blob: f1c4d2052d5a4b585f308da369e90fa424c28799 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGr.h"
#include "GrXferProcessor.h"
#include "SkColorFilter.h"
#include "SkConfig8888.h"
#include "SkData.h"
#include "SkMessageBus.h"
#include "SkPixelRef.h"
#include "SkResourceCache.h"
#include "SkTextureCompressor.h"
#include "SkYUVPlanesCache.h"
#include "effects/GrDitherEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrYUVtoRGBEffect.h"
#ifndef SK_IGNORE_ETC1_SUPPORT
# include "ktx.h"
# include "etc1.h"
#endif
/* Fill out buffer with the compressed format Ganesh expects from a colortable
based bitmap. [palette (colortable) + indices].
At the moment Ganesh only supports 8bit version. If Ganesh allowed we others
we could detect that the colortable.count is <= 16, and then repack the
indices as nibbles to save RAM, but it would take more time (i.e. a lot
slower than memcpy), so skipping that for now.
Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big
as the colortable.count says it is.
*/
static void build_index8_data(void* buffer, const SkBitmap& bitmap) {
SkASSERT(kIndex_8_SkColorType == bitmap.colorType());
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
SkDEBUGFAIL("bitmap not ready to draw!");
return;
}
SkColorTable* ctable = bitmap.getColorTable();
char* dst = (char*)buffer;
const int count = ctable->count();
SkDstPixelInfo dstPI;
dstPI.fColorType = kRGBA_8888_SkColorType;
dstPI.fAlphaType = kPremul_SkAlphaType;
dstPI.fPixels = buffer;
dstPI.fRowBytes = count * sizeof(SkPMColor);
SkSrcPixelInfo srcPI;
srcPI.fColorType = kN32_SkColorType;
srcPI.fAlphaType = kPremul_SkAlphaType;
srcPI.fPixels = ctable->readColors();
srcPI.fRowBytes = count * sizeof(SkPMColor);
srcPI.convertPixelsTo(&dstPI, count, 1);
// always skip a full 256 number of entries, even if we memcpy'd fewer
dst += 256 * sizeof(GrColor);
if ((unsigned)bitmap.width() == bitmap.rowBytes()) {
memcpy(dst, bitmap.getPixels(), bitmap.getSize());
} else {
// need to trim off the extra bytes per row
size_t width = bitmap.width();
size_t rowBytes = bitmap.rowBytes();
const char* src = (const char*)bitmap.getPixels();
for (int y = 0; y < bitmap.height(); y++) {
memcpy(dst, src, width);
src += rowBytes;
dst += width;
}
}
}
////////////////////////////////////////////////////////////////////////////////
enum Stretch {
kNo_Stretch,
kBilerp_Stretch,
kNearest_Stretch
};
static Stretch get_stretch_type(const GrContext* ctx, int width, int height,
const GrTextureParams* params) {
if (params && params->isTiled()) {
if (!ctx->npotTextureTileSupport() && (!SkIsPow2(width) || !SkIsPow2(height))) {
switch(params->filterMode()) {
case GrTextureParams::kNone_FilterMode:
return kNearest_Stretch;
case GrTextureParams::kBilerp_FilterMode:
case GrTextureParams::kMipMap_FilterMode:
return kBilerp_Stretch;
}
}
}
return kNo_Stretch;
}
static bool make_resize_key(const GrContentKey& origKey, Stretch stretch, GrContentKey* resizeKey) {
if (origKey.isValid() && kNo_Stretch != stretch) {
static const GrContentKey::Domain kDomain = GrContentKey::GenerateDomain();
GrContentKey::Builder builder(resizeKey, origKey, kDomain, 1);
builder[0] = stretch;
builder.finish();
return true;
}
SkASSERT(!resizeKey->isValid());
return false;
}
static void generate_bitmap_keys(const SkBitmap& bitmap,
Stretch stretch,
GrContentKey* key,
GrContentKey* resizedKey) {
// Our id includes the offset, width, and height so that bitmaps created by extractSubset()
// are unique.
uint32_t genID = bitmap.getGenerationID();
SkIPoint origin = bitmap.pixelRefOrigin();
uint32_t width = SkToU16(bitmap.width());
uint32_t height = SkToU16(bitmap.height());
static const GrContentKey::Domain kDomain = GrContentKey::GenerateDomain();
GrContentKey::Builder builder(key, kDomain, 4);
builder[0] = genID;
builder[1] = origin.fX;
builder[2] = origin.fY;
builder[3] = width | (height << 16);
builder.finish();
if (kNo_Stretch != stretch) {
make_resize_key(*key, stretch, resizedKey);
}
}
static void generate_bitmap_texture_desc(const SkBitmap& bitmap, GrSurfaceDesc* desc) {
desc->fFlags = kNone_GrSurfaceFlags;
desc->fWidth = bitmap.width();
desc->fHeight = bitmap.height();
desc->fConfig = SkImageInfo2GrPixelConfig(bitmap.info());
desc->fSampleCnt = 0;
}
namespace {
// When the SkPixelRef genID changes, invalidate a corresponding GrResource described by key.
class GrResourceInvalidator : public SkPixelRef::GenIDChangeListener {
public:
explicit GrResourceInvalidator(const GrContentKey& key) : fKey(key) {}
private:
GrContentKey fKey;
void onChange() SK_OVERRIDE {
const GrResourceInvalidatedMessage message = { fKey };
SkMessageBus<GrResourceInvalidatedMessage>::Post(message);
}
};
} // namespace
#if 0 // TODO: plug this back up
static void add_genID_listener(const GrContentKey& key, SkPixelRef* pixelRef) {
SkASSERT(pixelRef);
pixelRef->addGenIDChangeListener(SkNEW_ARGS(GrResourceInvalidator, (key)));
}
#endif
static GrTexture* create_texture_for_bmp(GrContext* ctx,
const GrContentKey& optionalKey,
GrSurfaceDesc desc,
const void* pixels,
size_t rowBytes) {
GrTexture* result;
if (optionalKey.isValid() || GrPixelConfigIsCompressed(desc.fConfig)) {
result = ctx->createTexture(desc, pixels, rowBytes);
if (result) {
SkAssertResult(ctx->addResourceToCache(optionalKey, result));
}
} else {
result = ctx->refScratchTexture(desc, GrContext::kExact_ScratchTexMatch);
if (pixels && result) {
result->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, pixels, rowBytes);
}
}
return result;
}
// creates a new texture that is the input texture scaled up to the next power of two in
// width or height. If optionalKey is valid it will be set on the new texture. stretch
// controls whether the scaling is done using nearest or bilerp filtering.
GrTexture* resize_texture(GrTexture* inputTexture, Stretch stretch,
const GrContentKey& optionalKey) {
SkASSERT(kNo_Stretch != stretch);
GrContext* context = inputTexture->getContext();
SkASSERT(context);
// Either it's a cache miss or the original wasn't cached to begin with.
GrSurfaceDesc rtDesc = inputTexture->desc();
rtDesc.fFlags = rtDesc.fFlags |
kRenderTarget_GrSurfaceFlag |
kNoStencil_GrSurfaceFlag;
rtDesc.fWidth = GrNextPow2(rtDesc.fWidth);
rtDesc.fHeight = GrNextPow2(rtDesc.fHeight);
rtDesc.fConfig = GrMakePixelConfigUncompressed(rtDesc.fConfig);
// If the config isn't renderable try converting to either A8 or an 32 bit config. Otherwise,
// fail.
if (!context->isConfigRenderable(rtDesc.fConfig, false)) {
if (GrPixelConfigIsAlphaOnly(rtDesc.fConfig)) {
if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) {
rtDesc.fConfig = kAlpha_8_GrPixelConfig;
} else if (context->isConfigRenderable(kSkia8888_GrPixelConfig, false)) {
rtDesc.fConfig = kSkia8888_GrPixelConfig;
} else {
return NULL;
}
} else if (kRGB_GrColorComponentFlags ==
(kRGB_GrColorComponentFlags & GrPixelConfigComponentMask(rtDesc.fConfig))) {
if (context->isConfigRenderable(kSkia8888_GrPixelConfig, false)) {
rtDesc.fConfig = kSkia8888_GrPixelConfig;
} else {
return NULL;
}
} else {
return NULL;
}
}
GrTexture* resized = create_texture_for_bmp(context, optionalKey, rtDesc, NULL, 0);
if (!resized) {
return NULL;
}
GrPaint paint;
// If filtering is not desired then we want to ensure all texels in the resampled image are
// copies of texels from the original.
GrTextureParams params(SkShader::kClamp_TileMode,
kBilerp_Stretch == stretch ? GrTextureParams::kBilerp_FilterMode :
GrTextureParams::kNone_FilterMode);
paint.addColorTextureProcessor(inputTexture, SkMatrix::I(), params);
SkRect rect = SkRect::MakeWH(SkIntToScalar(rtDesc.fWidth), SkIntToScalar(rtDesc.fHeight));
SkRect localRect = SkRect::MakeWH(1.f, 1.f);
GrContext::AutoRenderTarget autoRT(context, resized->asRenderTarget());
GrContext::AutoClip ac(context, GrContext::AutoClip::kWideOpen_InitialClip);
context->drawNonAARectToRect(paint, SkMatrix::I(), rect, localRect);
return resized;
}
#ifndef SK_IGNORE_ETC1_SUPPORT
static GrTexture *load_etc1_texture(GrContext* ctx, const GrContentKey& optionalKey,
const SkBitmap &bm, GrSurfaceDesc desc) {
SkAutoTUnref<SkData> data(bm.pixelRef()->refEncodedData());
// Is this even encoded data?
if (NULL == data) {
return NULL;
}
// Is this a valid PKM encoded data?
const uint8_t *bytes = data->bytes();
if (etc1_pkm_is_valid(bytes)) {
uint32_t encodedWidth = etc1_pkm_get_width(bytes);
uint32_t encodedHeight = etc1_pkm_get_height(bytes);
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (encodedWidth != static_cast<uint32_t>(bm.width()) ||
encodedHeight != static_cast<uint32_t>(bm.height())) {
return NULL;
}
// Everything seems good... skip ahead to the data.
bytes += ETC_PKM_HEADER_SIZE;
desc.fConfig = kETC1_GrPixelConfig;
} else if (SkKTXFile::is_ktx(bytes)) {
SkKTXFile ktx(data);
// Is it actually an ETC1 texture?
if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) {
return NULL;
}
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (ktx.width() != bm.width() || ktx.height() != bm.height()) {
return NULL;
}
bytes = ktx.pixelData();
desc.fConfig = kETC1_GrPixelConfig;
} else {
return NULL;
}
return create_texture_for_bmp(ctx, optionalKey, desc, bytes, 0);
}
#endif // SK_IGNORE_ETC1_SUPPORT
static GrTexture* load_yuv_texture(GrContext* ctx, const GrContentKey& optionalKey,
const SkBitmap& bm, const GrSurfaceDesc& desc) {
// Subsets are not supported, the whole pixelRef is loaded when using YUV decoding
SkPixelRef* pixelRef = bm.pixelRef();
if ((NULL == pixelRef) ||
(pixelRef->info().width() != bm.info().width()) ||
(pixelRef->info().height() != bm.info().height())) {
return NULL;
}
const bool useCache = optionalKey.isValid();
SkYUVPlanesCache::Info yuvInfo;
SkAutoTUnref<SkCachedData> cachedData;
SkAutoMalloc storage;
if (useCache) {
cachedData.reset(SkYUVPlanesCache::FindAndRef(pixelRef->getGenerationID(), &yuvInfo));
}
void* planes[3];
if (cachedData.get()) {
planes[0] = (void*)cachedData->data();
planes[1] = (uint8_t*)planes[0] + yuvInfo.fSizeInMemory[0];
planes[2] = (uint8_t*)planes[1] + yuvInfo.fSizeInMemory[1];
} else {
// Fetch yuv plane sizes for memory allocation. Here, width and height can be
// rounded up to JPEG block size and be larger than the image's width and height.
if (!pixelRef->getYUV8Planes(yuvInfo.fSize, NULL, NULL, NULL)) {
return NULL;
}
// Allocate the memory for YUV
size_t totalSize(0);
for (int i = 0; i < 3; ++i) {
yuvInfo.fRowBytes[i] = yuvInfo.fSize[i].fWidth;
yuvInfo.fSizeInMemory[i] = yuvInfo.fRowBytes[i] * yuvInfo.fSize[i].fHeight;
totalSize += yuvInfo.fSizeInMemory[i];
}
if (useCache) {
cachedData.reset(SkResourceCache::NewCachedData(totalSize));
planes[0] = cachedData->writable_data();
} else {
storage.reset(totalSize);
planes[0] = storage.get();
}
planes[1] = (uint8_t*)planes[0] + yuvInfo.fSizeInMemory[0];
planes[2] = (uint8_t*)planes[1] + yuvInfo.fSizeInMemory[1];
// Get the YUV planes and update plane sizes to actual image size
if (!pixelRef->getYUV8Planes(yuvInfo.fSize, planes, yuvInfo.fRowBytes,
&yuvInfo.fColorSpace)) {
return NULL;
}
if (useCache) {
// Decoding is done, cache the resulting YUV planes
SkYUVPlanesCache::Add(pixelRef->getGenerationID(), cachedData, &yuvInfo);
}
}
GrSurfaceDesc yuvDesc;
yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
SkAutoTUnref<GrTexture> yuvTextures[3];
for (int i = 0; i < 3; ++i) {
yuvDesc.fWidth = yuvInfo.fSize[i].fWidth;
yuvDesc.fHeight = yuvInfo.fSize[i].fHeight;
yuvTextures[i].reset(
ctx->refScratchTexture(yuvDesc, GrContext::kApprox_ScratchTexMatch));
if (!yuvTextures[i] ||
!yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight,
yuvDesc.fConfig, planes[i], yuvInfo.fRowBytes[i])) {
return NULL;
}
}
GrSurfaceDesc rtDesc = desc;
rtDesc.fFlags = rtDesc.fFlags |
kRenderTarget_GrSurfaceFlag |
kNoStencil_GrSurfaceFlag;
GrTexture* result = create_texture_for_bmp(ctx, optionalKey, rtDesc, NULL, 0);
if (!result) {
return NULL;
}
GrRenderTarget* renderTarget = result->asRenderTarget();
SkASSERT(renderTarget);
SkAutoTUnref<GrFragmentProcessor>
yuvToRgbProcessor(GrYUVtoRGBEffect::Create(yuvTextures[0], yuvTextures[1], yuvTextures[2],
yuvInfo.fColorSpace));
GrPaint paint;
paint.addColorProcessor(yuvToRgbProcessor);
SkRect r = SkRect::MakeWH(SkIntToScalar(yuvInfo.fSize[0].fWidth),
SkIntToScalar(yuvInfo.fSize[0].fHeight));
GrContext::AutoRenderTarget autoRT(ctx, renderTarget);
GrContext::AutoClip ac(ctx, GrContext::AutoClip::kWideOpen_InitialClip);
ctx->drawRect(paint, SkMatrix::I(), r);
return result;
}
static GrTexture* create_unstretched_bitmap_texture(GrContext* ctx,
const SkBitmap& origBitmap,
const GrContentKey& optionalKey) {
SkBitmap tmpBitmap;
const SkBitmap* bitmap = &origBitmap;
GrSurfaceDesc desc;
generate_bitmap_texture_desc(*bitmap, &desc);
if (kIndex_8_SkColorType == bitmap->colorType()) {
if (ctx->isConfigTexturable(kIndex_8_GrPixelConfig)) {
size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig,
bitmap->width(), bitmap->height());
SkAutoMalloc storage(imageSize);
build_index8_data(storage.get(), origBitmap);
// our compressed data will be trimmed, so pass width() for its
// "rowBytes", since they are the same now.
return create_texture_for_bmp(ctx, optionalKey, desc, storage.get(), bitmap->width());
} else {
origBitmap.copyTo(&tmpBitmap, kN32_SkColorType);
// now bitmap points to our temp, which has been promoted to 32bits
bitmap = &tmpBitmap;
desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info());
}
}
// Is this an ETC1 encoded texture?
#ifndef SK_IGNORE_ETC1_SUPPORT
// Make sure that the underlying device supports ETC1 textures before we go ahead
// and check the data.
else if (ctx->isConfigTexturable(kETC1_GrPixelConfig)
// If the bitmap had compressed data and was then uncompressed, it'll still return
// compressed data on 'refEncodedData' and upload it. Probably not good, since if
// the bitmap has available pixels, then they might not be what the decompressed
// data is.
&& !(bitmap->readyToDraw())) {
GrTexture *texture = load_etc1_texture(ctx, optionalKey, *bitmap, desc);
if (texture) {
return texture;
}
}
#endif // SK_IGNORE_ETC1_SUPPORT
GrTexture *texture = load_yuv_texture(ctx, optionalKey, *bitmap, desc);
if (texture) {
return texture;
}
SkAutoLockPixels alp(*bitmap);
if (!bitmap->readyToDraw()) {
return NULL;
}
return create_texture_for_bmp(ctx, optionalKey, desc, bitmap->getPixels(), bitmap->rowBytes());
}
static GrTexture* create_bitmap_texture(GrContext* ctx,
const SkBitmap& bmp,
Stretch stretch,
const GrContentKey& unstretchedKey,
const GrContentKey& stretchedKey) {
if (kNo_Stretch != stretch) {
SkAutoTUnref<GrTexture> unstretched;
// Check if we have the unstretched version in the cache, if not create it.
if (unstretchedKey.isValid()) {
unstretched.reset(ctx->findAndRefCachedTexture(unstretchedKey));
}
if (!unstretched) {
unstretched.reset(create_unstretched_bitmap_texture(ctx, bmp, unstretchedKey));
if (!unstretched) {
return NULL;
}
}
GrTexture* resized = resize_texture(unstretched, stretch, stretchedKey);
return resized;
}
return create_unstretched_bitmap_texture(ctx, bmp, unstretchedKey);
}
bool GrIsBitmapInCache(const GrContext* ctx,
const SkBitmap& bitmap,
const GrTextureParams* params) {
Stretch stretch = get_stretch_type(ctx, bitmap.width(), bitmap.height(), params);
// Handle the case where the bitmap is explicitly texture backed.
GrTexture* texture = bitmap.getTexture();
if (texture) {
if (kNo_Stretch == stretch) {
return true;
}
// No keys for volatile bitmaps.
if (bitmap.isVolatile()) {
return false;
}
const GrContentKey& key = texture->getContentKey();
if (!key.isValid()) {
return false;
}
GrContentKey resizedKey;
make_resize_key(key, stretch, &resizedKey);
return ctx->isResourceInCache(resizedKey);
}
// We don't cache volatile bitmaps
if (bitmap.isVolatile()) {
return false;
}
GrContentKey key, resizedKey;
generate_bitmap_keys(bitmap, stretch, &key, &resizedKey);
return ctx->isResourceInCache((kNo_Stretch == stretch) ? key : resizedKey);
}
GrTexture* GrRefCachedBitmapTexture(GrContext* ctx,
const SkBitmap& bitmap,
const GrTextureParams* params) {
Stretch stretch = get_stretch_type(ctx, bitmap.width(), bitmap.height(), params);
GrTexture* result = bitmap.getTexture();
if (result) {
if (kNo_Stretch == stretch) {
return SkRef(result);
}
GrContentKey resizedKey;
// Don't create a key for the resized version if the bmp is volatile.
if (!bitmap.isVolatile()) {
const GrContentKey& key = result->getContentKey();
if (key.isValid()) {
make_resize_key(key, stretch, &resizedKey);
GrTexture* stretched = ctx->findAndRefCachedTexture(resizedKey);
if (stretched) {
return stretched;
}
}
}
return resize_texture(result, stretch, resizedKey);
}
GrContentKey key, resizedKey;
if (!bitmap.isVolatile()) {
// If the bitmap isn't changing try to find a cached copy first.
generate_bitmap_keys(bitmap, stretch, &key, &resizedKey);
result = ctx->findAndRefCachedTexture(resizedKey.isValid() ? resizedKey : key);
if (result) {
return result;
}
}
result = create_bitmap_texture(ctx, bitmap, stretch, key, resizedKey);
if (result) {
return result;
}
SkDebugf("---- failed to create texture for cache [%d %d]\n",
bitmap.width(), bitmap.height());
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
// alphatype is ignore for now, but if GrPixelConfig is expanded to encompass
// alpha info, that will be considered.
GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType, SkColorProfileType pt) {
switch (ct) {
case kUnknown_SkColorType:
return kUnknown_GrPixelConfig;
case kAlpha_8_SkColorType:
return kAlpha_8_GrPixelConfig;
case kRGB_565_SkColorType:
return kRGB_565_GrPixelConfig;
case kARGB_4444_SkColorType:
return kRGBA_4444_GrPixelConfig;
case kRGBA_8888_SkColorType:
// if (kSRGB_SkColorProfileType == pt) {
// return kSRGBA_8888_GrPixelConfig;
// }
return kRGBA_8888_GrPixelConfig;
case kBGRA_8888_SkColorType:
return kBGRA_8888_GrPixelConfig;
case kIndex_8_SkColorType:
return kIndex_8_GrPixelConfig;
}
SkASSERT(0); // shouldn't get here
return kUnknown_GrPixelConfig;
}
bool GrPixelConfig2ColorAndProfileType(GrPixelConfig config, SkColorType* ctOut,
SkColorProfileType* ptOut) {
SkColorType ct;
SkColorProfileType pt = kLinear_SkColorProfileType;
switch (config) {
case kAlpha_8_GrPixelConfig:
ct = kAlpha_8_SkColorType;
break;
case kIndex_8_GrPixelConfig:
ct = kIndex_8_SkColorType;
break;
case kRGB_565_GrPixelConfig:
ct = kRGB_565_SkColorType;
break;
case kRGBA_4444_GrPixelConfig:
ct = kARGB_4444_SkColorType;
break;
case kRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
case kSRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
pt = kSRGB_SkColorProfileType;
break;
default:
return false;
}
if (ctOut) {
*ctOut = ct;
}
if (ptOut) {
*ptOut = pt;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
void SkPaint2GrPaintNoShader(GrContext* context, const SkPaint& skPaint, GrColor paintColor,
bool constantColor, GrPaint* grPaint) {
grPaint->setDither(skPaint.isDither());
grPaint->setAntiAlias(skPaint.isAntiAlias());
SkXfermode* mode = skPaint.getXfermode();
GrXPFactory* xpFactory = NULL;
if (!SkXfermode::AsXPFactory(mode, &xpFactory)) {
// Fall back to src-over
xpFactory = GrPorterDuffXPFactory::Create(SkXfermode::kSrcOver_Mode);
}
SkASSERT(xpFactory);
grPaint->setXPFactory(xpFactory)->unref();
//set the color of the paint to the one of the parameter
grPaint->setColor(paintColor);
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
// if the source color is a constant then apply the filter here once rather than per pixel
// in a shader.
if (constantColor) {
SkColor filtered = colorFilter->filterColor(skPaint.getColor());
grPaint->setColor(SkColor2GrColor(filtered));
} else {
SkAutoTUnref<GrFragmentProcessor> fp(colorFilter->asFragmentProcessor(context));
if (fp.get()) {
grPaint->addColorProcessor(fp);
}
}
}
#ifndef SK_IGNORE_GPU_DITHER
// If the dither flag is set, then we need to see if the underlying context
// supports it. If not, then install a dither effect.
if (skPaint.isDither() && grPaint->numColorStages() > 0) {
// What are we rendering into?
const GrRenderTarget *target = context->getRenderTarget();
SkASSERT(target);
// Suspect the dithering flag has no effect on these configs, otherwise
// fall back on setting the appropriate state.
if (target->config() == kRGBA_8888_GrPixelConfig ||
target->config() == kBGRA_8888_GrPixelConfig) {
// The dither flag is set and the target is likely
// not going to be dithered by the GPU.
SkAutoTUnref<GrFragmentProcessor> fp(GrDitherEffect::Create());
if (fp.get()) {
grPaint->addColorProcessor(fp);
grPaint->setDither(false);
}
}
}
#endif
}
void SkPaint2GrPaintShader(GrContext* context, const SkPaint& skPaint, const SkMatrix& viewM,
bool constantColor, GrPaint* grPaint) {
SkShader* shader = skPaint.getShader();
if (NULL == shader) {
SkPaint2GrPaintNoShader(context, skPaint, SkColor2GrColor(skPaint.getColor()),
constantColor, grPaint);
return;
}
GrColor paintColor = SkColor2GrColor(skPaint.getColor());
// Start a new block here in order to preserve our context state after calling
// asFragmentProcessor(). Since these calls get passed back to the client, we don't really
// want them messing around with the context.
{
// SkShader::asFragmentProcessor() may do offscreen rendering. Save off the current RT,
// and clip
GrContext::AutoRenderTarget art(context, NULL);
GrContext::AutoClip ac(context, GrContext::AutoClip::kWideOpen_InitialClip);
// Allow the shader to modify paintColor and also create an effect to be installed as
// the first color effect on the GrPaint.
GrFragmentProcessor* fp = NULL;
if (shader->asFragmentProcessor(context, skPaint, viewM, NULL, &paintColor, &fp) && fp) {
grPaint->addColorProcessor(fp)->unref();
constantColor = false;
}
}
// The grcolor is automatically set when calling asFragmentProcessor.
// If the shader can be seen as an effect it returns true and adds its effect to the grpaint.
SkPaint2GrPaintNoShader(context, skPaint, paintColor, constantColor, grPaint);
}