blob: 71f6f51c0f04d6e44b9aba258b431bea2ad68d89 [file] [log] [blame]
/*
* Copyright 2009 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState_opts_SSE2.h"
#include "SkBitmapProcState_utils.h"
#include "SkColorData.h"
#include "SkTo.h"
#include <emmintrin.h>
// Temporarily go into 64bit so we don't overflow during the add. Since we shift down by 16
// in the end, the result should always fit back in 32bits.
static inline int32_t safe_fixed_add_shift(SkFixed a, SkFixed b) {
int64_t tmp = a;
return SkToS32((tmp + b) >> 16);
}
static inline uint32_t ClampX_ClampY_pack_filter(SkFixed f, unsigned max,
SkFixed one) {
unsigned i = SkClampMax(f >> 16, max);
i = (i << 4) | ((f >> 12) & 0xF);
return (i << 14) | SkClampMax(safe_fixed_add_shift(f, one), max);
}
/* SSE version of ClampX_ClampY_filter_scale()
* portable version is in core/SkBitmapProcState_matrix.h
*/
void ClampX_ClampY_filter_scale_SSE2(const SkBitmapProcState& s, uint32_t xy[],
int count, int x, int y) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
const unsigned maxX = s.fPixmap.width() - 1;
const SkFixed one = s.fFilterOneX;
const SkFixed dx = s.fInvSx;
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const SkFixed fy = mapper.fixedY();
const unsigned maxY = s.fPixmap.height() - 1;
// compute our two Y values up front
*xy++ = ClampX_ClampY_pack_filter(fy, maxY, s.fFilterOneY);
// now initialize fx
SkFixed fx = mapper.fixedX();
// test if we don't need to apply the tile proc
if (can_truncate_to_fixed_for_decal(fx, dx, count, maxX)) {
if (count >= 4) {
// SSE version of decal_filter_scale
while ((size_t(xy) & 0x0F) != 0) {
SkASSERT((fx >> (16 + 14)) == 0);
*xy++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
count--;
}
__m128i wide_1 = _mm_set1_epi32(1);
__m128i wide_dx4 = _mm_set1_epi32(dx * 4);
__m128i wide_fx = _mm_set_epi32(fx + dx * 3, fx + dx * 2,
fx + dx, fx);
while (count >= 4) {
__m128i wide_out;
wide_out = _mm_slli_epi32(_mm_srai_epi32(wide_fx, 12), 14);
wide_out = _mm_or_si128(wide_out, _mm_add_epi32(
_mm_srai_epi32(wide_fx, 16), wide_1));
_mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_out);
xy += 4;
fx += dx * 4;
wide_fx = _mm_add_epi32(wide_fx, wide_dx4);
count -= 4;
} // while count >= 4
} // if count >= 4
while (count-- > 0) {
SkASSERT((fx >> (16 + 14)) == 0);
*xy++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
} else {
// SSE2 only support 16bit interger max & min, so only process the case
// maxX less than the max 16bit interger. Actually maxX is the bitmap's
// height, there should be rare bitmap whose height will be greater
// than max 16bit interger in the real world.
if ((count >= 4) && (maxX <= 0xFFFF)) {
while (((size_t)xy & 0x0F) != 0) {
*xy++ = ClampX_ClampY_pack_filter(fx, maxX, one);
fx += dx;
count--;
}
__m128i wide_fx = _mm_set_epi32(fx + dx * 3, fx + dx * 2,
fx + dx, fx);
__m128i wide_dx4 = _mm_set1_epi32(dx * 4);
__m128i wide_one = _mm_set1_epi32(one);
__m128i wide_maxX = _mm_set1_epi32(maxX);
__m128i wide_mask = _mm_set1_epi32(0xF);
while (count >= 4) {
__m128i wide_i;
__m128i wide_lo;
__m128i wide_fx1;
// i = SkClampMax(f>>16,maxX)
wide_i = _mm_max_epi16(_mm_srli_epi32(wide_fx, 16),
_mm_setzero_si128());
wide_i = _mm_min_epi16(wide_i, wide_maxX);
// i<<4 | EXTRACT_LOW_BITS(fx)
wide_lo = _mm_srli_epi32(wide_fx, 12);
wide_lo = _mm_and_si128(wide_lo, wide_mask);
wide_i = _mm_slli_epi32(wide_i, 4);
wide_i = _mm_or_si128(wide_i, wide_lo);
// i<<14
wide_i = _mm_slli_epi32(wide_i, 14);
// SkClampMax(((f+one))>>16,max)
wide_fx1 = _mm_add_epi32(wide_fx, wide_one);
wide_fx1 = _mm_max_epi16(_mm_srli_epi32(wide_fx1, 16),
_mm_setzero_si128());
wide_fx1 = _mm_min_epi16(wide_fx1, wide_maxX);
// final combination
wide_i = _mm_or_si128(wide_i, wide_fx1);
_mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_i);
wide_fx = _mm_add_epi32(wide_fx, wide_dx4);
fx += dx * 4;
xy += 4;
count -= 4;
} // while count >= 4
} // if count >= 4
/*
while (count-- > 0) {
*xy++ = ClampX_ClampY_pack_filter(fx, maxX, one);
fx += dx;
}
We'd like to write this as above, but that form allows fx to get 1-iteration too big/small
when count is 0, and this can trigger a UBSAN error, even though we won't in fact use that
last (undefined) value for fx.
Here is an alternative that should always be efficient, but seems much harder to read:
if (count > 0) {
for (;;) {
*xy++ = ClampX_ClampY_pack_filter(fx, maxX, one);
if (--count == 0) break;
fx += dx;
}
}
For now, we'll try this variant: more compact than the if/for version, and we hope the
compiler will get rid of the integer multiply.
*/
for (int i = 0; i < count; ++i) {
*xy++ = ClampX_ClampY_pack_filter(fx + i*dx, maxX, one);
}
}
}
/* SSE version of ClampX_ClampY_nofilter_scale()
* portable version is in core/SkBitmapProcState_matrix.h
*/
void ClampX_ClampY_nofilter_scale_SSE2(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
SkMatrix::kScale_Mask)) == 0);
// we store y, x, x, x, x, x
const unsigned maxX = s.fPixmap.width() - 1;
const SkBitmapProcStateAutoMapper mapper(s, x, y);
const unsigned maxY = s.fPixmap.height() - 1;
*xy++ = SkClampMax(mapper.intY(), maxY);
SkFixed fx = mapper.fixedX();
if (0 == maxX) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
const SkFixed dx = s.fInvSx;
// test if we don't need to apply the tile proc
if ((unsigned)(fx >> 16) <= maxX &&
(unsigned)((fx + dx * (count - 1)) >> 16) <= maxX) {
// SSE version of decal_nofilter_scale
if (count >= 8) {
while (((size_t)xy & 0x0F) != 0) {
*xy++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += 2 * dx;
count -= 2;
}
__m128i wide_dx4 = _mm_set1_epi32(dx * 4);
__m128i wide_dx8 = _mm_add_epi32(wide_dx4, wide_dx4);
__m128i wide_low = _mm_set_epi32(fx + dx * 3, fx + dx * 2,
fx + dx, fx);
__m128i wide_high = _mm_add_epi32(wide_low, wide_dx4);
while (count >= 8) {
__m128i wide_out_low = _mm_srli_epi32(wide_low, 16);
__m128i wide_out_high = _mm_srli_epi32(wide_high, 16);
__m128i wide_result = _mm_packs_epi32(wide_out_low,
wide_out_high);
_mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_result);
wide_low = _mm_add_epi32(wide_low, wide_dx8);
wide_high = _mm_add_epi32(wide_high, wide_dx8);
xy += 4;
fx += dx * 8;
count -= 8;
}
} // if count >= 8
uint16_t* xx = reinterpret_cast<uint16_t*>(xy);
while (count-- > 0) {
*xx++ = SkToU16(fx >> 16);
fx += dx;
}
} else {
// SSE2 only support 16bit interger max & min, so only process the case
// maxX less than the max 16bit interger. Actually maxX is the bitmap's
// height, there should be rare bitmap whose height will be greater
// than max 16bit interger in the real world.
if ((count >= 8) && (maxX <= 0xFFFF)) {
while (((size_t)xy & 0x0F) != 0) {
*xy++ = pack_two_shorts(SkClampMax((fx + dx) >> 16, maxX),
SkClampMax(fx >> 16, maxX));
fx += 2 * dx;
count -= 2;
}
__m128i wide_dx4 = _mm_set1_epi32(dx * 4);
__m128i wide_dx8 = _mm_add_epi32(wide_dx4, wide_dx4);
__m128i wide_low = _mm_set_epi32(fx + dx * 3, fx + dx * 2,
fx + dx, fx);
__m128i wide_high = _mm_add_epi32(wide_low, wide_dx4);
__m128i wide_maxX = _mm_set1_epi32(maxX);
while (count >= 8) {
__m128i wide_out_low = _mm_srli_epi32(wide_low, 16);
__m128i wide_out_high = _mm_srli_epi32(wide_high, 16);
wide_out_low = _mm_max_epi16(wide_out_low,
_mm_setzero_si128());
wide_out_low = _mm_min_epi16(wide_out_low, wide_maxX);
wide_out_high = _mm_max_epi16(wide_out_high,
_mm_setzero_si128());
wide_out_high = _mm_min_epi16(wide_out_high, wide_maxX);
__m128i wide_result = _mm_packs_epi32(wide_out_low,
wide_out_high);
_mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_result);
wide_low = _mm_add_epi32(wide_low, wide_dx8);
wide_high = _mm_add_epi32(wide_high, wide_dx8);
xy += 4;
fx += dx * 8;
count -= 8;
}
} // if count >= 8
uint16_t* xx = reinterpret_cast<uint16_t*>(xy);
while (count-- > 0) {
*xx++ = SkClampMax(fx >> 16, maxX);
fx += dx;
}
}
}