blob: ec2c46b511c3a3fb5a9418391b56d3174fda158b [file] [log] [blame]
/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/dawn/GrDawnGpu.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrContextOptions.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrGpuResourceCacheAccess.h"
#include "src/gpu/GrMesh.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrRenderTargetPriv.h"
#include "src/gpu/GrSemaphore.h"
#include "src/gpu/GrStencilSettings.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/dawn/GrDawnBuffer.h"
#include "src/gpu/dawn/GrDawnCaps.h"
#include "src/gpu/dawn/GrDawnOpsRenderPass.h"
#include "src/gpu/dawn/GrDawnProgramBuilder.h"
#include "src/gpu/dawn/GrDawnRenderTarget.h"
#include "src/gpu/dawn/GrDawnStencilAttachment.h"
#include "src/gpu/dawn/GrDawnTexture.h"
#include "src/gpu/dawn/GrDawnUtil.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkMipMap.h"
#include "src/sksl/SkSLCompiler.h"
#if !defined(SK_BUILD_FOR_WIN)
#include <unistd.h>
#endif // !defined(SK_BUILD_FOR_WIN)
const int kMaxRenderPipelineEntries = 1024;
static wgpu::FilterMode to_dawn_filter_mode(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::Filter::kNearest:
return wgpu::FilterMode::Nearest;
case GrSamplerState::Filter::kBilerp:
case GrSamplerState::Filter::kMipMap:
return wgpu::FilterMode::Linear;
default:
SkASSERT(!"unsupported filter mode");
return wgpu::FilterMode::Nearest;
}
}
static wgpu::AddressMode to_dawn_address_mode(GrSamplerState::WrapMode wrapMode) {
switch (wrapMode) {
case GrSamplerState::WrapMode::kClamp:
return wgpu::AddressMode::ClampToEdge;
case GrSamplerState::WrapMode::kRepeat:
return wgpu::AddressMode::Repeat;
case GrSamplerState::WrapMode::kMirrorRepeat:
return wgpu::AddressMode::MirrorRepeat;
case GrSamplerState::WrapMode::kClampToBorder:
SkASSERT(!"unsupported address mode");
}
SkASSERT(!"unsupported address mode");
return wgpu::AddressMode::ClampToEdge;
}
sk_sp<GrGpu> GrDawnGpu::Make(const wgpu::Device& device,
const GrContextOptions& options, GrContext* context) {
if (!device) {
return nullptr;
}
return sk_sp<GrGpu>(new GrDawnGpu(context, options, device));
}
////////////////////////////////////////////////////////////////////////////////
GrDawnGpu::GrDawnGpu(GrContext* context, const GrContextOptions& options,
const wgpu::Device& device)
: INHERITED(context)
, fDevice(device)
, fQueue(device.CreateQueue())
, fCompiler(new SkSL::Compiler())
, fUniformRingBuffer(this, wgpu::BufferUsage::Uniform)
, fRenderPipelineCache(kMaxRenderPipelineEntries)
, fStagingManager(fDevice) {
fCaps.reset(new GrDawnCaps(options));
}
GrDawnGpu::~GrDawnGpu() {
}
void GrDawnGpu::disconnect(DisconnectType type) {
SkASSERT(!"unimplemented");
}
///////////////////////////////////////////////////////////////////////////////
GrOpsRenderPass* GrDawnGpu::getOpsRenderPass(
GrRenderTarget* rt, GrSurfaceOrigin origin, const SkIRect& bounds,
const GrOpsRenderPass::LoadAndStoreInfo& colorInfo,
const GrOpsRenderPass::StencilLoadAndStoreInfo& stencilInfo,
const SkTArray<GrSurfaceProxy*, true>& sampledProxies) {
fOpsRenderPass.reset(new GrDawnOpsRenderPass(this, rt, origin, colorInfo, stencilInfo));
return fOpsRenderPass.get();
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpuBuffer> GrDawnGpu::onCreateBuffer(size_t size, GrGpuBufferType type,
GrAccessPattern accessPattern, const void* data) {
sk_sp<GrGpuBuffer> b(new GrDawnBuffer(this, size, type, accessPattern));
if (data && b) {
b->updateData(data, size);
}
return b;
}
////////////////////////////////////////////////////////////////////////////////
bool GrDawnGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType srcColorType,
const GrMipLevel texels[], int mipLevelCount,
bool prepForTexSampling) {
GrDawnTexture* texture = static_cast<GrDawnTexture*>(surface->asTexture());
if (!texture) {
return false;
}
texture->upload(srcColorType, texels, mipLevelCount,
SkIRect::MakeXYWH(left, top, width, height), this->getCopyEncoder());
return true;
}
bool GrDawnGpu::onTransferPixelsTo(GrTexture* texture, int left, int top, int width, int height,
GrColorType textureColorType, GrColorType bufferColorType,
GrGpuBuffer* transferBuffer, size_t bufferOffset,
size_t rowBytes) {
SkASSERT(!"unimplemented");
return false;
}
bool GrDawnGpu::onTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType bufferColorType,
GrGpuBuffer* transferBuffer, size_t offset) {
SkASSERT(!"unimplemented");
return false;
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<GrTexture> GrDawnGpu::onCreateTexture(const GrSurfaceDesc& desc,
const GrBackendFormat& backendFormat,
GrRenderable renderable,
int renderTargetSampleCnt,
SkBudgeted budgeted,
GrProtected,
int mipLevelCount,
uint32_t levelClearMask) {
SkASSERT(!levelClearMask);
wgpu::TextureFormat format;
if (!backendFormat.asDawnFormat(&format)) {
return nullptr;
}
GrMipMapsStatus mipMapsStatus =
mipLevelCount > 1 ? GrMipMapsStatus::kDirty : GrMipMapsStatus::kNotAllocated;
return GrDawnTexture::Make(this, { desc.fWidth, desc.fHeight },
format, renderable,
renderTargetSampleCnt, budgeted, mipLevelCount,
mipMapsStatus);
}
sk_sp<GrTexture> GrDawnGpu::onCreateCompressedTexture(SkISize dimensions, const GrBackendFormat&,
SkBudgeted, GrMipMapped, GrProtected,
const void* data, size_t dataSize) {
SkASSERT(!"unimplemented");
return nullptr;
}
sk_sp<GrTexture> GrDawnGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrColorType colorType,
GrWrapOwnership ownership,
GrWrapCacheable cacheable,
GrIOType) {
GrDawnImageInfo info;
if (!backendTex.getDawnImageInfo(&info)) {
return nullptr;
}
SkISize dimensions = { backendTex.width(), backendTex.height() };
GrMipMapsStatus status = GrMipMapsStatus::kNotAllocated;
return GrDawnTexture::MakeWrapped(this, dimensions, GrRenderable::kNo, 1, status, cacheable,
info);
}
sk_sp<GrTexture> GrDawnGpu::onWrapCompressedBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
return nullptr;
}
sk_sp<GrTexture> GrDawnGpu::onWrapRenderableBackendTexture(const GrBackendTexture& tex,
int sampleCnt, GrColorType colorType,
GrWrapOwnership,
GrWrapCacheable cacheable) {
GrDawnImageInfo info;
if (!tex.getDawnImageInfo(&info) || !info.fTexture) {
return nullptr;
}
SkISize dimensions = { tex.width(), tex.height() };
sampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.getBackendFormat());
if (sampleCnt < 1) {
return nullptr;
}
GrMipMapsStatus status = GrMipMapsStatus::kNotAllocated;
return GrDawnTexture::MakeWrapped(this, dimensions, GrRenderable::kYes, sampleCnt, status,
cacheable, info);
}
sk_sp<GrRenderTarget> GrDawnGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& rt,
GrColorType colorType) {
GrDawnImageInfo info;
if (!rt.getDawnImageInfo(&info) && !info.fTexture) {
return nullptr;
}
SkISize dimensions = { rt.width(), rt.height() };
int sampleCnt = 1;
return GrDawnRenderTarget::MakeWrapped(this, dimensions, sampleCnt, info);
}
sk_sp<GrRenderTarget> GrDawnGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex,
int sampleCnt,
GrColorType colorType) {
GrDawnImageInfo info;
if (!tex.getDawnImageInfo(&info) || !info.fTexture) {
return nullptr;
}
SkISize dimensions = { tex.width(), tex.height() };
sampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.getBackendFormat());
if (sampleCnt < 1) {
return nullptr;
}
return GrDawnRenderTarget::MakeWrapped(this, dimensions, sampleCnt, info);
}
GrStencilAttachment* GrDawnGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt,
int width,
int height,
int numStencilSamples) {
GrDawnStencilAttachment* stencil(GrDawnStencilAttachment::Create(this,
width,
height,
numStencilSamples));
fStats.incStencilAttachmentCreates();
return stencil;
}
GrBackendTexture GrDawnGpu::onCreateBackendTexture(SkISize dimensions,
const GrBackendFormat& backendFormat,
GrRenderable renderable,
GrMipMapped mipMapped,
GrProtected isProtected,
const BackendTextureData* data) {
wgpu::TextureFormat format;
if (!backendFormat.asDawnFormat(&format)) {
return GrBackendTexture();
}
// FIXME: Dawn doesn't support mipmapped render targets (yet).
if (mipMapped == GrMipMapped::kYes && GrRenderable::kYes == renderable) {
return GrBackendTexture();
}
wgpu::TextureDescriptor desc;
desc.usage =
wgpu::TextureUsage::Sampled |
wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::CopyDst;
if (GrRenderable::kYes == renderable) {
desc.usage |= wgpu::TextureUsage::OutputAttachment;
}
int numMipLevels = 1;
if (mipMapped == GrMipMapped::kYes) {
numMipLevels = SkMipMap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1;
}
desc.size.width = dimensions.width();
desc.size.height = dimensions.height();
desc.size.depth = 1;
desc.format = format;
desc.mipLevelCount = numMipLevels;
wgpu::Texture tex = this->device().CreateTexture(&desc);
size_t bpp = GrDawnBytesPerPixel(format);
size_t baseLayerSize = bpp * dimensions.width() * dimensions.height();
const void* pixels;
SkAutoMalloc defaultStorage(baseLayerSize);
if (data && data->type() == BackendTextureData::Type::kPixmaps) {
pixels = data->pixmap(0).addr();
} else {
pixels = defaultStorage.get();
memset(defaultStorage.get(), 0, baseLayerSize);
}
wgpu::Device device = this->device();
wgpu::CommandEncoder copyEncoder = fDevice.CreateCommandEncoder();
int w = dimensions.width(), h = dimensions.height();
for (uint32_t i = 0; i < desc.mipLevelCount; i++) {
size_t origRowBytes = bpp * w;
size_t rowBytes = GrDawnRoundRowBytes(origRowBytes);
size_t size = rowBytes * h;
GrDawnStagingBuffer* stagingBuffer = this->getStagingBuffer(size);
if (rowBytes == origRowBytes) {
memcpy(stagingBuffer->fData, pixels, size);
} else {
const char* src = static_cast<const char*>(pixels);
char* dst = static_cast<char*>(stagingBuffer->fData);
for (int row = 0; row < h; row++) {
memcpy(dst, src, origRowBytes);
dst += rowBytes;
src += origRowBytes;
}
}
wgpu::Buffer buffer = stagingBuffer->fBuffer;
buffer.Unmap();
stagingBuffer->fData = nullptr;
wgpu::BufferCopyView srcBuffer;
srcBuffer.buffer = buffer;
srcBuffer.offset = 0;
srcBuffer.rowPitch = rowBytes;
srcBuffer.imageHeight = h;
wgpu::TextureCopyView dstTexture;
dstTexture.texture = tex;
dstTexture.mipLevel = i;
dstTexture.origin = {0, 0, 0};
wgpu::Extent3D copySize = {(uint32_t) w, (uint32_t) h, 1};
copyEncoder.CopyBufferToTexture(&srcBuffer, &dstTexture, &copySize);
w = SkTMax(1, w / 2);
h = SkTMax(1, h / 2);
}
wgpu::CommandBuffer cmdBuf = copyEncoder.Finish();
fQueue.Submit(1, &cmdBuf);
GrDawnImageInfo info;
info.fTexture = tex;
info.fFormat = desc.format;
info.fLevelCount = desc.mipLevelCount;
return GrBackendTexture(dimensions.width(), dimensions.height(), info);
}
GrBackendTexture GrDawnGpu::onCreateCompressedBackendTexture(SkISize dimensions,
const GrBackendFormat&,
GrMipMapped,
GrProtected,
const BackendTextureData*) {
return {};
}
void GrDawnGpu::deleteBackendTexture(const GrBackendTexture& tex) {
GrDawnImageInfo info;
if (tex.getDawnImageInfo(&info)) {
info.fTexture = nullptr;
}
}
#if GR_TEST_UTILS
bool GrDawnGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const {
GrDawnImageInfo info;
if (!tex.getDawnImageInfo(&info)) {
return false;
}
return info.fTexture.Get();
}
GrBackendRenderTarget GrDawnGpu::createTestingOnlyBackendRenderTarget(int width, int height,
GrColorType colorType) {
if (width > this->caps()->maxTextureSize() || height > this->caps()->maxTextureSize()) {
return GrBackendRenderTarget();
}
wgpu::TextureFormat format;
if (!GrColorTypeToDawnFormat(colorType, &format)) {
return GrBackendRenderTarget();
}
wgpu::TextureDescriptor desc;
desc.usage =
wgpu::TextureUsage::CopySrc |
wgpu::TextureUsage::OutputAttachment;
desc.size.width = width;
desc.size.height = height;
desc.size.depth = 1;
desc.format = format;
wgpu::Texture tex = this->device().CreateTexture(&desc);
GrDawnImageInfo info;
info.fTexture = tex;
info.fFormat = desc.format;
info.fLevelCount = desc.mipLevelCount;
return GrBackendRenderTarget(width, height, 1, 0, info);
}
void GrDawnGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& rt) {
GrDawnImageInfo info;
if (rt.getDawnImageInfo(&info)) {
info.fTexture = nullptr;
}
}
void GrDawnGpu::testingOnly_flushGpuAndSync() {
this->flush();
}
#endif
void GrDawnGpu::flush() {
this->flushCopyEncoder();
if (!fCommandBuffers.empty()) {
fQueue.Submit(fCommandBuffers.size(), &fCommandBuffers.front());
fCommandBuffers.clear();
}
fStagingManager.mapBusyList();
fDevice.Tick();
}
bool GrDawnGpu::onFinishFlush(GrSurfaceProxy*[], int n, SkSurface::BackendSurfaceAccess access,
const GrFlushInfo& info, const GrPrepareForExternalIORequests&) {
this->flush();
return true;
}
static wgpu::Texture get_dawn_texture_from_surface(GrSurface* src) {
if (auto rt = static_cast<GrDawnRenderTarget*>(src->asRenderTarget())) {
return rt->texture();
} else if (auto t = static_cast<GrDawnTexture*>(src->asTexture())) {
return t->texture();
} else {
return nullptr;
}
}
bool GrDawnGpu::onCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
wgpu::Texture srcTexture = get_dawn_texture_from_surface(src);
wgpu::Texture dstTexture = get_dawn_texture_from_surface(dst);
if (!srcTexture || !dstTexture) {
return false;
}
uint32_t width = srcRect.width(), height = srcRect.height();
wgpu::TextureCopyView srcTextureView, dstTextureView;
srcTextureView.texture = srcTexture;
srcTextureView.origin = {(uint32_t) srcRect.x(), (uint32_t) srcRect.y(), 0};
dstTextureView.texture = dstTexture;
dstTextureView.origin = {(uint32_t) dstPoint.x(), (uint32_t) dstPoint.y(), 0};
wgpu::Extent3D copySize = {width, height, 1};
this->getCopyEncoder().CopyTextureToTexture(&srcTextureView, &dstTextureView, &copySize);
return true;
}
static void callback(WGPUBufferMapAsyncStatus status, const void* data, uint64_t dataLength,
void* userdata) {
(*reinterpret_cast<const void**>(userdata)) = data;
}
bool GrDawnGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType surfaceColorType, GrColorType dstColorType, void* buffer,
size_t rowBytes) {
wgpu::Texture tex = get_dawn_texture_from_surface(surface);
if (0 == rowBytes) {
return false;
}
size_t origRowBytes = rowBytes;
int origSizeInBytes = origRowBytes * height;
rowBytes = GrDawnRoundRowBytes(rowBytes);
int sizeInBytes = rowBytes * height;
wgpu::BufferDescriptor desc;
desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead;
desc.size = sizeInBytes;
wgpu::Buffer buf = device().CreateBuffer(&desc);
wgpu::TextureCopyView srcTexture;
srcTexture.texture = tex;
srcTexture.origin = {(uint32_t) left, (uint32_t) top, 0};
wgpu::BufferCopyView dstBuffer;
dstBuffer.buffer = buf;
dstBuffer.offset = 0;
dstBuffer.rowPitch = rowBytes;
dstBuffer.imageHeight = height;
wgpu::Extent3D copySize = {(uint32_t) width, (uint32_t) height, 1};
this->getCopyEncoder().CopyTextureToBuffer(&srcTexture, &dstBuffer, &copySize);
flush();
const void *readPixelsPtr = nullptr;
buf.MapReadAsync(callback, &readPixelsPtr);
while (!readPixelsPtr) {
device().Tick();
}
if (rowBytes == origRowBytes) {
memcpy(buffer, readPixelsPtr, origSizeInBytes);
} else {
const char* src = static_cast<const char*>(readPixelsPtr);
char* dst = static_cast<char*>(buffer);
for (int row = 0; row < height; row++) {
memcpy(dst, src, origRowBytes);
dst += origRowBytes;
src += rowBytes;
}
}
buf.Unmap();
return true;
}
bool GrDawnGpu::onRegenerateMipMapLevels(GrTexture*) {
SkASSERT(!"unimplemented");
return false;
}
void GrDawnGpu::submit(GrOpsRenderPass* renderPass) {
this->flushCopyEncoder();
static_cast<GrDawnOpsRenderPass*>(renderPass)->submit();
}
GrFence SK_WARN_UNUSED_RESULT GrDawnGpu::insertFence() {
SkASSERT(!"unimplemented");
return GrFence();
}
bool GrDawnGpu::waitFence(GrFence fence, uint64_t timeout) {
SkASSERT(!"unimplemented");
return false;
}
void GrDawnGpu::deleteFence(GrFence fence) const {
SkASSERT(!"unimplemented");
}
std::unique_ptr<GrSemaphore> SK_WARN_UNUSED_RESULT GrDawnGpu::makeSemaphore(bool isOwned) {
SkASSERT(!"unimplemented");
return nullptr;
}
std::unique_ptr<GrSemaphore> GrDawnGpu::wrapBackendSemaphore(
const GrBackendSemaphore& semaphore,
GrResourceProvider::SemaphoreWrapType wrapType,
GrWrapOwnership ownership) {
SkASSERT(!"unimplemented");
return nullptr;
}
void GrDawnGpu::insertSemaphore(GrSemaphore* semaphore) {
SkASSERT(!"unimplemented");
}
void GrDawnGpu::waitSemaphore(GrSemaphore* semaphore) {
SkASSERT(!"unimplemented");
}
void GrDawnGpu::checkFinishProcs() {
SkASSERT(!"unimplemented");
}
std::unique_ptr<GrSemaphore> GrDawnGpu::prepareTextureForCrossContextUsage(GrTexture* texture) {
SkASSERT(!"unimplemented");
return nullptr;
}
sk_sp<GrDawnProgram> GrDawnGpu::getOrCreateRenderPipeline(
GrRenderTarget* rt,
const GrProgramInfo& programInfo) {
GrProgramDesc desc = this->caps()->makeDesc(rt, programInfo);
if (!desc.isValid()) {
return nullptr;
}
if (sk_sp<GrDawnProgram>* program = fRenderPipelineCache.find(desc)) {
return *program;
}
wgpu::TextureFormat colorFormat;
SkAssertResult(programInfo.backendFormat().asDawnFormat(&colorFormat));
wgpu::TextureFormat stencilFormat = wgpu::TextureFormat::Depth24PlusStencil8;
bool hasDepthStencil = rt->renderTargetPriv().getStencilAttachment() != nullptr;
sk_sp<GrDawnProgram> program = GrDawnProgramBuilder::Build(
this, rt, programInfo, colorFormat,
hasDepthStencil, stencilFormat, &desc);
fRenderPipelineCache.insert(desc, program);
return program;
}
wgpu::Sampler GrDawnGpu::getOrCreateSampler(GrSamplerState samplerState) {
auto i = fSamplers.find(samplerState);
if (i != fSamplers.end()) {
return i->second;
}
wgpu::SamplerDescriptor desc;
desc.addressModeU = to_dawn_address_mode(samplerState.wrapModeX());
desc.addressModeV = to_dawn_address_mode(samplerState.wrapModeY());
desc.addressModeW = wgpu::AddressMode::ClampToEdge;
desc.magFilter = desc.minFilter = to_dawn_filter_mode(samplerState.filter());
desc.mipmapFilter = wgpu::FilterMode::Linear;
desc.lodMinClamp = 0.0f;
desc.lodMaxClamp = 1000.0f;
desc.compare = wgpu::CompareFunction::Never;
wgpu::Sampler sampler = device().CreateSampler(&desc);
fSamplers.insert(std::pair<GrSamplerState, wgpu::Sampler>(samplerState, sampler));
return sampler;
}
GrDawnRingBuffer::Slice GrDawnGpu::allocateUniformRingBufferSlice(int size) {
return fUniformRingBuffer.allocate(size);
}
GrDawnStagingBuffer* GrDawnGpu::getStagingBuffer(size_t size) {
return fStagingManager.findOrCreateStagingBuffer(size);
}
void GrDawnGpu::appendCommandBuffer(wgpu::CommandBuffer commandBuffer) {
if (commandBuffer) {
fCommandBuffers.push_back(commandBuffer);
}
}
wgpu::CommandEncoder GrDawnGpu::getCopyEncoder() {
if (!fCopyEncoder) {
fCopyEncoder = fDevice.CreateCommandEncoder();
}
return fCopyEncoder;
}
void GrDawnGpu::flushCopyEncoder() {
if (fCopyEncoder) {
fCommandBuffers.push_back(fCopyEncoder.Finish());
fCopyEncoder = nullptr;
}
}