 
 |     if (value < min) { | 
 |         value = min; | 
 |     } | 
 | } | 
 |  | 
 | /*  src[] must be monotonic in Y. This routine copies src into dst, and sorts | 
 |  it to be increasing in Y. If it had to reverse the order of the points, | 
 |  it returns true, otherwise it returns false | 
 |  */ | 
 | static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) { | 
 |     // we need the data to be monotonically increasing in Y | 
 |     if (src[0].fY > src[count - 1].fY) { | 
 |         for (int i = 0; i < count; i++) { | 
 |             dst[i] = src[count - i - 1]; | 
 |         } | 
 |         return true; | 
 |     } else { | 
 |         memcpy(dst, src, count * sizeof(SkPoint)); | 
 |         return false; | 
 |     } | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, | 
 |                            SkScalar target, SkScalar* t) { | 
 |     /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 | 
 |      *  We solve for t, using quadratic equation, hence we have to rearrange | 
 |      * our cooefficents to look like At^2 + Bt + C | 
 |      */ | 
 |     SkScalar A = c0 - c1 - c1 + c2; | 
 |     SkScalar B = 2*(c1 - c0); | 
 |     SkScalar C = c0 - target; | 
 |  | 
 |     SkScalar roots[2];  // we only expect one, but make room for 2 for safety | 
 |     int count = SkFindUnitQuadRoots(A, B, C, roots); | 
 |     if (count) { | 
 |         *t = roots[0]; | 
 |         return true; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { | 
 |     return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); | 
 | } | 
 |  | 
 | static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) { | 
 |     return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t); | 
 | } | 
 |  | 
 | // Modify pts[] in place so that it is clipped in Y to the clip rect | 
 | static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) { | 
 |     SkScalar t; | 
 |     SkPoint tmp[5]; // for SkChopQuadAt | 
 |  | 
 |     // are we partially above | 
 |     if (pts[0].fY < clip.fTop) { | 
 |         if (chopMonoQuadAtY(pts, clip.fTop, &t)) { | 
 |             // take the 2nd chopped quad | 
 |             SkChopQuadAt(pts, tmp, t); | 
 |             // clamp to clean up imprecise numerics in the chop | 
 |             tmp[2].fY = clip.fTop; | 
 |             clamp_ge(tmp[3].fY, clip.fTop); | 
 |  | 
 |             pts[0] = tmp[2]; | 
 |             pts[1] = tmp[3]; | 
 |         } else { | 
 |             // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the top | 
 |             for (int i = 0; i < 3; i++) { | 
 |                 if (pts[i].fY < clip.fTop) { | 
 |                     pts[i].fY = clip.fTop; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // are we partially below | 
 |     if (pts[2].fY > clip.fBottom) { | 
 |         if (chopMonoQuadAtY(pts, clip.fBottom, &t)) { | 
 |             SkChopQuadAt(pts, tmp, t); | 
 |             // clamp to clean up imprecise numerics in the chop | 
 |             clamp_le(tmp[1].fY, clip.fBottom); | 
 |             tmp[2].fY = clip.fBottom; | 
 |  | 
 |             pts[1] = tmp[1]; | 
 |             pts[2] = tmp[2]; | 
 |         } else { | 
 |             // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the bottom | 
 |             for (int i = 0; i < 3; i++) { | 
 |                 if (pts[i].fY > clip.fBottom) { | 
 |                     pts[i].fY = clip.fBottom; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // srcPts[] must be monotonic in X and Y | 
 | void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) { | 
 |     SkPoint pts[3]; | 
 |     bool reverse = sort_increasing_Y(pts, srcPts, 3); | 
 |  | 
 |     // are we completely above or below | 
 |     if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Now chop so that pts is contained within clip in Y | 
 |     chop_quad_in_Y(pts, clip); | 
 |  | 
 |     if (pts[0].fX > pts[2].fX) { | 
 |         SkTSwap<SkPoint>(pts[0], pts[2]); | 
 |         reverse = !reverse; | 
 |     } | 
 |     SkASSERT(pts[0].fX <= pts[1].fX); | 
 |     SkASSERT(pts[1].fX <= pts[2].fX); | 
 |  | 
 |     // Now chop in X has needed, and record the segments | 
 |  | 
 |     if (pts[2].fX <= clip.fLeft) {  // wholly to the left | 
 |         this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); | 
 |         return; | 
 |     } | 
 |     if (pts[0].fX >= clip.fRight) {  // wholly to the right | 
 |         this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); | 
 |         return; | 
 |     } | 
 |  | 
 |     SkScalar t; | 
 |     SkPoint tmp[5]; // for SkChopQuadAt | 
 |  | 
 |     // are we partially to the left | 
 |     if (pts[0].fX < clip.fLeft) { | 
 |         if (chopMonoQuadAtX(pts, clip.fLeft, &t)) { | 
 |             SkChopQuadAt(pts, tmp, t); | 
 |             this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse); | 
 |             // clamp to clean up imprecise numerics in the chop | 
 |             tmp[2].fX = clip.fLeft; | 
 |             clamp_ge(tmp[3].fX, clip.fLeft); | 
 |  | 
 |             pts[0] = tmp[2]; | 
 |             pts[1] = tmp[3]; | 
 |         } else { | 
 |             // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the left | 
 |             this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     // are we partially to the right | 
 |     if (pts[2].fX > clip.fRight) { | 
 |         if (chopMonoQuadAtX(pts, clip.fRight, &t)) { | 
 |             SkChopQuadAt(pts, tmp, t); | 
 |             // clamp to clean up imprecise numerics in the chop | 
 |             clamp_le(tmp[1].fX, clip.fRight); | 
 |             tmp[2].fX = clip.fRight; | 
 |  | 
 |             this->appendQuad(tmp, reverse); | 
 |             this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse); | 
 |         } else { | 
 |             // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the right | 
 |             this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); | 
 |         } | 
 |     } else {    // wholly inside the clip | 
 |         this->appendQuad(pts, reverse); | 
 |     } | 
 | } | 
 |  | 
 | bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) { | 
 |     fCurrPoint = fPoints; | 
 |     fCurrVerb = fVerbs; | 
 |  | 
 |     SkRect  bounds; | 
 |     bounds.set(srcPts, 3); | 
 |  | 
 |     if (!quick_reject(bounds, clip)) { | 
 |         SkPoint monoY[5]; | 
 |         int countY = SkChopQuadAtYExtrema(srcPts, monoY); | 
 |         for (int y = 0; y <= countY; y++) { | 
 |             SkPoint monoX[5]; | 
 |             int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX); | 
 |             for (int x = 0; x <= countX; x++) { | 
 |                 this->clipMonoQuad(&monoX[x * 2], clip); | 
 |                 SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); | 
 |                 SkASSERT(fCurrPoint - fPoints <= kMaxPoints); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     *fCurrVerb = SkPath::kDone_Verb; | 
 |     fCurrPoint = fPoints; | 
 |     fCurrVerb = fVerbs; | 
 |     return SkPath::kDone_Verb != fVerbs[0]; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, | 
 |                                  SkScalar D, SkScalar t) { | 
 |     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); | 
 | } | 
 |  | 
 | /*  Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the | 
 |     t value such that cubic(t) = target | 
 |  */ | 
 | static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, | 
 |                            SkScalar target, SkScalar* t) { | 
 |  //   SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); | 
 |     SkASSERT(c0 < target && target < c3); | 
 |  | 
 |     SkScalar D = c0 - target; | 
 |     SkScalar A = c3 + 3*(c1 - c2) - c0; | 
 |     SkScalar B = 3*(c2 - c1 - c1 + c0); | 
 |     SkScalar C = 3*(c1 - c0); | 
 |  | 
 |     const SkScalar TOLERANCE = SK_Scalar1 / 4096; | 
 |     SkScalar minT = 0; | 
 |     SkScalar maxT = SK_Scalar1; | 
 |     SkScalar mid; | 
 |  | 
 |     // This is a lot of iterations. Is there a faster way? | 
 |     for (int i = 0; i < 24; i++) { | 
 |         mid = SkScalarAve(minT, maxT); | 
 |         SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); | 
 |         if (delta < 0) { | 
 |             minT = mid; | 
 |             delta = -delta; | 
 |         } else { | 
 |             maxT = mid; | 
 |         } | 
 |         if (delta < TOLERANCE) { | 
 |             break; | 
 |         } | 
 |     } | 
 |     *t = mid; | 
 | //    SkDebugf("-- evalCubicAt %d delta %g\n", i, eval_cubic_coeff(A, B, C, D, *t)); | 
 |     return true; | 
 | } | 
 |  | 
 | static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) { | 
 |     return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t); | 
 | } | 
 |  | 
 | static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) { | 
 |     return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t); | 
 | } | 
 |  | 
 | // Modify pts[] in place so that it is clipped in Y to the clip rect | 
 | static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) { | 
 |  | 
 |     // are we partially above | 
 |     if (pts[0].fY < clip.fTop) { | 
 |         SkScalar t; | 
 |         if (chopMonoCubicAtY(pts, clip.fTop, &t)) { | 
 |             SkPoint tmp[7]; | 
 |             SkChopCubicAt(pts, tmp, t); | 
 |  | 
 |             // tmp[3, 4, 5].fY should all be to the below clip.fTop. | 
 |             // Since we can't trust the numerics of | 
 |             // the chopper, we force those conditions now | 
 |             tmp[3].fY = clip.fTop; | 
 |             clamp_ge(tmp[4].fY, clip.fTop); | 
 |             clamp_ge(tmp[5].fY, clip.fTop); | 
 |  | 
 |             pts[0] = tmp[3]; | 
 |             pts[1] = tmp[4]; | 
 |             pts[2] = tmp[5]; | 
 |         } else { | 
 |             // if chopMonoCubicAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the top | 
 |             for (int i = 0; i < 4; i++) { | 
 |                 clamp_ge(pts[i].fY, clip.fTop); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // are we partially below | 
 |     if (pts[3].fY > clip.fBottom) { | 
 |         SkScalar t; | 
 |         if (chopMonoCubicAtY(pts, clip.fBottom, &t)) { | 
 |             SkPoint tmp[7]; | 
 |             SkChopCubicAt(pts, tmp, t); | 
 |             tmp[3].fY = clip.fBottom; | 
 |             clamp_le(tmp[2].fY, clip.fBottom); | 
 |  | 
 |             pts[1] = tmp[1]; | 
 |             pts[2] = tmp[2]; | 
 |             pts[3] = tmp[3]; | 
 |         } else { | 
 |             // if chopMonoCubicAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the bottom | 
 |             for (int i = 0; i < 4; i++) { | 
 |                 clamp_le(pts[i].fY, clip.fBottom); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // srcPts[] must be monotonic in X and Y | 
 | void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) { | 
 |     SkPoint pts[4]; | 
 |     bool reverse = sort_increasing_Y(pts, src, 4); | 
 |  | 
 |     // are we completely above or below | 
 |     if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Now chop so that pts is contained within clip in Y | 
 |     chop_cubic_in_Y(pts, clip); | 
 |  | 
 |     if (pts[0].fX > pts[3].fX) { | 
 |         SkTSwap<SkPoint>(pts[0], pts[3]); | 
 |         SkTSwap<SkPoint>(pts[1], pts[2]); | 
 |         reverse = !reverse; | 
 |     } | 
 |  | 
 |     // Now chop in X has needed, and record the segments | 
 |  | 
 |     if (pts[3].fX <= clip.fLeft) {  // wholly to the left | 
 |         this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); | 
 |         return; | 
 |     } | 
 |     if (pts[0].fX >= clip.fRight) {  // wholly to the right | 
 |         this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); | 
 |         return; | 
 |     } | 
 |  | 
 |     // are we partially to the left | 
 |     if (pts[0].fX < clip.fLeft) { | 
 |         SkScalar t; | 
 |         if (chopMonoCubicAtX(pts, clip.fLeft, &t)) { | 
 |             SkPoint tmp[7]; | 
 |             SkChopCubicAt(pts, tmp, t); | 
 |             this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse); | 
 |  | 
 |             // tmp[3, 4, 5].fX should all be to the right of clip.fLeft. | 
 |             // Since we can't trust the numerics of | 
 |             // the chopper, we force those conditions now | 
 |             tmp[3].fX = clip.fLeft; | 
 |             clamp_ge(tmp[4].fX, clip.fLeft); | 
 |             clamp_ge(tmp[5].fX, clip.fLeft); | 
 |  | 
 |             pts[0] = tmp[3]; | 
 |             pts[1] = tmp[4]; | 
 |             pts[2] = tmp[5]; | 
 |         } else { | 
 |             // if chopMonocubicAtY failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the left | 
 |             this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     // are we partially to the right | 
 |     if (pts[3].fX > clip.fRight) { | 
 |         SkScalar t; | 
 |         if (chopMonoCubicAtX(pts, clip.fRight, &t)) { | 
 |             SkPoint tmp[7]; | 
 |             SkChopCubicAt(pts, tmp, t); | 
 |             tmp[3].fX = clip.fRight; | 
 |             clamp_le(tmp[2].fX, clip.fRight); | 
 |             clamp_le(tmp[1].fX, clip.fRight); | 
 |  | 
 |             this->appendCubic(tmp, reverse); | 
 |             this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse); | 
 |         } else { | 
 |             // if chopMonoCubicAtX failed, then we may have hit inexact numerics | 
 |             // so we just clamp against the right | 
 |             this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); | 
 |         } | 
 |     } else {    // wholly inside the clip | 
 |         this->appendCubic(pts, reverse); | 
 |     } | 
 | } | 
 |  | 
 | bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) { | 
 |     fCurrPoint = fPoints; | 
 |     fCurrVerb = fVerbs; | 
 |  | 
 |     SkRect  bounds; | 
 |     bounds.set(srcPts, 4); | 
 |  | 
 |     if (!quick_reject(bounds, clip)) { | 
 |         SkPoint monoY[10]; | 
 |         int countY = SkChopCubicAtYExtrema(srcPts, monoY); | 
 |         for (int y = 0; y <= countY; y++) { | 
 |             SkPoint monoX[10]; | 
 |             int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX); | 
 |             for (int x = 0; x <= countX; x++) { | 
 |                 this->clipMonoCubic(&monoX[x * 3], clip); | 
 |                 SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); | 
 |                 SkASSERT(fCurrPoint - fPoints <= kMaxPoints); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     *fCurrVerb = SkPath::kDone_Verb; | 
 |     fCurrPoint = fPoints; | 
 |     fCurrVerb = fVerbs; | 
 |     return SkPath::kDone_Verb != fVerbs[0]; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1, | 
 |                                 bool reverse) { | 
 |     *fCurrVerb++ = SkPath::kLine_Verb; | 
 |  | 
 |     if (reverse) { | 
 |         SkTSwap<SkScalar>(y0, y1); | 
 |     } | 
 |     fCurrPoint[0].set(x, y0); | 
 |     fCurrPoint[1].set(x, y1); | 
 |     fCurrPoint += 2; | 
 | } | 
 |  | 
 | void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) { | 
 |     *fCurrVerb++ = SkPath::kQuad_Verb; | 
 |  | 
 |     if (reverse) { | 
 |         fCurrPoint[0] = pts[2]; | 
 |         fCurrPoint[2] = pts[0]; | 
 |     } else { | 
 |         fCurrPoint[0] = pts[0]; | 
 |         fCurrPoint[2] = pts[2]; | 
 |     } | 
 |     fCurrPoint[1] = pts[1]; | 
 |     fCurrPoint += 3; | 
 | } | 
 |  | 
 | void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) { | 
 |     *fCurrVerb++ = SkPath::kCubic_Verb; | 
 |  | 
 |     if (reverse) { | 
 |         for (int i = 0; i < 4; i++) { | 
 |             fCurrPoint[i] = pts[3 - i]; | 
 |         } | 
 |     } else { | 
 |         memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint)); | 
 |     } | 
 |     fCurrPoint += 4; | 
 | } | 
 |  | 
 | SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) { | 
 |     SkPath::Verb verb = *fCurrVerb; | 
 |  | 
 |     switch (verb) { | 
 |         case SkPath::kLine_Verb: | 
 |             memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint)); | 
 |             fCurrPoint += 2; | 
 |             fCurrVerb += 1; | 
 |             break; | 
 |         case SkPath::kQuad_Verb: | 
 |             memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint)); | 
 |             fCurrPoint += 3; | 
 |             fCurrVerb += 1; | 
 |             break; | 
 |         case SkPath::kCubic_Verb: | 
 |             memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint)); | 
 |             fCurrPoint += 4; | 
 |             fCurrVerb += 1; | 
 |             break; | 
 |         case SkPath::kDone_Verb: | 
 |             break; | 
 |         default: | 
 |             SkDEBUGFAIL("unexpected verb in quadclippper2 iter"); | 
 |             break; | 
 |     } | 
 |     return verb; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | #ifdef SK_DEBUG | 
 | static void assert_monotonic(const SkScalar coord[], int count) { | 
 |     if (coord[0] > coord[(count - 1) * 2]) { | 
 |         for (int i = 1; i < count; i++) { | 
 |             SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]); | 
 |         } | 
 |     } else if (coord[0] < coord[(count - 1) * 2]) { | 
 |         for (int i = 1; i < count; i++) { | 
 |             SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]); | 
 |         } | 
 |     } else { | 
 |         for (int i = 1; i < count; i++) { | 
 |             SkASSERT(coord[2 * (i - 1)] == coord[i * 2]); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void sk_assert_monotonic_y(const SkPoint pts[], int count) { | 
 |     if (count > 1) { | 
 |         assert_monotonic(&pts[0].fY, count); | 
 |     } | 
 | } | 
 |  | 
 | void sk_assert_monotonic_x(const SkPoint pts[], int count) { | 
 |     if (count > 1) { | 
 |         assert_monotonic(&pts[0].fX, count); | 
 |     } | 
 | } | 
 | #endif |