blob: 72fccb842dadaf2f7b9979cbc4d4d0bad0c07eed [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "include/core/SkTypes.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkSpan_impl.h"
#include "include/private/base/SkTemplates.h"
#include "modules/skcms/skcms.h"
#include "src/base/SkUtils.h" // unaligned_{load,store}
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkRasterPipelineContextUtils.h"
#include "src/sksl/tracing/SkSLTraceHook.h"
#include <cstdint>
#include <type_traits>
// Every function in this file should be marked static and inline using SI.
#if defined(__clang__)
#define SI __attribute__((always_inline)) static inline
#else
#define SI static inline
#endif
#if defined(__clang__)
#define SK_UNROLL _Pragma("unroll")
#else
#define SK_UNROLL
#endif
template <typename Dst, typename Src>
SI Dst widen_cast(const Src& src) {
static_assert(sizeof(Dst) > sizeof(Src));
static_assert(std::is_trivially_copyable<Dst>::value);
static_assert(std::is_trivially_copyable<Src>::value);
Dst dst;
memcpy(&dst, &src, sizeof(Src));
return dst;
}
struct Ctx {
SkRasterPipelineStage* fStage;
template <typename T>
operator T*() {
return (T*)fStage->ctx;
}
};
using NoCtx = const void*;
#if !defined(__clang__)
#define JUMPER_IS_SCALAR
#elif defined(SK_ARM_HAS_NEON)
#define JUMPER_IS_NEON
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
#define JUMPER_IS_HSW
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
#define JUMPER_IS_AVX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#define JUMPER_IS_SSE41
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define JUMPER_IS_SSE2
#else
#define JUMPER_IS_SCALAR
#endif
// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
// Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
#if defined(__apple_build_version__) && __clang_major__ < 9
#define JUMPER_IS_SCALAR
#elif __clang_major__ < 5
#define JUMPER_IS_SCALAR
#endif
#if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
#undef JUMPER_IS_NEON
#endif
#endif
#if defined(JUMPER_IS_SCALAR)
#include <math.h>
#elif defined(JUMPER_IS_NEON)
#include <arm_neon.h>
#else
#include <immintrin.h>
#endif
// Notes:
// * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
// 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
// requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
// Intel this requires one additional step because its estimate has 12 bit precision.
//
// * Don't call rcp_approx or rsqrt_approx directly; only use rcp_fast and rsqrt.
namespace SK_OPTS_NS {
#if defined(JUMPER_IS_SCALAR)
// This path should lead to portable scalar code.
using F = float ;
using I32 = int32_t;
using U64 = uint64_t;
using U32 = uint32_t;
using U16 = uint16_t;
using U8 = uint8_t ;
SI F min(F a, F b) { return fminf(a,b); }
SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
SI F max(F a, F b) { return fmaxf(a,b); }
SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
SI F mad(F f, F m, F a) { return f*m+a; }
SI F abs_ (F v) { return fabsf(v); }
SI I32 abs_ (I32 v) { return v < 0 ? -v : v; }
SI F floor_(F v) { return floorf(v); }
SI F ceil_(F v) { return ceilf(v); }
SI F rcp_approx(F v) { return 1.0f / v; } // use rcp_fast instead
SI F rsqrt_approx(F v) { return 1.0f / sqrtf(v); }
SI F sqrt_ (F v) { return sqrtf(v); }
SI F rcp_precise (F v) { return 1.0f / v; }
SI U32 round(F v) { return (uint32_t)(v + 0.5f); }
SI U32 round(F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
SI U16 pack(U32 v) { return (U16)v; }
SI U8 pack(U16 v) { return (U8)v; }
SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
SI bool any(I32 c) { return c != 0; }
SI bool all(I32 c) { return c != 0; }
template <typename T>
SI T gather(const T* p, U32 ix) { return p[ix]; }
template <typename T>
SI void scatter_masked(T src, T* dst, U32 ix, I32 mask) {
dst[ix] = mask ? src : dst[ix];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
*r = ptr[0];
*g = ptr[1];
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
ptr[0] = r;
ptr[1] = g;
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(float* ptr, F r, F g, F b, F a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
#elif defined(JUMPER_IS_NEON)
// Since we know we're using Clang, we can use its vector extensions.
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
// We polyfill a few routines that Clang doesn't build into ext_vector_types.
SI F min(F a, F b) { return vminq_f32(a,b); }
SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
SI F max(F a, F b) { return vmaxq_f32(a,b); }
SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
SI F abs_ (F v) { return vabsq_f32(v); }
SI I32 abs_ (I32 v) { return vabsq_s32(v); }
SI F rcp_approx(F v) { auto e = vrecpeq_f32(v); return vrecpsq_f32 (v,e ) * e; }
SI F rcp_precise(F v) { auto e = rcp_approx(v); return vrecpsq_f32 (v,e ) * e; }
SI F rsqrt_approx(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
#if defined(SK_CPU_ARM64)
SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
SI F floor_(F v) { return vrndmq_f32(v); }
SI F ceil_(F v) { return vrndpq_f32(v); }
SI F sqrt_(F v) { return vsqrtq_f32(v); }
SI U32 round(F v) { return vcvtnq_u32_f32(v); }
SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
#else
SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
SI F floor_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
}
SI F ceil_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip + if_then_else(roundtrip < v, 1, 0);
}
SI F sqrt_(F v) {
auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
e *= vrsqrtsq_f32(v,e*e);
e *= vrsqrtsq_f32(v,e*e);
return v*e; // sqrt(v) == v*rsqrt(v).
}
SI U32 round(F v) {
return vcvtq_u32_f32(v + 0.5f);
}
SI U32 round(F v, F scale) {
return vcvtq_u32_f32(mad(v,scale,0.5f));
}
#endif
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
template <typename V, typename S>
SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
V before = gather(dst, ix);
V after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
uint16x4x2_t rg = vld2_u16(ptr);
*r = rg.val[0];
*g = rg.val[1];
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
uint16x4x4_t rgba = vld4_u16(ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
float32x4x4_t rgba = vld4q_f32(ptr);
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(float* ptr, F r, F g, F b, F a) {
vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
}
#elif defined(JUMPER_IS_HSW)
// These are __m256 and __m256i, but friendlier and strongly-typed.
template <typename T> using V = T __attribute__((ext_vector_type(8)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); }
SI F min(F a, F b) { return _mm256_min_ps(a,b); }
SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); }
SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); }
SI F max(F a, F b) { return _mm256_max_ps(a,b); }
SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); }
SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); }
SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
SI I32 abs_ (I32 v) { return _mm256_abs_epi32(v); }
SI F floor_(F v) { return _mm256_floor_ps(v); }
SI F ceil_(F v) { return _mm256_ceil_ps(v); }
SI F rcp_approx(F v) { return _mm256_rcp_ps (v); } // use rcp_fast instead
SI F rsqrt_approx(F v) { return _mm256_rsqrt_ps(v); }
SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); }
SI F rcp_precise (F v) {
F e = rcp_approx(v);
return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
}
SI U32 round(F v) { return _mm256_cvtps_epi32(v); }
SI U32 round(F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
_mm256_extractf128_si256(v, 1));
}
SI U8 pack(U16 v) {
auto r = _mm_packus_epi16(v,v);
return sk_unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
// NOTE: This version of 'all' only works with mask values (true == all bits set)
SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); }
SI bool all(I32 c) { return _mm256_testc_si256(c, _mm256_set1_epi32(-1)); }
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
}
SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
SI U64 gather(const uint64_t* p, U32 ix) {
__m256i parts[] = {
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
};
return sk_bit_cast<U64>(parts);
}
template <typename V, typename S>
SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
V before = gather(dst, ix);
V after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
dst[ix[4]] = after[4];
dst[ix[5]] = after[5];
dst[ix[6]] = after[6];
dst[ix[7]] = after[7];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
U16 _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0),
_4567 = _mm_loadu_si128(((__m128i*)ptr) + 1);
*r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
_mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
*g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16),
_mm_srai_epi32(_4567, 16));
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
auto _0123 = _mm_unpacklo_epi16(r, g),
_4567 = _mm_unpackhi_epi16(r, g);
_mm_storeu_si128((__m128i*)ptr + 0, _0123);
_mm_storeu_si128((__m128i*)ptr + 1, _4567);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0),
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1),
_45 = _mm_loadu_si128(((__m128i*)ptr) + 2),
_67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
_46 = _mm_unpacklo_epi16(_45, _67),
_57 = _mm_unpackhi_epi16(_45, _67);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
rg4567 = _mm_unpacklo_epi16(_46, _57),
ba4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(ba0123, ba4567);
*a = _mm_unpackhi_epi64(ba0123, ba4567);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
ba0123 = _mm_unpacklo_epi16(b, a),
ba4567 = _mm_unpackhi_epi16(b, a);
auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
_23 = _mm_unpackhi_epi32(rg0123, ba0123),
_45 = _mm_unpacklo_epi32(rg4567, ba4567),
_67 = _mm_unpackhi_epi32(rg4567, ba4567);
_mm_storeu_si128((__m128i*)ptr + 0, _01);
_mm_storeu_si128((__m128i*)ptr + 1, _23);
_mm_storeu_si128((__m128i*)ptr + 2, _45);
_mm_storeu_si128((__m128i*)ptr + 3, _67);
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _04 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 0)),
_15 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 4)),
_26 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 8)),
_37 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+12));
_04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
_15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
_26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
_37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
ba0145 = _mm256_unpackhi_ps(_04,_15),
rg2367 = _mm256_unpacklo_ps(_26,_37),
ba2367 = _mm256_unpackhi_ps(_26,_37);
*r = _mm256_unpacklo_pd(rg0145, rg2367);
*g = _mm256_unpackhi_pd(rg0145, rg2367);
*b = _mm256_unpacklo_pd(ba0145, ba2367);
*a = _mm256_unpackhi_pd(ba0145, ba2367);
}
SI void store4(float* ptr, F r, F g, F b, F a) {
F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
_15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
_26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
_37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
_23 = _mm256_permute2f128_ps(_26, _37, 32),
_45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
_67 = _mm256_permute2f128_ps(_26, _37, 49);
_mm256_storeu_ps(ptr+ 0, _01);
_mm256_storeu_ps(ptr+ 8, _23);
_mm256_storeu_ps(ptr+16, _45);
_mm256_storeu_ps(ptr+24, _67);
}
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F if_then_else(I32 c, F t, F e) {
return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
}
SI F min(F a, F b) { return _mm_min_ps(a,b); }
SI F max(F a, F b) { return _mm_max_ps(a,b); }
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); }
SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); }
SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); }
SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); }
#else
SI I32 min(I32 a, I32 b) {
return sk_bit_cast<I32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
SI U32 min(U32 a, U32 b) {
return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
SI I32 max(I32 a, I32 b) {
return sk_bit_cast<I32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
SI U32 max(U32 a, U32 b) {
return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
}
#endif
SI F mad(F f, F m, F a) { return f*m+a; }
SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
SI I32 abs_(I32 v) { return _mm_abs_epi32(v); }
#else
SI I32 abs_(I32 v) { return max(v, -v); }
#endif
SI F rcp_approx(F v) { return _mm_rcp_ps (v); } // use rcp_fast instead
SI F rcp_precise (F v) { F e = rcp_approx(v); return e * (2.0f - v * e); }
SI F rsqrt_approx(F v) { return _mm_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
SI U32 round(F v) { return _mm_cvtps_epi32(v); }
SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
auto p = _mm_packus_epi32(v,v);
#else
// Sign extend so that _mm_packs_epi32() does the pack we want.
auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
p = _mm_packs_epi32(p,p);
#endif
return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
}
SI U8 pack(U16 v) {
auto r = widen_cast<__m128i>(v);
r = _mm_packus_epi16(r,r);
return sk_unaligned_load<U8>(&r);
}
// NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
SI bool any(I32 c) { return _mm_movemask_ps(c) != 0b0000; }
SI bool all(I32 c) { return _mm_movemask_ps(c) == 0b1111; }
SI F floor_(F v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_floor_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
#endif
}
SI F ceil_(F v) {
#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_ceil_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip + if_then_else(roundtrip < v, 1, 0);
#endif
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
template <typename V, typename S>
SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
V before = gather(dst, ix);
V after = if_then_else(mask, src, before);
dst[ix[0]] = after[0];
dst[ix[1]] = after[1];
dst[ix[2]] = after[2];
dst[ix[3]] = after[3];
}
SI void load2(const uint16_t* ptr, U16* r, U16* g) {
__m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
}
SI void store2(uint16_t* ptr, U16 r, U16 g) {
U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
_mm_storeu_si128((__m128i*)ptr + 0, rg);
}
SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
__m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0), // r0 g0 b0 a0 r1 g1 b1 a1
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
*r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
*g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
*b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
*a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
}
SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
_mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
_mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
}
SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
F _0 = _mm_loadu_ps(ptr + 0),
_1 = _mm_loadu_ps(ptr + 4),
_2 = _mm_loadu_ps(ptr + 8),
_3 = _mm_loadu_ps(ptr +12);
_MM_TRANSPOSE4_PS(_0,_1,_2,_3);
*r = _0;
*g = _1;
*b = _2;
*a = _3;
}
SI void store4(float* ptr, F r, F g, F b, F a) {
_MM_TRANSPOSE4_PS(r,g,b,a);
_mm_storeu_ps(ptr + 0, r);
_mm_storeu_ps(ptr + 4, g);
_mm_storeu_ps(ptr + 8, b);
_mm_storeu_ps(ptr +12, a);
}
#endif
// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER_IS_SCALAR)
SI F cast (U32 v) { return (F)v; }
SI F cast64(U64 v) { return (F)v; }
SI U32 trunc_(F v) { return (U32)v; }
SI U32 expand(U16 v) { return (U32)v; }
SI U32 expand(U8 v) { return (U32)v; }
#else
SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
#endif
template <typename V>
SI V if_then_else(I32 c, V t, V e) {
return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e)));
}
SI F fract(F v) { return v - floor_(v); }
// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html
SI F approx_log2(F x) {
// e - 127 is a fair approximation of log2(x) in its own right...
F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
// ... but using the mantissa to refine its error is _much_ better.
F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
return e
- 124.225514990f
- 1.498030302f * m
- 1.725879990f / (0.3520887068f + m);
}
SI F approx_log(F x) {
const float ln2 = 0.69314718f;
return ln2 * approx_log2(x);
}
SI F approx_pow2(F x) {
constexpr float kInfinityBits = 0x7f800000;
F f = fract(x);
F approx = x + 121.274057500f;
approx -= f * 1.490129070f;
approx += 27.728023300f / (4.84252568f - f);
approx *= 1.0f * (1<<23);
approx = min(max(approx, F(0)), kInfinityBits); // guard against underflow/overflow
return sk_bit_cast<F>(round(approx));
}
SI F approx_exp(F x) {
const float log2_e = 1.4426950408889634074f;
return approx_pow2(log2_e * x);
}
SI F approx_powf(F x, F y) {
return if_then_else((x == 0)|(x == 1), x
, approx_pow2(approx_log2(x) * y));
}
SI F from_half(U16 h) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
&& !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f32_f16(h);
#elif defined(JUMPER_IS_HSW)
return _mm256_cvtph_ps(h);
#else
// Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
U32 sem = expand(h),
s = sem & 0x8000,
em = sem ^ s;
// Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
return if_then_else(denorm, F(0)
, sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
#endif
}
SI U16 to_half(F f) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
&& !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f16_f32(f);
#elif defined(JUMPER_IS_HSW)
return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
#else
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
U32 sem = sk_bit_cast<U32>(f),
s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
return pack(if_then_else(denorm, U32(0)
, (s>>16) + (em>>13) - ((127-15)<<10)));
#endif
}
static void patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
size_t dx, size_t dy, size_t tail) {
for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
if (patch.info.load) {
memcpy(patch.scratch, ctxData, patch.info.bytesPerPixel * tail);
}
SkASSERT(patch.backup == nullptr);
void* scratchFakeBase = SkTAddOffset<void>(patch.scratch, -offset);
patch.backup = ctx->pixels;
ctx->pixels = scratchFakeBase;
}
}
static void restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
size_t dx, size_t dy, size_t tail) {
for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
SkASSERT(patch.backup != nullptr);
ctx->pixels = patch.backup;
patch.backup = nullptr;
const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
if (patch.info.store) {
memcpy(ctxData, patch.scratch, patch.info.bytesPerPixel * tail);
}
}
}
#if defined(JUMPER_IS_SCALAR) || defined(JUMPER_IS_SSE2)
// In scalar and SSE2 mode, we always use precise math so we can have more predictable results.
// Chrome will use the SSE2 implementation when --disable-skia-runtime-opts is set. (b/40042946)
SI F rcp_fast(F v) { return rcp_precise(v); }
SI F rsqrt(F v) { return rcp_precise(sqrt_(v)); }
#else
SI F rcp_fast(F v) { return rcp_approx(v); }
SI F rsqrt(F v) { return rsqrt_approx(v); }
#endif
// Our fundamental vector depth is our pixel stride.
static constexpr size_t N = sizeof(F) / sizeof(float);
// We're finally going to get to what a Stage function looks like!
// tail == 0 ~~> work on a full N pixels
// tail != 0 ~~> work on only the first tail pixels
// tail is always < N.
// Any custom ABI to use for all (non-externally-facing) stage functions?
// Also decide here whether to use narrow (compromise) or wide (ideal) stages.
#if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
// This lets us pass vectors more efficiently on 32-bit ARM.
// We can still only pass 16 floats, so best as 4x {r,g,b,a}.
#define ABI __attribute__((pcs("aapcs-vfp")))
#define JUMPER_NARROW_STAGES 1
#elif defined(_MSC_VER)
// Even if not vectorized, this lets us pass {r,g,b,a} as registers,
// instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
#define ABI __vectorcall
#define JUMPER_NARROW_STAGES 1
#elif defined(__x86_64__) || defined(SK_CPU_ARM64)
// These platforms are ideal for wider stages, and their default ABI is ideal.
#define ABI
#define JUMPER_NARROW_STAGES 0
#else
// 32-bit or unknown... shunt them down the narrow path.
// Odds are these have few registers and are better off there.
#define ABI
#define JUMPER_NARROW_STAGES 1
#endif
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy, tail;
std::byte* base;
F dr,dg,db,da;
};
using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
#else
using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy,
std::byte* base, F,F,F,F, F,F,F,F);
#endif
static void start_pipeline(size_t dx, size_t dy,
size_t xlimit, size_t ylimit,
SkRasterPipelineStage* program,
SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches) {
auto start = (Stage)program->fn;
const size_t x0 = dx;
std::byte* const base = nullptr;
for (; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,0,base, 0,0,0,0 };
while (params.dx + N <= xlimit) {
start(&params,program, 0,0,0,0);
params.dx += N;
}
if (size_t tail = xlimit - params.dx) {
patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
params.tail = tail;
start(&params,program, 0,0,0,0);
restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
}
#else
dx = x0;
while (dx + N <= xlimit) {
start(0,program,dx,dy,base, 0,0,0,0, 0,0,0,0);
dx += N;
}
if (size_t tail = xlimit - dx) {
patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
start(tail,program,dx,dy,base, 0,0,0,0, 0,0,0,0);
restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
}
#endif
}
}
#if SK_HAS_MUSTTAIL
#define JUMPER_MUSTTAIL [[clang::musttail]]
#else
#define JUMPER_MUSTTAIL
#endif
#if JUMPER_NARROW_STAGES
#define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(Params* params, SkRasterPipelineStage* program, \
F r, F g, F b, F a) { \
OFFSET name##_k(Ctx{program}, params->dx,params->dy,params->tail,params->base, \
r,g,b,a, params->dr, params->dg, params->db, params->da); \
INC; \
auto fn = (Stage)program->fn; \
MUSTTAIL return fn(params, program, r,g,b,a); \
} \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
#define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \
std::byte* base, F r, F g, F b, F a, F dr, F dg, F db, F da) { \
OFFSET name##_k(Ctx{program}, dx,dy,tail,base, r,g,b,a, dr,dg,db,da); \
INC; \
auto fn = (Stage)program->fn; \
MUSTTAIL return fn(tail, program, dx,dy,base, r,g,b,a, dr,dg,db,da); \
} \
SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// A typical stage returns void, always increments the program counter by 1, and lets the optimizer
// decide whether or not tail-calling is appropriate.
#define STAGE(name, arg) \
DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
// A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
// Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
// could overflow the stack (particularly in debug).
#define STAGE_TAIL(name, arg) \
DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL)
// A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
#define STAGE_BRANCH(name, arg) \
DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL)
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
#else
static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, std::byte*,
F,F,F,F, F,F,F,F) {}
#endif
// Note that in release builds, most stages consume no stack (thanks to tail call optimization).
// However: certain builds (especially with non-clang compilers) may fail to optimize tail
// calls, resulting in actual stack frames being generated.
//
// stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
// If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
// the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
//
// All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
// a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
// full state of the mutable registers that are normally passed to the next stage in the program.
//
// stack_rewind is the only stage other than just_return that actually returns (rather than jumping
// to the next stage in the program). Before it does so, it stashes all of the registers in the
// context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
// stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
// context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
// rather than a just_return).
//
// Normally, just_return is the only stage that returns, and no other stage does anything after a
// subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
// With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
// stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
// context), and continues the linear execution of stages, but has reclaimed all of the stack frames
// pushed before the stack_rewind before doing so.
#if JUMPER_NARROW_STAGES
static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
F r, F g, F b, F a) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
while (program) {
auto next = (Stage)(++program)->fn;
ctx->stage = nullptr;
next(params, program, r, g, b, a);
program = ctx->stage;
if (program) {
r = sk_unaligned_load<F>(ctx->r );
g = sk_unaligned_load<F>(ctx->g );
b = sk_unaligned_load<F>(ctx->b );
a = sk_unaligned_load<F>(ctx->a );
params->dr = sk_unaligned_load<F>(ctx->dr);
params->dg = sk_unaligned_load<F>(ctx->dg);
params->db = sk_unaligned_load<F>(ctx->db);
params->da = sk_unaligned_load<F>(ctx->da);
params->base = ctx->base;
}
}
}
static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
F r, F g, F b, F a) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
sk_unaligned_store(ctx->r , r );
sk_unaligned_store(ctx->g , g );
sk_unaligned_store(ctx->b , b );
sk_unaligned_store(ctx->a , a );
sk_unaligned_store(ctx->dr, params->dr);
sk_unaligned_store(ctx->dg, params->dg);
sk_unaligned_store(ctx->db, params->db);
sk_unaligned_store(ctx->da, params->da);
ctx->base = params->base;
ctx->stage = program;
}
#else
static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program,
size_t dx, size_t dy, std::byte* base,
F r, F g, F b, F a, F dr, F dg, F db, F da) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
while (program) {
auto next = (Stage)(++program)->fn;
ctx->stage = nullptr;
next(tail, program, dx, dy, base, r, g, b, a, dr, dg, db, da);
program = ctx->stage;
if (program) {
r = sk_unaligned_load<F>(ctx->r );
g = sk_unaligned_load<F>(ctx->g );
b = sk_unaligned_load<F>(ctx->b );
a = sk_unaligned_load<F>(ctx->a );
dr = sk_unaligned_load<F>(ctx->dr);
dg = sk_unaligned_load<F>(ctx->dg);
db = sk_unaligned_load<F>(ctx->db);
da = sk_unaligned_load<F>(ctx->da);
base = ctx->base;
}
}
}
static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program,
size_t dx, size_t dy, std::byte* base,
F r, F g, F b, F a, F dr, F dg, F db, F da) {
SkRasterPipeline_RewindCtx* ctx = Ctx{program};
sk_unaligned_store(ctx->r , r );
sk_unaligned_store(ctx->g , g );
sk_unaligned_store(ctx->b , b );
sk_unaligned_store(ctx->a , a );
sk_unaligned_store(ctx->dr, dr);
sk_unaligned_store(ctx->dg, dg);
sk_unaligned_store(ctx->db, db);
sk_unaligned_store(ctx->da, da);
ctx->base = base;
ctx->stage = program;
}
#endif
// We could start defining normal Stages now. But first, some helper functions.
template <typename V, typename T>
SI V load(const T* src) {
return sk_unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v) {
sk_unaligned_store(dst, v);
}
SI F from_byte(U8 b) {
return cast(expand(b)) * (1/255.0f);
}
SI F from_short(U16 s) {
return cast(expand(s)) * (1/65535.0f);
}
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & (31<<11)) * (1.0f / (31<<11));
*g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
*b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & (15<<12)) * (1.0f / (15<<12));
*g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
*b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
*a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
}
SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
*r = cast((_8888 ) & 0xff) * (1/255.0f);
*g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
*b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
*a = cast((_8888 >> 24) ) * (1/255.0f);
}
SI void from_88(U16 _88, F* r, F* g) {
U32 wide = expand(_88);
*r = cast((wide ) & 0xff) * (1/255.0f);
*g = cast((wide >> 8) & 0xff) * (1/255.0f);
}
SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
*r = cast((rgba ) & 0x3ff) * (1/1023.0f);
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) {
static constexpr float min = -0.752941f;
static constexpr float max = 1.25098f;
static constexpr float range = max - min;
*r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min;
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min;
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min;
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
SI void from_10x6(U64 _10x6, F* r, F* g, F* b, F* a) {
*r = cast64((_10x6 >> 6) & 0x3ff) * (1/1023.0f);
*g = cast64((_10x6 >> 22) & 0x3ff) * (1/1023.0f);
*b = cast64((_10x6 >> 38) & 0x3ff) * (1/1023.0f);
*a = cast64((_10x6 >> 54) & 0x3ff) * (1/1023.0f);
}
SI void from_1616(U32 _1616, F* r, F* g) {
*r = cast((_1616 ) & 0xffff) * (1/65535.0f);
*g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
}
SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
*r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
*g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
*b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
*a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
}
// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
// clamp v to [0,limit).
SI F clamp(F v, F limit) {
F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
return min(max(0.0f, v), inclusive);
}
// clamp to (0,limit).
SI F clamp_ex(F v, F limit) {
const F inclusiveZ = std::numeric_limits<float>::min(),
inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 );
return min(max(inclusiveZ, v), inclusiveL);
}
// Polynomial approximation of degree 5 for sin(x * 2 * pi) in the range [-1/4, 1/4]
// Adapted from https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
SI F sin5q_(F x) {
// A * x + B * x^3 + C * x^5
// Exact at x = 0, 1/12, 1/6, 1/4, and their negatives,
// which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
constexpr float A = 6.28230858f;
constexpr float B = -41.1693687f;
constexpr float C = 74.4388885f;
F x2 = x * x;
return x * mad(mad(x2, C, B), x2, A);
}
SI F sin_(F x) {
constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
x = mad(x, -one_over_pi2, 0.25f);
x = 0.25f - abs_(x - floor_(x + 0.5f));
return sin5q_(x);
}
SI F cos_(F x) {
constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
x *= one_over_pi2;
x = 0.25f - abs_(x - floor_(x + 0.5f));
return sin5q_(x);
}
/* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
Some simplifications:
1. tan(x) is periodic, -PI/2 < x < PI/2
2. tan(x) is odd, so tan(-x) = -tan(x)
3. Our polynomial approximation is best near zero, so we use the following identity
tan(x) + tan(y)
tan(x + y) = -----------------
1 - tan(x)*tan(y)
tan(PI/4) = 1
So for x > PI/8, we do the following refactor:
x' = x - PI/4
1 + tan(x')
tan(x) = ------------
1 - tan(x')
*/
SI F tan_(F x) {
constexpr float Pi = SK_FloatPI;
// periodic between -pi/2 ... pi/2
// shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2);
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
// minimize total error by shifting if x > pi/8
I32 use_quotient = (x > (Pi/8));
x = if_then_else(use_quotient, x - (Pi/4), x);
// 9th order poly = 4th order(x^2) * x
const float c4 = 62 / 2835.0f;
const float c3 = 17 / 315.0f;
const float c2 = 2 / 15.0f;
const float c1 = 1 / 3.0f;
const float c0 = 1.0f;
F x2 = x * x;
x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0);
x = if_then_else(use_quotient, (1+x)/(1-x), x);
x = if_then_else(neg, -x, x);
return x;
}
/* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/
with 129 values of x,atan(x) for x:[0...1]
This only works for 0 <= x <= 1
*/
SI F approx_atan_unit(F x) {
// y = 0.14130025741326729 x⁴
// - 0.34312835980675116 x³
// - 0.016172900528248768 x²
// + 1.00376969762003850 x
// - 0.00014758242182738969
const float c4 = 0.14130025741326729f;
const float c3 = -0.34312835980675116f;
const float c2 = -0.016172900528248768f;
const float c1 = 1.0037696976200385f;
const float c0 = -0.00014758242182738969f;
return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0);
}
// Use identity atan(x) = pi/2 - atan(1/x) for x > 1
SI F atan_(F x) {
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
I32 flip = (x > 1.0f);
x = if_then_else(flip, 1/x, x);
x = approx_atan_unit(x);
x = if_then_else(flip, SK_FloatPI/2 - x, x);
x = if_then_else(neg, -x, x);
return x;
}
// Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun:
// https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0
// http://screen/8YGJxUGFQ49bVX6
SI F asin_(F x) {
I32 neg = (x < 0.0f);
x = if_then_else(neg, -x, x);
const float c3 = -0.0187293f;
const float c2 = 0.0742610f;
const float c1 = -0.2121144f;
const float c0 = 1.5707288f;
F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0);
x = SK_FloatPI/2 - sqrt_(1 - x) * poly;
x = if_then_else(neg, -x, x);
return x;
}
SI F acos_(F x) {
return SK_FloatPI/2 - asin_(x);
}
/* Use identity atan(x) = pi/2 - atan(1/x) for x > 1
By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit()
which avoids a 2nd divide instruction if we had instead called atan().
*/
SI F atan2_(F y0, F x0) {
I32 flip = (abs_(y0) > abs_(x0));
F y = if_then_else(flip, x0, y0);
F x = if_then_else(flip, y0, x0);
F arg = y/x;
I32 neg = (arg < 0.0f);
arg = if_then_else(neg, -arg, arg);
F r = approx_atan_unit(arg);
r = if_then_else(flip, SK_FloatPI/2 - r, r);
r = if_then_else(neg, -r, r);
// handle quadrant distinctions
r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_FloatPI, r);
r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_FloatPI, r);
// Note: we don't try to handle 0,0 or infinities
return r;
}
// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
// We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
// produce a NaN if applied to +0.f.
x = clamp_ex(x, ctx->width );
y = clamp_ex(y, ctx->height);
x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
// We often have a nominally [0,1] float value we need to scale and convert to an integer,
// whether for a table lookup or to pack back down into bytes for storage.
//
// In practice, especially when dealing with interesting color spaces, that notionally
// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
//
// You can adjust the expected input to [0,bias] by tweaking that parameter.
SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
// Any time we use round() we probably want to use to_unorm().
return round(min(max(0.0f, v), bias), scale);
}
SI I32 cond_to_mask(I32 cond) {
#if defined(JUMPER_IS_SCALAR)
// In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
// (eg, using bitwise operations to select values).
return if_then_else(cond, I32(~0), I32(0));
#else
// In SIMD mode, our various instruction sets already represent conditions as masks.
return cond;
#endif
}
#if defined(JUMPER_IS_SCALAR)
// In scalar mode, `data` only contains a single lane.
template <typename T>
SI T select_lane(T data, int lane) {
SkASSERT(lane == 0);
return data;
}
#else
// In SIMD mode, `data` contains a vector of lanes.
template <typename T>
SI T select_lane(V<T> data, int lane) {
return data[lane];
}
#endif
// Now finally, normal Stages!
STAGE(seed_shader, NoCtx) {
static constexpr float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
// It's important for speed to explicitly cast(dx) and cast(dy),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(dx) + sk_unaligned_load<F>(iota);
g = cast(dy) + 0.5f;
b = 1.0f; // This is w=1 for matrix multiplies by the device coords.
a = 0;
}
STAGE(dither, const float* rate) {
// Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
uint32_t iota[] = {0,1,2,3,4,5,6,7};
U32 X = dx + sk_unaligned_load<U32>(iota),
Y = dy;
// We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
// In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
// We only need X and X^Y from here on, so it's easier to just think of that as "Y".
Y ^= X;
// We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
// for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
U32 M = (Y & 1) << 5 | (X & 1) << 4
| (Y & 2) << 2 | (X & 2) << 1
| (Y & 4) >> 1 | (X & 4) >> 2;
// Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
// We want to make sure our dither is less than 0.5 in either direction to keep exact values
// like 0 and 1 unchanged after rounding.
F dither = cast(M) * (2/128.0f) - (63/128.0f);
r += *rate*dither;
g += *rate*dither;
b += *rate*dither;
r = max(0.0f, min(r, a));
g = max(0.0f, min(g, a));
b = max(0.0f, min(b, a));
}
// load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
// load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
dr = c->r;
dg = c->g;
db = c->b;
da = c->a;
}
// splats opaque-black into r,g,b,a
STAGE(black_color, NoCtx) {
r = g = b = 0.0f;
a = 1.0f;
}
STAGE(white_color, NoCtx) {
r = g = b = a = 1.0f;
}
// load registers r,g,b,a from context (mirrors store_src)
STAGE(load_src, const float* ptr) {
r = sk_unaligned_load<F>(ptr + 0*N);
g = sk_unaligned_load<F>(ptr + 1*N);
b = sk_unaligned_load<F>(ptr + 2*N);
a = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers r,g,b,a into context (mirrors load_src)
STAGE(store_src, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
sk_unaligned_store(ptr + 2*N, b);
sk_unaligned_store(ptr + 3*N, a);
}
// store registers r,g into context
STAGE(store_src_rg, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
}
// load registers r,g from context
STAGE(load_src_rg, float* ptr) {
r = sk_unaligned_load<F>(ptr + 0*N);
g = sk_unaligned_load<F>(ptr + 1*N);
}
// store register a into context
STAGE(store_src_a, float* ptr) {
sk_unaligned_store(ptr, a);
}
// load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst, const float* ptr) {
dr = sk_unaligned_load<F>(ptr + 0*N);
dg = sk_unaligned_load<F>(ptr + 1*N);
db = sk_unaligned_load<F>(ptr + 2*N);
da = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst, float* ptr) {
sk_unaligned_store(ptr + 0*N, dr);
sk_unaligned_store(ptr + 1*N, dg);
sk_unaligned_store(ptr + 2*N, db);
sk_unaligned_store(ptr + 3*N, da);
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, /* s + */ d*inv(sa),
sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, /* d + */ s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = sqrt_(m) - m,
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
// We're basing our implemenation of non-separable blend modes on
// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
// and
// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
// They're equivalent, but ES' math has been better simplified.
//
// Anything extra we add beyond that is to make the math work with premul inputs.
SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); }
SI void set_sat(F* r, F* g, F* b, F s) {
F mn = min(*r, min(*g,*b)),
mx = max(*r, max(*g,*b)),
sat = mx - mn;
// Map min channel to 0, max channel to s, and scale the middle proportionally.
auto scale = [=](F c) {
return if_then_else(sat == 0, 0, (c - mn) * s / sat);
};
*r = scale(*r);
*g = scale(*g);
*b = scale(*b);
}
SI void set_lum(F* r, F* g, F* b, F l) {
F diff = l - lum(*r, *g, *b);
*r += diff;
*g += diff;
*b += diff;
}
SI void clip_color(F* r, F* g, F* b, F a) {
F mn = min(*r, min(*g, *b)),
mx = max(*r, max(*g, *b)),
l = lum(*r, *g, *b);
auto clip = [=](F c) {
c = if_then_else(mn < 0 && l != mn, l + (c - l) * ( l) / (l - mn), c);
c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c);
c = max(c, 0.0f); // Sometimes without this we may dip just a little negative.
return c;
};
*r = clip(*r);
*g = clip(*g);
*b = clip(*b);
}
STAGE(hue, NoCtx) {
F R = r*a,
G = g*a,
B = b*a;
set_sat(&R, &G, &B, sat(dr,dg,db)*a);
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(saturation, NoCtx) {
F R = dr*a,
G = dg*a,
B = db*a;
set_sat(&R, &G, &B, sat( r, g, b)*da);
set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(color, NoCtx) {
F R = r*da,
G = g*da,
B = b*da;
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(luminosity, NoCtx) {
F R = dr*a,
G = dg*a,
B = db*a;
set_lum(&R, &G, &B, lum(r,g,b)*da);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 dst = load<U32>(ptr);
dr = cast((dst ) & 0xff);
dg = cast((dst >> 8) & 0xff);
db = cast((dst >> 16) & 0xff);
da = cast((dst >> 24) );
// {dr,dg,db,da} are in [0,255]
// { r, g, b, a} are in [0, 1] (but may be out of gamut)
r = mad(dr, inv(a), r*255.0f);
g = mad(dg, inv(a), g*255.0f);
b = mad(db, inv(a), b*255.0f);
a = mad(da, inv(a), a*255.0f);
// { r, g, b, a} are now in [0,255] (but may be out of gamut)
// to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
dst = to_unorm(r, 1, 255)
| to_unorm(g, 1, 255) << 8
| to_unorm(b, 1, 255) << 16
| to_unorm(a, 1, 255) << 24;
store(ptr, dst);
}
SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); }
STAGE(clamp_01, NoCtx) {
r = clamp_01_(r);
g = clamp_01_(g);
b = clamp_01_(b);
a = clamp_01_(a);
}
STAGE(clamp_gamut, NoCtx) {
a = min(max(a, 0.0f), 1.0f);
r = min(max(r, 0.0f), a);
g = min(max(g, 0.0f), a);
b = min(max(b, 0.0f), a);
}
STAGE(set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(unbounded_set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(swap_rb, NoCtx) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE(swap_rb_dst, NoCtx) {
auto tmp = dr;
dr = db;
db = tmp;
}
STAGE(move_src_dst, NoCtx) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src, NoCtx) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(swap_src_dst, NoCtx) {
std::swap(r, dr);
std::swap(g, dg);
std::swap(b, db);
std::swap(a, da);
}
STAGE(premul, NoCtx) {
r = r * a;
g = g * a;
b = b * a;
}
STAGE(premul_dst, NoCtx) {
dr = dr * da;
dg = dg * da;
db = db * da;
}
STAGE(unpremul, NoCtx) {
float inf = sk_bit_cast<float>(0x7f800000);
auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
r *= scale;
g *= scale;
b *= scale;
}
STAGE(unpremul_polar, NoCtx) {
float inf = sk_bit_cast<float>(0x7f800000);
auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
g *= scale;
b *= scale;
}
STAGE(force_opaque , NoCtx) { a = 1; }
STAGE(force_opaque_dst, NoCtx) { da = 1; }
STAGE(rgb_to_hsl, NoCtx) {
F mx = max(r, max(g,b)),
mn = min(r, min(g,b)),
d = mx - mn,
d_rcp = 1.0f / d;
F h = (1/6.0f) *
if_then_else(mx == mn, 0,
if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
(r-g)*d_rcp + 4.0f)));
F l = (mx + mn) * 0.5f;
F s = if_then_else(mx == mn, 0,
d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
r = h;
g = s;
b = l;
}
STAGE(hsl_to_rgb, NoCtx) {
// See GrRGBToHSLFilterEffect.fp
F h = r,
s = g,
l = b,
c = (1.0f - abs_(2.0f * l - 1)) * s;
auto hue_to_rgb = [&](F hue) {
F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
return (q - 0.5f) * c + l;
};
r = hue_to_rgb(h + 0.0f/3.0f);
g = hue_to_rgb(h + 2.0f/3.0f);
b = hue_to_rgb(h + 1.0f/3.0f);
}
// Color conversion functions used in gradient interpolation, based on
// https://www.w3.org/TR/css-color-4/#color-conversion-code
STAGE(css_lab_to_xyz, NoCtx) {
constexpr float k = 24389 / 27.0f;
constexpr float e = 216 / 24389.0f;
F f[3];
f[1] = (r + 16) * (1 / 116.0f);
f[0] = (g * (1 / 500.0f)) + f[1];
f[2] = f[1] - (b * (1 / 200.0f));
F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] };
F xyz[3] = {
if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)),
if_then_else(r > k * e, f_cubed[1], r * (1 / k)),
if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k))
};
constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f };
r = xyz[0]*D50[0];
g = xyz[1]*D50[1];
b = xyz[2]*D50[2];
}
STAGE(css_oklab_to_linear_srgb, NoCtx) {
F l_ = r + 0.3963377774f * g + 0.2158037573f * b,
m_ = r - 0.1055613458f * g - 0.0638541728f * b,
s_ = r - 0.0894841775f * g - 1.2914855480f * b;
F l = l_*l_*l_,
m = m_*m_*m_,
s = s_*s_*s_;
r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
}
// Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform
// actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB.
// See similar comments & logic in SkGradientBaseShader.cpp.
STAGE(css_hcl_to_lab, NoCtx) {
F H = r,
C = g,
L = b;
F hueRadians = H * (SK_FloatPI / 180);
r = L;
g = C * cos_(hueRadians);
b = C * sin_(hueRadians);
}
SI F mod_(F x, float y) {
return x - y * floor_(x * (1 / y));
}
struct RGB { F r, g, b; };
SI RGB css_hsl_to_srgb_(F h, F s, F l) {
h = mod_(h, 360);
s *= 0.01f;
l *= 0.01f;
F k[3] = {
mod_(0 + h * (1 / 30.0f), 12),
mod_(8 + h * (1 / 30.0f), 12),
mod_(4 + h * (1 / 30.0f), 12)
};
F a = s * min(l, 1 - l);
return {
l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)),
l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)),
l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f))
};
}
STAGE(css_hsl_to_srgb, NoCtx) {
RGB rgb = css_hsl_to_srgb_(r, g, b);
r = rgb.r;
g = rgb.g;
b = rgb.b;
}
STAGE(css_hwb_to_srgb, NoCtx) {
g *= 0.01f;
b *= 0.01f;
F gray = g / (g + b);
RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f);
rgb.r = rgb.r * (1 - g - b) + g;
rgb.g = rgb.g * (1 - g - b) + g;
rgb.b = rgb.b * (1 - g - b) + g;
auto isGray = (g + b) >= 1;
r = if_then_else(isGray, gray, rgb.r);
g = if_then_else(isGray, gray, rgb.g);
b = if_then_else(isGray, gray, rgb.b);
}
// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
return if_then_else(a < da, min(cr, min(cg,cb))
, max(cr, max(cg,cb)));
}
STAGE(scale_1_float, const float* c) {
r = r * *c;
g = g * *c;
b = b * *c;
a = a * *c;
}
STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr);
auto c = from_byte(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = r * cr;
g = g * cg;
b = b * cb;
a = a * ca;
}
SI F lerp(F from, F to, F t) {
return mad(to-from, t, from);
}
STAGE(lerp_1_float, const float* c) {
r = lerp(dr, r, *c);
g = lerp(dg, g, *c);
b = lerp(db, b, *c);
a = lerp(da, a, *c);
}
STAGE(scale_native, const float scales[]) {
auto c = sk_unaligned_load<F>(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(lerp_native, const float scales[]) {
auto c = sk_unaligned_load<F>(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr);
auto c = from_byte(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = lerp(da, a, ca);
}
STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
F mul = from_byte(load<U8>(mptr)),
add = from_byte(load<U8>(aptr));
r = mad(r, mul, add);
g = mad(g, mul, add);
b = mad(b, mul, add);
}
STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) {
r = from_byte(gather(tables->r, to_unorm(r, 255)));
g = from_byte(gather(tables->g, to_unorm(g, 255)));
b = from_byte(gather(tables->b, to_unorm(b, 255)));
a = from_byte(gather(tables->a, to_unorm(a, 255)));
}
SI F strip_sign(F x, U32* sign) {
U32 bits = sk_bit_cast<U32>(x);
*sign = bits & 0x80000000;
return sk_bit_cast<F>(bits ^ *sign);
}
SI F apply_sign(F x, U32 sign) {
return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
}
STAGE(parametric, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
, approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(gamma_, const float* G) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
return apply_sign(approx_powf(v, *G), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(PQish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f)
/ (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
ctx->f);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(HLGish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
const float R = ctx->a, G = ctx->b,
a = ctx->c, b = ctx->d, c = ctx->e,
K = ctx->f + 1.0f;
F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
, approx_exp((v-c)*a) + b);
return K * apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
const float R = ctx->a, G = ctx->b,
a = ctx->c, b = ctx->d, c = ctx->e,
K = ctx->f + 1.0f;
v /= K;
F r = if_then_else(v <= 1, R * approx_powf(v, G)
, a * approx_log(v - b) + c);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
r = g = b = 0.0f;
a = from_byte(load<U8>(ptr));
}
STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
dr = dg = db = 0.0f;
da = from_byte(load<U8>(ptr));
}
STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = g = b = 0.0f;
a = from_byte(gather(ptr, ix));
}
STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
U8 packed = pack(pack(to_unorm(a, 255)));
store(ptr, packed);
}
STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
U8 packed = pack(pack(to_unorm(r, 255)));
store(ptr, packed);
}
STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr), &r,&g,&b);
a = 1.0f;
}
STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr), &dr,&dg,&db);
da = 1.0f;
}
STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_565(gather(ptr, ix), &r,&g,&b);
a = 1.0f;
}
STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 31) << 11
| to_unorm(g, 63) << 5
| to_unorm(b, 31) );
store(ptr, px);
}
STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_4444(load<U16>(ptr), &r,&g,&b,&a);
}
STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_4444(load<U16>(ptr), &dr,&dg,&db,&da);
}
STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_4444(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 15) << 12
| to_unorm(g, 15) << 8
| to_unorm(b, 15) << 4
| to_unorm(a, 15) );
store(ptr, px);
}
STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_8888(load<U32>(ptr), &r,&g,&b,&a);
}
STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_8888(load<U32>(ptr), &dr,&dg,&db,&da);
}
STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_8888(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 255)
| to_unorm(g, 255) << 8
| to_unorm(b, 255) << 16
| to_unorm(a, 255) << 24;
store(ptr, px);
}
STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
from_88(load<U16>(ptr), &r, &g);
b = 0;
a = 1;
}
STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
from_88(load<U16>(ptr), &dr, &dg);
db = 0;
da = 1;
}
STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_88(gather(ptr, ix), &r, &g);
b = 0;
a = 1;
}
STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 );
store(ptr, px);
}
STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
r = g = b = 0;
a = from_short(load<U16>(ptr));
}
STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
dr = dg = db = 0.0f;
da = from_short(load<U16>(ptr));
}
STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
r = g = b = 0.0f;
a = from_short(gather(ptr, ix));
}
STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack(to_unorm(a, 65535));
store(ptr, px);
}
STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
b = 0; a = 1;
from_1616(load<U32>(ptr), &r,&g);
}
STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
from_1616(load<U32>(ptr), &dr, &dg);
db = 0;
da = 1;
}
STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_1616(gather(ptr, ix), &r, &g);
b = 0;
a = 1;
}
STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 65535)
| to_unorm(g, 65535) << 16;
store(ptr, px);
}
STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
from_16161616(load<U64>(ptr), &r,&g, &b, &a);
}
STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
from_16161616(load<U64>(ptr), &dr, &dg, &db, &da);
}
STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_16161616(gather(ptr, ix), &r, &g, &b, &a);
}
STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
U16 R = pack(to_unorm(r, 65535)),
G = pack(to_unorm(g, 65535)),
B = pack(to_unorm(b, 65535)),
A = pack(to_unorm(a, 65535));
store4(ptr, R,G,B,A);
}
STAGE(load_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
from_10x6(load<U64>(ptr), &r,&g, &b, &a);
}
STAGE(load_10x6_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
from_10x6(load<U64>(ptr), &dr, &dg, &db, &da);
}
STAGE(gather_10x6, const SkRasterPipeline_GatherCtx* ctx) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_10x6(gather(ptr, ix), &r, &g, &b, &a);
}
STAGE(store_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
U16 R = pack(to_unorm(r, 1023)) << 6,
G = pack(to_unorm(g, 1023)) << 6,
B = pack(to_unorm(b, 1023)) << 6,
A = pack(to_unorm(a, 1023)) << 6;
store4(ptr, R,G,B,A);
}
STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102(load<U32>(ptr), &r,&g,&b,&a);
}
STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102(load<U32>(ptr), &dr,&dg,&db,&da);
}
STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102_xr(load<U32>(ptr), &r,&g,&b,&a);
}
STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102_xr(load<U32>(ptr), &dr,&dg,&db,&da);
}
STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_1010102(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(gather_1010102_xr, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_1010102_xr(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 1023)
| to_unorm(g, 1023) << 10
| to_unorm(b, 1023) << 20
| to_unorm(a, 3) << 30;
store(ptr, px);
}
STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
static constexpr float min = -0.752941f;
static constexpr float max = 1.25098f;
static constexpr float range = max - min;
U32 px = to_unorm((r - min) / range, 1023)
| to_unorm((g - min) / range, 1023) << 10
| to_unorm((b - min) / range, 1023) << 20
| to_unorm(a, 3) << 30;
store(ptr, px);
}
STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
U16 R,G,B,A;
load4((const uint16_t*)ptr, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
U16 R,G,B,A;
load4((const uint16_t*)ptr, &R,&G,&B,&A);
dr = from_half(R);
dg = from_half(G);
db = from_half(B);
da = from_half(A);
}
STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
auto px = gather(ptr, ix);
U16 R,G,B,A;
load4((const uint16_t*)&px, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
store4((uint16_t*)ptr, to_half(r)
, to_half(g)
, to_half(b)
, to_half(a));
}
STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
U16 A = load<U16>((const uint16_t*)ptr);
r = 0;
g = 0;
b = 0;
a = from_half(A);
}
STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
U16 A = load<U16>((const uint16_t*)ptr);
dr = dg = db = 0.0f;
da = from_half(A);
}
STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
r = g = b = 0.0f;
a = from_half(gather(ptr, ix));
}
STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
store(ptr, to_half(a));
}
STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
U16 R,G;
load2((const uint16_t*)ptr, &R, &G);
r = from_half(R);
g = from_half(G);
b = 0;
a = 1;
}
STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
U16 R,G;
load2((const uint16_t*)ptr, &R, &G);
dr = from_half(R);
dg = from_half(G);
db = 0;
da = 1;
}
STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
auto px = gather(ptr, ix);
U16 R,G;
load2((const uint16_t*)&px, &R, &G);
r = from_half(R);
g = from_half(G);
b = 0;
a = 1;
}
STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
store2((uint16_t*)ptr, to_half(r)
, to_half(g));
}
STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
load4(ptr, &r,&g,&b,&a);
}
STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
load4(ptr, &dr,&dg,&db,&da);
}
STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
const float* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = gather(ptr, 4*ix + 0);
g = gather(ptr, 4*ix + 1);
b = gather(ptr, 4*ix + 2);
a = gather(ptr, 4*ix + 3);
}
STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
store4(ptr, r,g,b,a);
}
SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
return v - floor_(v*ctx->invScale)*ctx->scale;
}
SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
auto limit = ctx->scale;
auto invLimit = ctx->invScale;
// This is "repeat" over the range 0..2*limit
auto u = v - floor_(v*invLimit*0.5f)*2*limit;
// s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g.
// [limit, 2*limit)).
auto s = floor_(u*invLimit);
// This is the mirror result.
auto m = u - 2*s*(u - limit);
// Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in
// the logical infinite image. This is tested by mirror_tile GM. Note that all values
// that have a non-zero bias applied are > 0.
auto biasInUlps = trunc_(s);
return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps);
}
// Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
// The gather stages will hard clamp the output of these stages to [0,limit)...
// we just need to do the basic repeat or mirroring.
STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); }
STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); }
STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) {
r = min(ctx->max_x, max(ctx->min_x, r));
g = min(ctx->max_y, max(ctx->min_y, g));
}
// Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
// mask == 0x00000000 if the coordinate(s) are out of bounds
// mask == 0xFFFFFFFF if the coordinate(s) are in bounds
// After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
// if either of the coordinates were out of bounds.
STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
auto e = ctx->inclusiveEdge_x;
auto cond = ((0 < r) & (r < w)) | (r == e);
sk_unaligned_store(ctx->mask, cond_to_mask(cond));
}
STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto h = ctx->limit_y;
auto e = ctx->inclusiveEdge_y;
auto cond = ((0 < g) & (g < h)) | (g == e);
sk_unaligned_store(ctx->mask, cond_to_mask(cond));
}
STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
auto h = ctx->limit_y;
auto ex = ctx->inclusiveEdge_x;
auto ey = ctx->inclusiveEdge_y;
auto cond = (((0 < r) & (r < w)) | (r == ex))
& (((0 < g) & (g < h)) | (g == ey));
sk_unaligned_store(ctx->mask, cond_to_mask(cond));
}
STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
auto mask = sk_unaligned_load<U32>(ctx->mask);
r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
}
STAGE(alpha_to_gray, NoCtx) {
r = g = b = a;
a = 1;
}
STAGE(alpha_to_gray_dst, NoCtx) {
dr = dg = db = da;
da = 1;
}
STAGE(alpha_to_red, NoCtx) {
r = a;
a = 1;
}
STAGE(alpha_to_red_dst, NoCtx) {
dr = da;
da = 1;
}
STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) {
a = r*0.2126f + g*0.7152f + b*0.0722f;
r = g = b = 0;
}
STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) {
r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
}
STAGE(matrix_translate, const float* m) {
r += m[0];
g += m[1];
}
STAGE(matrix_scale_translate, const float* m) {
r = mad(r,m[0], m[2]);
g = mad(g,m[1], m[3]);
}
STAGE(matrix_2x3, const float* m) {
auto R = mad(r,m[0], mad(g,m[1], m[2])),
G = mad(r,m[3], mad(g,m[4], m[5]));
r = R;
g = G;
}
STAGE(matrix_3x3, const float* m) {
auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
G = mad(r,m[1], mad(g,m[4], b*m[7])),
B = mad(r,m[2], mad(g,m[5], b*m[8]));
r = R;
g = G;
b = B;
}
STAGE(matrix_3x4, const float* m) {
auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
r = R;
g = G;
b = B;
}
STAGE(matrix_4x5, const float* m) {
auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
r = R;
g = G;
b = B;
a = A;
}
STAGE(matrix_4x3, const float* m) {
auto X = r,
Y = g;
r = mad(X, m[0], mad(Y, m[4], m[ 8]));
g = mad(X, m[1], mad(Y, m[5], m[ 9]));
b = mad(X, m[2], mad(Y, m[6], m[10]));
a = mad(X, m[3], mad(Y, m[7], m[11]));
}
STAGE(matrix_perspective, const float* m) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto R = mad(r,m[0], mad(g,m[1], m[2])),
G = mad(r,m[3], mad(g,m[4], m[5])),
Z = mad(r,m[6], mad(g,m[7], m[8]));
r = R * rcp_precise(Z);
g = G * rcp_precise(Z);
}
SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
F* r, F* g, F* b, F* a) {
F fr, br, fg, bg, fb, bb, fa, ba;
#if defined(JUMPER_IS_HSW)
if (c->stopCount <=8) {
fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
} else
#endif
{
fr = gather(c->fs[0], idx);
br = gather(c->bs[0], idx);
fg = gather(c->fs[1], idx);
bg = gather(c->bs[1], idx);
fb = gather(c->fs[2], idx);
bb = gather(c->bs[2], idx);
fa = gather(c->fs[3], idx);
ba = gather(c->bs[3], idx);
}
*r = mad(t, fr, br);
*g = mad(t, fg, bg);
*b = mad(t, fb, bb);
*a = mad(t, fa, ba);
}
STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = r;
auto idx = trunc_(t * (c->stopCount-1));
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = r;
U32 idx = 0;
// N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
for (size_t i = 1; i < c->stopCount; i++) {
idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
}
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
auto t = r;
r = mad(t, c->f[0], c->b[0]);
g = mad(t, c->f[1], c->b[1]);
b = mad(t, c->f[2], c->b[2]);
a = mad(t, c->f[3], c->b[3]);
}
STAGE(xy_to_unit_angle, NoCtx) {
F X = r,
Y = g;
F xabs = abs_(X),
yabs = abs_(Y);
F slope = min(xabs, yabs)/max(xabs, yabs);
F s = slope * slope;
// Use a 7th degree polynomial to approximate atan.
// This was generated using sollya.gforge.inria.fr.
// A float optimized polynomial was generated using the following command.
// P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
F phi = slope
* (0.15912117063999176025390625f + s
* (-5.185396969318389892578125e-2f + s
* (2.476101927459239959716796875e-2f + s
* (-7.0547382347285747528076171875e-3f))));
phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
r = phi;
}
STAGE(xy_to_radius, NoCtx) {
F X2 = r * r,
Y2 = g * g;
r = sqrt_(X2 + Y2);
}
// Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
STAGE(negate_x, NoCtx) { r = -r; }
STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
}
STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) {
F x = r, y = g, &t = r;
t = x + y*y / x; // (x^2 + y^2) / x
}
STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
F& t = r;
t = t + ctx->fP1; // ctx->fP1 = f
}
STAGE(alter_2pt_conical_unswap, NoCtx) {
F& t = r;
t = 1 - t;
}
STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
F& t = r;
auto is_degenerate = (t != t); // NaN
t = if_then_else(is_degenerate, F(0), t);
sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
}
STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
F& t = r;
auto is_degenerate = (t <= 0) | (t != t);
t = if_then_else(is_degenerate, F(0), t);
sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
}
STAGE(apply_vector_mask, const uint32_t* ctx) {
const U32 mask = sk_unaligned_load<U32>(ctx);
r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
}
SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) {
// Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
// They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
// surrounding (x,y) at (0.5,0.5) off-center.
F fx = fract(*r + 0.5f),
fy = fract(*g + 0.5f);
// Samplers will need to load x and fx, or y and fy.
sk_unaligned_store(c->x, *r);
sk_unaligned_store(c->y, *g);
sk_unaligned_store(c->fx, fx);
sk_unaligned_store(c->fy, fy);
}
STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
// Bilinear and bicubic filters are both separable, so we produce independent contributions
// from x and y, multiplying them together here to get each pixel's total scale factor.
auto scale = sk_unaligned_load<F>(c->scalex)
* sk_unaligned_load<F>(c->scaley);
dr = mad(scale, r, dr);
dg = mad(scale, g, dg);
db = mad(scale, b, db);
da = mad(scale, a, da);
}
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
// The y-axis is symmetric.
template <int kScale>
SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
*x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F fx = sk_unaligned_load<F>(ctx->fx);
F scalex;
if (kScale == -1) { scalex = 1.0f - fx; }
if (kScale == +1) { scalex = fx; }
sk_unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
*y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F fy = sk_unaligned_load<F>(ctx->fy);
F scaley;
if (kScale == -1) { scaley = 1.0f - fy; }
if (kScale == +1) { scaley = fy; }
sk_unaligned_store(ctx->scaley, scaley);
}
STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) {
save_xy(&r, &g, ctx);
// Init for accumulate
dr = dg = db = da = 0;
}
STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
// pixel center are combined with a non-uniform cubic filter, with higher values near the center.
//
// This helper computes the total weight along one axis (our bicubic filter is separable), given one
// column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details.
SI F bicubic_wts(F t, float A, float B, float C, float D) {
return mad(t, mad(t, mad(t, D, C), B), A);
}
template <int kScale>
SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
*x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F scalex;
if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); }
if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); }
if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); }
if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); }
sk_unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
*y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F scaley;
if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); }
if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); }
if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); }
if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); }
sk_unaligned_store(ctx->scaley, scaley);
}
STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) {
save_xy(&r, &g, ctx);
const float* w = ctx->weights;
F fx = sk_unaligned_load<F>(ctx->fx);
sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12]));
sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13]));
sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14]));
sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15]));
F fy = sk_unaligned_load<F>(ctx->fy);
sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12]));
sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13]));
sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14]));
sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15]));
// Init for accumulate
dr = dg = db = da = 0;
}
STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) {
sk_unaligned_store(ctx->x, r);
sk_unaligned_store(ctx->y, g);
}
STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) {
sk_unaligned_store(ctx->r, r);
sk_unaligned_store(ctx->g, g);
sk_unaligned_store(ctx->b, b);
sk_unaligned_store(ctx->a, a);
r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX;
g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY;
}
STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) {
r = lerp(sk_unaligned_load<F>(ctx->r), r, ctx->lowerWeight);
g = lerp(sk_unaligned_load<F>(ctx->g), g, ctx->lowerWeight);
b = lerp(sk_unaligned_load<F>(ctx->b), b, ctx->lowerWeight);
a = lerp(sk_unaligned_load<F>(ctx->a), a, ctx->lowerWeight);
}
STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
store4(c->rgba, r,g,b,a);
c->fn(c, tail ? tail : N);
load4(c->read_from, &r,&g,&b,&a);
}
STAGE_TAIL(set_base_pointer, std::byte* p) {
base = p;
}
// All control flow stages used by SkSL maintain some state in the common registers:
// r: condition mask
// g: loop mask
// b: return mask
// a: execution mask (intersection of all three masks)
// After updating r/g/b, you must invoke update_execution_mask().
#define execution_mask() sk_bit_cast<I32>(a)
#define update_execution_mask() a = sk_bit_cast<F>(sk_bit_cast<I32>(r) & \
sk_bit_cast<I32>(g) & \
sk_bit_cast<I32>(b))
STAGE_TAIL(init_lane_masks, NoCtx) {
uint32_t iota[] = {0,1,2,3,4,5,6,7};
I32 mask = tail ? cond_to_mask(sk_unaligned_load<U32>(iota) < tail) : I32(~0);
r = g = b = a = sk_bit_cast<F>(mask);
}
STAGE_TAIL(store_device_xy01, F* dst) {
// This is very similar to `seed_shader + store_src`, but b/a are backwards.
// (sk_FragCoord actually puts w=1 in the w slot.)
static constexpr float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
dst[0] = cast(dx) + sk_unaligned_load<F>(iota);
dst[1] = cast(dy) + 0.5f;
dst[2] = 0.0f;
dst[3] = 1.0f;
}
STAGE_TAIL(exchange_src, F* rgba) {
// Swaps r,g,b,a registers with the values at `rgba`.
F temp[4] = {r, g, b, a};
r = rgba[0];
rgba[0] = temp[0];
g = rgba[1];
rgba[1] = temp[1];
b = rgba[2];
rgba[2] = temp[2];
a = rgba[3];
rgba[3] = temp[3];
}
STAGE_TAIL(load_condition_mask, F* ctx) {
r = sk_unaligned_load<F>(ctx);
update_execution_mask();
}
STAGE_TAIL(store_condition_mask, F* ctx) {
sk_unaligned_store(ctx, r);
}
STAGE_TAIL(merge_condition_mask, I32* ptr) {
// Set the condition-mask to the intersection of two adjacent masks at the pointer.
r = sk_bit_cast<F>(ptr[0] & ptr[1]);
update_execution_mask();
}
STAGE_TAIL(merge_inv_condition_mask, I32* ptr) {
// Set the condition-mask to the intersection of the first mask and the inverse of the second.
r = sk_bit_cast<F>(ptr[0] & ~ptr[1]);
update_execution_mask();
}
STAGE_TAIL(load_loop_mask, F* ctx) {
g = sk_unaligned_load<F>(ctx);
update_execution_mask();
}
STAGE_TAIL(store_loop_mask, F* ctx) {
sk_unaligned_store(ctx, g);
}
STAGE_TAIL(mask_off_loop_mask, NoCtx) {
// We encountered a break statement. If a lane was active, it should be masked off now, and stay
// masked-off until the termination of the loop.
g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
update_execution_mask();
}
STAGE_TAIL(reenable_loop_mask, I32* ptr) {
// Set the loop-mask to the union of the current loop-mask with the mask at the pointer.
g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | ptr[0]);
update_execution_mask();
}
STAGE_TAIL(merge_loop_mask, I32* ptr) {
// Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer.
// (Note: this behavior subtly differs from merge_condition_mask!)
g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ptr[0]);
update_execution_mask();
}
STAGE_TAIL(continue_op, I32* continueMask) {
// Set any currently-executing lanes in the continue-mask to true.
*continueMask |= execution_mask();
// Disable any currently-executing lanes from the loop mask. (Just like `mask_off_loop_mask`.)
g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
update_execution_mask();
}
STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* packed) {
auto ctx = SkRPCtxUtils::Unpack(packed);
// Check each lane to see if the case value matches the expectation.
I32* actualValue = (I32*)(base + ctx.offset);
I32 caseMatches = cond_to_mask(*actualValue == ctx.expectedValue);
// In lanes where we found a match, enable the loop mask...
g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | caseMatches);
update_execution_mask();
// ... and clear the default-case mask.
I32* defaultMask = actualValue + 1;
*defaultMask &= ~caseMatches;
}
STAGE_TAIL(load_return_mask, F* ctx) {
b = sk_unaligned_load<F>(ctx);
update_execution_mask();
}
STAGE_TAIL(store_return_mask, F* ctx) {
sk_unaligned_store(ctx, b);
}
STAGE_TAIL(mask_off_return_mask, NoCtx) {
// We encountered a return statement. If a lane was active, it should be masked off now, and
// stay masked-off until the end of the function.
b = sk_bit_cast<F>(sk_bit_cast<I32>(b) & ~execution_mask());
update_execution_mask();
}
STAGE_BRANCH(branch_if_all_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
if (tail) {
uint32_t iota[] = {0,1,2,3,4,5,6,7};
I32 tailLanes = cond_to_mask(tail <= sk_unaligned_load<U32>(iota));
return all(execution_mask() | tailLanes) ? ctx->offset : 1;
} else {
return all(execution_mask()) ? ctx->offset : 1;
}
}
STAGE_BRANCH(branch_if_any_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
return any(execution_mask()) ? ctx->offset : 1;
}
STAGE_BRANCH(branch_if_no_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
return any(execution_mask()) ? 1 : ctx->offset;
}
STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) {
return ctx->offset;
}
STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) {
// Compare each lane against the expected value...
I32 match = cond_to_mask(*(I32*)ctx->ptr == ctx->value);
// ... but mask off lanes that aren't executing.
match &= execution_mask();
// If any lanes matched, don't take the branch.
return any(match) ? 1 : ctx->offset;
}
STAGE_TAIL(trace_line, SkRasterPipeline_TraceLineCtx* ctx) {
I32* traceMask = (I32*)ctx->traceMask;
if (any(execution_mask() & *traceMask)) {
ctx->traceHook->line(ctx->lineNumber);
}
}
STAGE_TAIL(trace_enter, SkRasterPipeline_TraceFuncCtx* ctx) {
I32* traceMask = (I32*)ctx->traceMask;
if (any(execution_mask() & *traceMask)) {
ctx->traceHook->enter(ctx->funcIdx);
}
}
STAGE_TAIL(trace_exit, SkRasterPipeline_TraceFuncCtx* ctx) {
I32* traceMask = (I32*)ctx->traceMask;
if (any(execution_mask() & *traceMask)) {
ctx->traceHook->exit(ctx->funcIdx);
}
}
STAGE_TAIL(trace_scope, SkRasterPipeline_TraceScopeCtx* ctx) {
// Note that trace_scope intentionally does not incorporate the execution mask. Otherwise, the
// scopes would become unbalanced if the execution mask changed in the middle of a block. The
// caller is responsible for providing a combined trace- and execution-mask.
I32* traceMask = (I32*)ctx->traceMask;
if (any(*traceMask)) {
ctx->traceHook->scope(ctx->delta);
}
}
STAGE_TAIL(trace_var, SkRasterPipeline_TraceVarCtx* ctx) {
I32* traceMask = (I32*)ctx->traceMask;
I32 mask = execution_mask() & *traceMask;
if (any(mask)) {
for (size_t lane = 0; lane < N; ++lane) {
if (select_lane(mask, lane)) {
I32* data = (I32*)ctx->data;
int slotIdx = ctx->slotIdx, numSlots = ctx->numSlots;
if (ctx->indirectOffset) {
// If this was an indirect store, apply the indirect-offset to the data pointer.
uint32_t indirectOffset = select_lane(*(U32*)ctx->indirectOffset, lane);
indirectOffset = std::min<uint32_t>(indirectOffset, ctx->indirectLimit);
data += indirectOffset;
slotIdx += indirectOffset;
}
while (numSlots--) {
ctx->traceHook->var(slotIdx, select_lane(*data, lane));
++slotIdx;
++data;
}
break;
}
}
}
}
STAGE_TAIL(copy_uniform, SkRasterPipeline_UniformCtx* ctx) {
const float* src = ctx->src;
F* dst = (F*)ctx->dst;
dst[0] = src[0];
}
STAGE_TAIL(copy_2_uniforms, SkRasterPipeline_UniformCtx* ctx) {
const float* src = ctx->src;
F* dst = (F*)ctx->dst;
dst[0] = src[0];
dst[1] = src[1];
}
STAGE_TAIL(copy_3_uniforms, SkRasterPipeline_UniformCtx* ctx) {
const float* src = ctx->src;
F* dst = (F*)ctx->dst;
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
STAGE_TAIL(copy_4_uniforms, SkRasterPipeline_UniformCtx* ctx) {
const float* src = ctx->src;
F* dst = (F*)ctx->dst;
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
STAGE_TAIL(copy_constant, SkRasterPipeline_ConstantCtx* packed) {
auto ctx = SkRPCtxUtils::Unpack(packed);
F* dst = (F*)(base + ctx.dst);
F value = ctx.value;
dst[0] = value;
}
STAGE_TAIL(splat_2_constants, SkRasterPipeline_ConstantCtx* packed) {
auto ctx = SkRPCtxUtils::Unpack(packed);
F* dst = (F*)(base + ctx.dst);
F value = ctx.value;
dst[0] = dst[1] = value;
}
STAGE_TAIL(splat_3_constants, SkRasterPipeline_ConstantCtx* packed) {
auto ctx = SkRPCtxUtils::Unpack(packed);
F* dst = (F*)(base + ctx.dst);
F value = ctx.value;
dst[0] = dst[1] = dst[2] = value;
}
STAGE_TAIL(splat_4_constants, SkRasterPipeline_ConstantCtx* packed) {
auto ctx = SkRPCtxUtils::Unpack(packed);
F* dst = (F*)(base + ctx.dst);
F value = ctx.value;
dst[0] = dst[1] = dst[2] = dst[3] = value;
}
template <int NumSlots>
SI void copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
F* dst = (F*)(base + ctx.dst);
F* src = (F*)(base + ctx.src);
// We don't even bother masking off the tail; we're filling slots, not the destination surface.
memcpy(dst, src, sizeof(F) * NumSlots);
}
STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_unmasked_fn<1>(packed, base);
}
STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_unmasked_fn<2>(packed, base);
}
STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_unmasked_fn<3>(packed, base);
}
STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_unmasked_fn<4>(packed, base);
}
template <int NumSlots>
SI void copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
// Load the scalar values.
float* src = (float*)(base + ctx.src);
float values[NumSlots];
SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
values[index] = src[index];
}
// Broadcast the scalars into the destination.
F* dst = (F*)(base + ctx.dst);
SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
dst[index] = values[index];
}
}
STAGE_TAIL(copy_immutable_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_immutable_unmasked_fn<1>(packed, base);
}
STAGE_TAIL(copy_2_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_immutable_unmasked_fn<2>(packed, base);
}
STAGE_TAIL(copy_3_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_immutable_unmasked_fn<3>(packed, base);
}
STAGE_TAIL(copy_4_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_immutable_unmasked_fn<4>(packed, base);
}
template <int NumSlots>
SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base, I32 mask) {
auto ctx = SkRPCtxUtils::Unpack(packed);
F* dst = (F*)(base + ctx.dst);
F* src = (F*)(base + ctx.src);
SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
*dst = if_then_else(mask, *src, *dst);
dst += 1;
src += 1;
}
}
STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_masked_fn<1>(packed, base, execution_mask());
}
STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_masked_fn<2>(packed, base, execution_mask());
}
STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_masked_fn<3>(packed, base, execution_mask());
}
STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
copy_n_slots_masked_fn<4>(packed, base, execution_mask());
}
template <int LoopCount, typename OffsetType>
SI void shuffle_fn(std::byte* ptr, OffsetType* offsets, int numSlots) {
F scratch[16];
SK_UNROLL for (int count = 0; count < LoopCount; ++count) {
scratch[count] = *(F*)(ptr + offsets[count]);
}
// Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when
// the number of slots is unknown at compile time, and generates roughly identical code when the
// number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead
// of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes
// that `numSlots` could be arbitrarily large, and so it emits more code than we need.
F* dst = (F*)ptr;
switch (numSlots) {
case 16: dst[15] = scratch[15]; [[fallthrough]];
case 15: dst[14] = scratch[14]; [[fallthrough]];
case 14: dst[13] = scratch[13]; [[fallthrough]];
case 13: dst[12] = scratch[12]; [[fallthrough]];
case 12: dst[11] = scratch[11]; [[fallthrough]];
case 11: dst[10] = scratch[10]; [[fallthrough]];
case 10: dst[ 9] = scratch[ 9]; [[fallthrough]];
case 9: dst[ 8] = scratch[ 8]; [[fallthrough]];
case 8: dst[ 7] = scratch[ 7]; [[fallthrough]];
case 7: dst[ 6] = scratch[ 6]; [[fallthrough]];
case 6: dst[ 5] = scratch[ 5]; [[fallthrough]];
case 5: dst[ 4] = scratch[ 4]; [[fallthrough]];
case 4: dst[ 3] = scratch[ 3]; [[fallthrough]];
case 3: dst[ 2] = scratch[ 2]; [[fallthrough]];
case 2: dst[ 1] = scratch[ 1]; [[fallthrough]];
case 1: dst[ 0] = scratch[ 0];
}
}
template <int N>
SI void small_swizzle_fn(SkRasterPipeline_SwizzleCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
shuffle_fn<N>(base + ctx.dst, ctx.offsets, N);
}
STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* packed) {
small_swizzle_fn<1>(packed, base);
}
STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* packed) {
small_swizzle_fn<2>(packed, base);
}
STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* packed) {
small_swizzle_fn<3>(packed, base);
}
STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* packed) {
small_swizzle_fn<4>(packed, base);
}
STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) {
shuffle_fn<16>((std::byte*)ctx->ptr, ctx->offsets, ctx->count);
}
template <int NumSlots>
SI void swizzle_copy_masked_fn(F* dst, const F* src, uint16_t* offsets, I32 mask) {
std::byte* dstB = (std::byte*)dst;
SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
F* dstS = (F*)(dstB + *offsets);
*dstS = if_then_else(mask, *src, *dstS);
offsets += 1;
src += 1;
}
}
STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
swizzle_copy_masked_fn<1>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
}
STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
swizzle_copy_masked_fn<2>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
}
STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
swizzle_copy_masked_fn<3>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
}
STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
swizzle_copy_masked_fn<4>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
}
STAGE_TAIL(copy_from_indirect_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
// Clamp the indirect offsets to stay within the limit.
U32 offsets = *(U32*)ctx->indirectOffset;
offsets = min(offsets, ctx->indirectLimit);
// Scale up the offsets to account for the N lanes per value.
offsets *= N;
// Adjust the offsets forward so that they fetch from the correct lane.
static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
offsets += sk_unaligned_load<I32>(iota);
// Use gather to perform indirect lookups; write the results into `dst`.
const float* src = ctx->src;
F* dst = (F*)ctx->dst;
F* end = dst + ctx->slots;
do {
*dst = gather(src, offsets);
dst += 1;
src += N;
} while (dst != end);
}
STAGE_TAIL(copy_from_indirect_uniform_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
// Clamp the indirect offsets to stay within the limit.
U32 offsets = *(U32*)ctx->indirectOffset;
offsets = min(offsets, ctx->indirectLimit);
// Use gather to perform indirect lookups; write the results into `dst`.
const float* src = ctx->src;
F* dst = (F*)ctx->dst;
F* end = dst + ctx->slots;
do {
*dst = gather(src, offsets);
dst += 1;
src += 1;
} while (dst != end);
}
STAGE_TAIL(copy_to_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) {
// Clamp the indirect offsets to stay within the limit.
U32 offsets = *(U32*)ctx->indirectOffset;
offsets = min(offsets, ctx->indirectLimit);
// Scale up the offsets to account for the N lanes per value.
offsets *= N;
// Adjust the offsets forward so that they store into the correct lane.
static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
offsets += sk_unaligned_load<I32>(iota);
// Perform indirect, masked writes into `dst`.
const F* src = (F*)ctx->src;
const F* end = src + ctx->slots;
float* dst = ctx->dst;
I32 mask = execution_mask();
do {
scatter_masked(*src, dst, offsets, mask);
dst += N;
src += 1;
} while (src != end);
}
STAGE_TAIL(swizzle_copy_to_indirect_masked, SkRasterPipeline_SwizzleCopyIndirectCtx* ctx) {
// Clamp the indirect offsets to stay within the limit.
U32 offsets = *(U32*)ctx->indirectOffset;
offsets = min(offsets, ctx->indirectLimit);
// Scale up the offsets to account for the N lanes per value.
offsets *= N;
// Adjust the offsets forward so that they store into the correct lane.
static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
offsets += sk_unaligned_load<I32>(iota);
// Perform indirect, masked, swizzled writes into `dst`.
const F* src = (F*)ctx->src;
const F* end = src + ctx->slots;
std::byte* dstB = (std::byte*)ctx->dst;
const uint16_t* swizzle = ctx->offsets;
I32 mask = execution_mask();
do {
float* dst = (float*)(dstB + *swizzle);
scatter_masked(*src, dst, offsets, mask);
swizzle += 1;
src += 1;
} while (src != end);
}
// Unary operations take a single input, and overwrite it with their output.
// Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide
// an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually.
template <typename T, void (*ApplyFn)(T*)>
SI void apply_adjacent_unary(T* dst, T* end) {
do {
ApplyFn(dst);
dst += 1;
} while (dst != end);
}
#if defined(JUMPER_IS_SCALAR)
template <typename T>
SI void cast_to_float_from_fn(T* dst) {
*dst = sk_bit_cast<T>((F)*dst);
}
SI void cast_to_int_from_fn(F* dst) {
*dst = sk_bit_cast<F>((I32)*dst);
}
SI void cast_to_uint_from_fn(F* dst) {
*dst = sk_bit_cast<F>((U32)*dst);
}
#else
template <typename T>
SI void cast_to_float_from_fn(T* dst) {
*dst = sk_bit_cast<T>(__builtin_convertvector(*dst, F));
}
SI void cast_to_int_from_fn(F* dst) {
*dst = sk_bit_cast<F>(__builtin_convertvector(*dst, I32));
}
SI void cast_to_uint_from_fn(F* dst) {
*dst = sk_bit_cast<F>(__builtin_convertvector(*dst, U32));
}
#endif
SI void abs_fn(I32* dst) {
*dst = abs_(*dst);
}
SI void floor_fn(F* dst) {
*dst = floor_(*dst);
}
SI void ceil_fn(F* dst) {
*dst = ceil_(*dst);
}
SI void invsqrt_fn(F* dst) {
*dst = rsqrt(*dst);
}
#define DECLARE_UNARY_FLOAT(name) \
STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); } \
STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \
STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \
STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); }
#define DECLARE_UNARY_INT(name) \
STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); } \
STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \
STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \
STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); }
#define DECLARE_UNARY_UINT(name) \
STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); } \
STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \
STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \
STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); }
DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from)
DECLARE_UNARY_FLOAT(cast_to_int_from)
DECLARE_UNARY_FLOAT(cast_to_uint_from)
DECLARE_UNARY_FLOAT(floor)
DECLARE_UNARY_FLOAT(ceil)
DECLARE_UNARY_FLOAT(invsqrt)
DECLARE_UNARY_INT(abs)
#undef DECLARE_UNARY_FLOAT
#undef DECLARE_UNARY_INT
#undef DECLARE_UNARY_UINT
// For complex unary ops, we only provide a 1-slot version to reduce code bloat.
STAGE_TAIL(sin_float, F* dst) { *dst = sin_(*dst); }
STAGE_TAIL(cos_float, F* dst) { *dst = cos_(*dst); }
STAGE_TAIL(tan_float, F* dst) { *dst = tan_(*dst); }
STAGE_TAIL(asin_float, F* dst) { *dst = asin_(*dst); }
STAGE_TAIL(acos_float, F* dst) { *dst = acos_(*dst); }
STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); }
STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); }
STAGE_TAIL(exp_float, F* dst) { *dst = approx_exp(*dst); }
STAGE_TAIL(exp2_float, F* dst) { *dst = approx_pow2(*dst); }
STAGE_TAIL(log_float, F* dst) { *dst = approx_log(*dst); }
STAGE_TAIL(log2_float, F* dst) { *dst = approx_log2(*dst); }
STAGE_TAIL(inverse_mat2, F* dst) {
F a00 = dst[0], a01 = dst[1],
a10 = dst[2], a11 = dst[3];
F det = mad(a00, a11, -a01 * a10),
invdet = rcp_precise(det);
dst[0] = invdet * a11;
dst[1] = -invdet * a01;
dst[2] = -invdet * a10;
dst[3] = invdet * a00;
}
STAGE_TAIL(inverse_mat3, F* dst) {
F a00 = dst[0], a01 = dst[1], a02 = dst[2],
a10 = dst[3], a11 = dst[4], a12 = dst[5],
a20 = dst[6], a21 = dst[7], a22 = dst[8];
F b01 = mad(a22, a11, -a12 * a21),
b11 = mad(a12, a20, -a22 * a10),
b21 = mad(a21, a10, -a11 * a20);
F det = mad(a00, b01, mad(a01, b11, a02 * b21)),
invdet = rcp_precise(det);
dst[0] = invdet * b01;
dst[1] = invdet * mad(a02, a21, -a22 * a01);
dst[2] = invdet * mad(a12, a01, -a02 * a11);
dst[3] = invdet * b11;
dst[4] = invdet * mad(a22, a00, -a02 * a20);
dst[5] = invdet * mad(a02, a10, -a12 * a00);
dst[6] = invdet * b21;
dst[7] = invdet * mad(a01, a20, -a21 * a00);
dst[8] = invdet * mad(a11, a00, -a01 * a10);
}
STAGE_TAIL(inverse_mat4, F* dst) {
F a00 = dst[0], a01 = dst[1], a02 = dst[2], a03 = dst[3],
a10 = dst[4], a11 = dst[5], a12 = dst[6], a13 = dst[7],
a20 = dst[8], a21 = dst[9], a22 = dst[10], a23 = dst[11],
a30 = dst[12], a31 = dst[13], a32 = dst[14], a33 = dst[15];
F b00 = mad(a00, a11, -a01 * a10),
b01 = mad(a00, a12, -a02 * a10),
b02 = mad(a00, a13, -a03 * a10),
b03 = mad(a01, a12, -a02 * a11),
b04 = mad(a01, a13, -a03 * a11),
b05 = mad(a02, a13, -a03 * a12),
b06 = mad(a20, a31, -a21 * a30),
b07 = mad(a20, a32, -a22 * a30),
b08 = mad(a20, a33, -a23 * a30),
b09 = mad(a21, a32, -a22 * a31),
b10 = mad(a21, a33, -a23 * a31),
b11 = mad(a22, a33, -a23 * a32),
det = mad(b00, b11, b05 * b06) + mad(b02, b09, b03 * b08) - mad(b01, b10, b04 * b07),
invdet = rcp_precise(det);
b00 *= invdet;
b01 *= invdet;
b02 *= invdet;
b03 *= invdet;
b04 *= invdet;
b05 *= invdet;
b06 *= invdet;
b07 *= invdet;
b08 *= invdet;
b09 *= invdet;
b10 *= invdet;
b11 *= invdet;
dst[0] = mad(a11, b11, a13*b09) - a12*b10;
dst[1] = a02*b10 - mad(a01, b11, a03*b09);
dst[2] = mad(a31, b05, a33*b03) - a32*b04;
dst[3] = a22*b04 - mad(a21, b05, a23*b03);
dst[4] = a12*b08 - mad(a10, b11, a13*b07);
dst[5] = mad(a00, b11, a03*b07) - a02*b08;
dst[6] = a32*b02 - mad(a30, b05, a33*b01);
dst[7] = mad(a20, b05, a23*b01) - a22*b02;
dst[8] = mad(a10, b10, a13*b06) - a11*b08;
dst[9] = a01*b08 - mad(a00, b10, a03*b06);
dst[10] = mad(a30, b04, a33*b00) - a31*b02;
dst[11] = a21*b02 - mad(a20, b04, a23*b00);
dst[12] = a11*b07 - mad(a10, b09, a12*b06);
dst[13] = mad(a00, b09, a02*b06) - a01*b07;
dst[14] = a31*b01 - mad(a30, b03, a32*b00);
dst[15] = mad(a20, b03, a22*b00) - a21*b01;
}
// Binary operations take two adjacent inputs, and write their output in the first position.
template <typename T, void (*ApplyFn)(T*, T*)>
SI void apply_adjacent_binary(T* dst, T* src) {
T* end = src;
do {
ApplyFn(dst, src);
dst += 1;
src += 1;
} while (dst != end);
}
template <typename T, void (*ApplyFn)(T*, T*)>
SI void apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
std::byte* dst = base + ctx.dst;
std::byte* src = base + ctx.src;
apply_adjacent_binary<T, ApplyFn>((T*)dst, (T*)src);
}
template <int N, typename V, typename S, void (*ApplyFn)(V*, V*)>
SI void apply_binary_immediate(SkRasterPipeline_ConstantCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
V* dst = (V*)(base + ctx.dst); // get a pointer to the destination
S scalar = sk_bit_cast<S>(ctx.value); // bit-pun the constant value as desired
V src = scalar; // broadcast the constant value into a vector
SK_UNROLL for (int index = 0; index < N; ++index) {
ApplyFn(dst, &src); // perform the operation
dst += 1;
}
}
template <typename T>
SI void add_fn(T* dst, T* src) {
*dst += *src;
}
template <typename T>
SI void sub_fn(T* dst, T* src) {
*dst -= *src;
}
template <typename T>
SI void mul_fn(T* dst, T* src) {
*dst *= *src;
}
template <typename T>
SI void div_fn(T* dst, T* src) {
T divisor = *src;
if constexpr (!std::is_same_v<T, F>) {
// We will crash if we integer-divide against zero. Convert 0 to ~0 to avoid this.
divisor |= cond_to_mask(divisor == 0);
}
*dst /= divisor;
}
SI void bitwise_and_fn(I32* dst, I32* src) {
*dst &= *src;
}
SI void bitwise_or_fn(I32* dst, I32* src) {
*dst |= *src;
}
SI void bitwise_xor_fn(I32* dst, I32* src) {
*dst ^= *src;
}
template <typename T>
SI void max_fn(T* dst, T* src) {
*dst = max(*dst, *src);
}
template <typename T>
SI void min_fn(T* dst, T* src) {
*dst = min(*dst, *src);
}
template <typename T>
SI void cmplt_fn(T* dst, T* src) {
static_assert(sizeof(T) == sizeof(I32));
I32 result = cond_to_mask(*dst < *src);
memcpy(dst, &result, sizeof(I32));
}
template <typename T>
SI void cmple_fn(T* dst, T* src) {
static_assert(sizeof(T) == sizeof(I32));
I32 result = cond_to_mask(*dst <= *src);
memcpy(dst, &result, sizeof(I32));
}
template <typename T>
SI void cmpeq_fn(T* dst, T* src) {
static_assert(sizeof(T) == sizeof(I32));
I32 result = cond_to_mask(*dst == *src);
memcpy(dst, &result, sizeof(I32));
}
template <typename T>
SI void cmpne_fn(T* dst, T* src) {
static_assert(sizeof(T) == sizeof(I32));
I32 result = cond_to_mask(*dst != *src);
memcpy(dst, &result, sizeof(I32));
}
SI void atan2_fn(F* dst, F* src) {
*dst = atan2_(*dst, *src);
}
SI void pow_fn(F* dst, F* src) {
*dst = approx_powf(*dst, *src);
}
SI void mod_fn(F* dst, F* src) {
*dst = *dst - *src * floor_(*dst / *src);
}
#define DECLARE_N_WAY_BINARY_FLOAT(name) \
STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* packed) { \
apply_adjacent_binary_packed<F, &name##_fn>(packed, base); \
}
#define DECLARE_BINARY_FLOAT(name) \
STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); } \
STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \
STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \
STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \
DECLARE_N_WAY_BINARY_FLOAT(name)
#define DECLARE_N_WAY_BINARY_INT(name) \
STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* packed) { \
apply_adjacent_binary_packed<I32, &name##_fn>(packed, base); \
}
#define DECLARE_BINARY_INT(name) \
STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); } \
STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \
STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \
STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \
DECLARE_N_WAY_BINARY_INT(name)
#define DECLARE_N_WAY_BINARY_UINT(name) \
STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* packed) { \
apply_adjacent_binary_packed<U32, &name##_fn>(packed, base); \
}
#define DECLARE_BINARY_UINT(name) \
STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); } \
STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \
STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \
STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \
DECLARE_N_WAY_BINARY_UINT(name)
// Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a
// two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.)
DECLARE_BINARY_FLOAT(add) DECLARE_BINARY_INT(add)
DECLARE_BINARY_FLOAT(sub) DECLARE_BINARY_INT(sub)
DECLARE_BINARY_FLOAT(mul) DECLARE_BINARY_INT(mul)
DECLARE_BINARY_FLOAT(div) DECLARE_BINARY_INT(div) DECLARE_BINARY_UINT(div)
DECLARE_BINARY_INT(bitwise_and)
DECLARE_BINARY_INT(bitwise_or)
DECLARE_BINARY_INT(bitwise_xor)
DECLARE_BINARY_FLOAT(mod)
DECLARE_BINARY_FLOAT(min) DECLARE_BINARY_INT(min) DECLARE_BINARY_UINT(min)
DECLARE_BINARY_FLOAT(max) DECLARE_BINARY_INT(max) DECLARE_BINARY_UINT(max)
DECLARE_BINARY_FLOAT(cmplt) DECLARE_BINARY_INT(cmplt) DECLARE_BINARY_UINT(cmplt)
DECLARE_BINARY_FLOAT(cmple) DECLARE_BINARY_INT(cmple) DECLARE_BINARY_UINT(cmple)
DECLARE_BINARY_FLOAT(cmpeq) DECLARE_BINARY_INT(cmpeq)
DECLARE_BINARY_FLOAT(cmpne) DECLARE_BINARY_INT(cmpne)
// Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated
// 1-4 slot versions.
DECLARE_N_WAY_BINARY_FLOAT(atan2)
DECLARE_N_WAY_BINARY_FLOAT(pow)
// Some ops have an optimized version when the right-side is an immediate value.
#define DECLARE_IMM_BINARY_FLOAT(name) \
STAGE_TAIL(name##_imm_float, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<1, F, float, &name##_fn>(packed, base); \
}
#define DECLARE_IMM_BINARY_INT(name) \
STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
}
#define DECLARE_MULTI_IMM_BINARY_INT(name) \
STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
} \
STAGE_TAIL(name##_imm_2_ints, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<2, I32, int32_t, &name##_fn>(packed, base); \
} \
STAGE_TAIL(name##_imm_3_ints, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<3, I32, int32_t, &name##_fn>(packed, base); \
} \
STAGE_TAIL(name##_imm_4_ints, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<4, I32, int32_t, &name##_fn>(packed, base); \
}
#define DECLARE_IMM_BINARY_UINT(name) \
STAGE_TAIL(name##_imm_uint, SkRasterPipeline_ConstantCtx* packed) { \
apply_binary_immediate<1, U32, uint32_t, &name##_fn>(packed, base); \
}
DECLARE_IMM_BINARY_FLOAT(add) DECLARE_IMM_BINARY_INT(add)
DECLARE_IMM_BINARY_FLOAT(mul) DECLARE_IMM_BINARY_INT(mul)
DECLARE_MULTI_IMM_BINARY_INT(bitwise_and)
DECLARE_IMM_BINARY_FLOAT(max)
DECLARE_IMM_BINARY_FLOAT(min)
DECLARE_IMM_BINARY_INT(bitwise_xor)
DECLARE_IMM_BINARY_FLOAT(cmplt) DECLARE_IMM_BINARY_INT(cmplt) DECLARE_IMM_BINARY_UINT(cmplt)
DECLARE_IMM_BINARY_FLOAT(cmple) DECLARE_IMM_BINARY_INT(cmple) DECLARE_IMM_BINARY_UINT(cmple)
DECLARE_IMM_BINARY_FLOAT(cmpeq) DECLARE_IMM_BINARY_INT(cmpeq)
DECLARE_IMM_BINARY_FLOAT(cmpne) DECLARE_IMM_BINARY_INT(cmpne)
#undef DECLARE_MULTI_IMM_BINARY_INT
#undef DECLARE_IMM_BINARY_FLOAT
#undef DECLARE_IMM_BINARY_INT
#undef DECLARE_IMM_BINARY_UINT
#undef DECLARE_BINARY_FLOAT
#undef DECLARE_BINARY_INT
#undef DECLARE_BINARY_UINT
#undef DECLARE_N_WAY_BINARY_FLOAT
#undef DECLARE_N_WAY_BINARY_INT
#undef DECLARE_N_WAY_BINARY_UINT
// Dots can be represented with multiply and add ops, but they are so foundational that it's worth
// having dedicated ops.
STAGE_TAIL(dot_2_floats, F* dst) {
dst[0] = mad(dst[0], dst[2],
dst[1] * dst[3]);
}
STAGE_TAIL(dot_3_floats, F* dst) {
dst[0] = mad(dst[0], dst[3],
mad(dst[1], dst[4],
dst[2] * dst[5]));
}
STAGE_TAIL(dot_4_floats, F* dst) {
dst[0] = mad(dst[0], dst[4],
mad(dst[1], dst[5],
mad(dst[2], dst[6],
dst[3] * dst[7])));
}
// MxM, VxM and MxV multiplication all use matrix_multiply. Vectors are treated like a matrix with a
// single column or row.
template <int N>
SI void matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
int outColumns = ctx.rightColumns,
outRows = ctx.leftRows;
SkASSERT(outColumns >= 1);
SkASSERT(outRows >= 1);
SkASSERT(outColumns <= 4);
SkASSERT(outRows <= 4);
SkASSERT(ctx.leftColumns == ctx.rightRows);
SkASSERT(N == ctx.leftColumns); // N should match the result width
#if !defined(JUMPER_IS_SCALAR)
// This prevents Clang from generating early-out checks for zero-sized matrices.
__builtin_assume(outColumns >= 1);
__builtin_assume(outRows >= 1);
__builtin_assume(outColumns <= 4);
__builtin_assume(outRows <= 4);
#endif
// Get pointers to the adjacent left- and right-matrices.
F* resultMtx = (F*)(base + ctx.dst);
F* leftMtx = &resultMtx[ctx.rightColumns * ctx.leftRows];
F* rightMtx = &leftMtx[N * ctx.leftRows];
// Emit each matrix element.
for (int c = 0; c < outColumns; ++c) {
for (int r = 0; r < outRows; ++r) {
// Dot a vector from leftMtx[*][r] with rightMtx[c][*].
F* leftRow = &leftMtx [r];
F* rightColumn = &rightMtx[c * N];
F element = *leftRow * *rightColumn;
for (int idx = 1; idx < N; ++idx) {
leftRow += outRows;
rightColumn += 1;
element = mad(*leftRow, *rightColumn, element);
}
*resultMtx++ = element;
}
}
}
STAGE_TAIL(matrix_multiply_2, SkRasterPipeline_MatrixMultiplyCtx* packed) {
matrix_multiply<2>(packed, base);
}
STAGE_TAIL(matrix_multiply_3, SkRasterPipeline_MatrixMultiplyCtx* packed) {
matrix_multiply<3>(packed, base);
}
STAGE_TAIL(matrix_multiply_4, SkRasterPipeline_MatrixMultiplyCtx* packed) {
matrix_multiply<4>(packed, base);
}
// Refract always operates on 4-wide incident and normal vectors; for narrower inputs, the code
// generator fills in the input columns with zero, and discards the extra output columns.
STAGE_TAIL(refract_4_floats, F* dst) {
// Algorithm adapted from https://registry.khronos.org/OpenGL-Refpages/gl4/html/refract.xhtml
F *incident = dst + 0;
F *normal = dst + 4;
F eta = dst[8];
F dotNI = mad(normal[0], incident[0],
mad(normal[1], incident[1],
mad(normal[2], incident[2],
normal[3] * incident[3])));
F k = 1.0 - eta * eta * (1.0 - dotNI * dotNI);
F sqrt_k = sqrt_(k);
for (int idx = 0; idx < 4; ++idx) {
dst[idx] = if_then_else(k >= 0,
eta * incident[idx] - (eta * dotNI + sqrt_k) * normal[idx],
0.0);
}
}
// Ternary operations work like binary ops (see immediately above) but take two source inputs.
template <typename T, void (*ApplyFn)(T*, T*, T*)>
SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) {
int count = src0 - dst;
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(count >= 1);
#endif
for (int index = 0; index < count; ++index) {
ApplyFn(dst, src0, src1);
dst += 1;
src0 += 1;
src1 += 1;
}
}
template <typename T, void (*ApplyFn)(T*, T*, T*)>
SI void apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx* packed, std::byte* base) {
auto ctx = SkRPCtxUtils::Unpack(packed);
std::byte* dst = base + ctx.dst;
std::byte* src0 = dst + ctx.delta;
std::byte* src1 = src0 + ctx.delta;
apply_adjacent_ternary<T, ApplyFn>((T*)dst, (T*)src0, (T*)src1);
}
SI void mix_fn(F* a, F* x, F* y) {
// We reorder the arguments here to match lerp's GLSL-style order (interpolation point last).
*a = lerp(*x, *y, *a);
}
SI void mix_fn(I32* a, I32* x, I32* y) {
// We reorder the arguments here to match if_then_else's expected order (y before x).
*a = if_then_else(*a, *y, *x);
}
SI void smoothstep_fn(F* edge0, F* edge1, F* x) {
F t = clamp_01_((*x - *edge0) / (*edge1 - *edge0));
*edge0 = t * t * (3.0 - 2.0 * t);
}
#define DECLARE_N_WAY_TERNARY_FLOAT(name) \
STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* packed) { \
apply_adjacent_ternary_packed<F, &name##_fn>(packed, base); \
}
#define DECLARE_TERNARY_FLOAT(name) \
STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); } \
STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \
STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \
STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \
DECLARE_N_WAY_TERNARY_FLOAT(name)
#define DECLARE_TERNARY_INT(name) \
STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); } \
STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); } \
STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); } \
STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); } \
STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* packed) { \
apply_adjacent_ternary_packed<I32, &name##_fn>(packed, base); \
}
DECLARE_N_WAY_TERNARY_FLOAT(smoothstep)
DECLARE_TERNARY_FLOAT(mix)
DECLARE_TERNARY_INT(mix)
#undef DECLARE_N_WAY_TERNARY_FLOAT
#undef DECLARE_TERNARY_FLOAT
#undef DECLARE_TERNARY_INT
STAGE(gauss_a_to_rgba, NoCtx) {
// x = 1 - x;
// exp(-x * x * 4) - 0.018f;
// ... now approximate with quartic
//
const float c4 = -2.26661229133605957031f;
const float c3 = 2.89795351028442382812f;
const float c2 = 0.21345567703247070312f;
const float c1 = 0.15489584207534790039f;
const float c0 = 0.00030726194381713867f;
a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
r = a;
g = a;
b = a;
}
// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
// (cx,cy) are the center of our sample.
F cx = r,
cy = g;
// All sample points are at the same fractional offset (fx,fy).
// They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
F fx = fract(cx + 0.5f),
fy = fract(cy + 0.5f);
// We'll accumulate the color of all four samples into {r,g,b,a} directly.
r = g = b = a = 0;
for (float py = -0.5f; py <= +0.5f; py += 1.0f)
for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
// (x,y) are the coordinates of this sample point.
F x = cx + px,
y = cy + py;
// ix_and_ptr() will clamp to the image's bounds for us.
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
F sr,sg,sb,sa;
from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx,
// or (1-fx) at negative x. Same deal for y.
F sx = (px > 0) ? fx : 1.0f - fx,
sy = (py > 0) ? fy : 1.0f - fy,
area = sx * sy;
r += sr * area;
g += sg * area;
b += sb * area;
a += sa * area;
}
}
// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
// (cx,cy) are the center of our sample.
F cx = r,
cy = g;
// All sample points are at the same fractional offset (fx,fy).
// They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
F fx = fract(cx + 0.5f),
fy = fract(cy + 0.5f);
// We'll accumulate the color of all four samples into {r,g,b,a} directly.
r = g = b = a = 0;
const float* w = ctx->weights;
const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]),
bicubic_wts(fy, w[1], w[5], w[ 9], w[13]),
bicubic_wts(fy, w[2], w[6], w[10], w[14]),
bicubic_wts(fy, w[3], w[7], w[11], w[15])};
const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]),
bicubic_wts(fx, w[1], w[5], w[ 9], w[13]),
bicubic_wts(fx, w[2], w[6], w[10], w[14]),
bicubic_wts(fx, w[3], w[7], w[11], w[15])};
F sample_y = cy - 1.5f;
for (int yy = 0; yy <= 3; ++yy) {
F sample_x = cx - 1.5f;
for (int xx = 0; xx <= 3; ++xx) {
F scale = scalex[xx] * scaley[yy];
// ix_and_ptr() will clamp to the image's bounds for us.
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
F sr,sg,sb,sa;
from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
r = mad(scale, sr, r);
g = mad(scale, sg, g);
b = mad(scale, sb, b);
a = mad(scale, sa, a);
sample_x += 1;
}
sample_y += 1;
}
}
// ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
STAGE(swizzle, void* ctx) {
auto ir = r, ig = g, ib = b, ia = a;
F* o[] = {&r, &g, &b, &a};
char swiz[4];
memcpy(swiz, &ctx, sizeof(swiz));
for (int i = 0; i < 4; ++i) {
switch (swiz[i]) {
case 'r': *o[i] = ir; break;
case 'g': *o[i] = ig; break;
case 'b': *o[i] = ib; break;
case 'a': *o[i] = ia; break;
case '0': *o[i] = F(0); break;
case '1': *o[i] = F(1); break;
default: break;
}
}
}
namespace lowp {
#if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
// If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually),
// we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the
// highp float pipeline.
#define M(st) static void (*st)(void) = nullptr;
SK_RASTER_PIPELINE_OPS_LOWP(M)
#undef M
static void (*just_return)(void) = nullptr;
static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*,
SkSpan<SkRasterPipeline_MemoryCtxPatch>) {}
#else // We are compiling vector code with Clang... let's make some lowp stages!
#if defined(JUMPER_IS_HSW)
using U8 = uint8_t __attribute__((ext_vector_type(16)));
using U16 = uint16_t __attribute__((ext_vector_type(16)));
using I16 = int16_t __attribute__((ext_vector_type(16)));
using I32 = int32_t __attribute__((ext_vector_type(16)));
using U32 = uint32_t __attribute__((ext_vector_type(16)));
using I64 = int64_t __attribute__((ext_vector_type(16)));
using U64 = uint64_t __attribute__((ext_vector_type(16)));
using F = float __attribute__((ext_vector_type(16)));
#else
using U8 = uint8_t __attribute__((ext_vector_type(8)));
using U16 = uint16_t __attribute__((ext_vector_type(8)));
using I16 = int16_t __attribute__((ext_vector_type(8)));
using I32 = int32_t __attribute__((ext_vector_type(8)));
using U32 = uint32_t __attribute__((ext_vector_type(8)));
using I64 = int64_t __attribute__((ext_vector_type(8)));
using U64 = uint64_t __attribute__((ext_vector_type(8)));
using F = float __attribute__((ext_vector_type(8)));
#endif
static constexpr size_t N = sizeof(U16) / sizeof(uint16_t);
// Once again, some platforms benefit from a restricted Stage calling convention,
// but others can pass tons and tons of registers and we're happy to exploit that.
// It's exactly the same decision and implementation strategy as the F stages above.
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy, tail;
U16 dr,dg,db,da;
};
using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a);
#else
using Stage = void (ABI*)(size_t tail, SkRasterPipelineStage* program,
size_t dx, size_t dy,
U16 r, U16 g, U16 b, U16 a,
U16 dr, U16 dg, U16 db, U16 da);
#endif
static void start_pipeline(size_t x0, size_t y0,
size_t xlimit, size_t ylimit,
SkRasterPipelineStage* program,
SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches) {
auto start = (Stage)program->fn;
for (size_t dy = y0; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,0, 0,0,0,0 };
for (; params.dx + N <= xlimit; params.dx += N) {
start(&params, program, 0,0,0,0);
}
if (size_t tail = xlimit - params.dx) {
patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
params.tail = tail;
start(&params, program, 0,0,0,0);
restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
}
#else
size_t dx = x0;
for (; dx + N <= xlimit; dx += N) {
start( 0, program, dx,dy, 0,0,0,0, 0,0,0,0);
}
if (size_t tail = xlimit - dx) {
patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
start(tail, program, dx,dy, 0,0,0,0, 0,0,0,0);
restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
}
#endif
}
}
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {}
#else
static void ABI just_return(size_t, SkRasterPipelineStage*,size_t,size_t,
U16,U16,U16,U16, U16,U16,U16,U16) {}
#endif
// All stages use the same function call ABI to chain into each other, but there are three types:
// GG: geometry in, geometry out -- think, a matrix
// GP: geometry in, pixels out. -- think, a memory gather
// PP: pixels in, pixels out. -- think, a blend mode
//
// (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
//
// These three STAGE_ macros let you define each type of stage,
// and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
#if JUMPER_NARROW_STAGES
#define STAGE_GG(name, ARG) \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \
static void ABI name(Params* params, SkRasterPipelineStage* program, \
U16 r, U16 g, U16 b, U16 a) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \
split(x, &r,&g); \
split(y, &b,&a); \
auto fn = (Stage)(++program)->fn; \
fn(params, program, r,g,b,a); \
} \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y)
#define STAGE_GP(name, ARG) \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(Params* params, SkRasterPipelineStage* program, \
U16 r, U16 g, U16 b, U16 a) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \
params->dr,params->dg,params->db,params->da); \
auto fn = (Stage)(++program)->fn; \
fn(params, program, r,g,b,a); \
} \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#define STAGE_PP(name, ARG) \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(Params* params, SkRasterPipelineStage* program, \
U16 r, U16 g, U16 b, U16 a) { \
name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \
params->dr,params->dg,params->db,params->da); \
auto fn = (Stage)(++program)->fn; \
fn(params, program, r,g,b,a); \
} \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#else
#define STAGE_GG(name, ARG) \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \
static void ABI name(size_t tail, SkRasterPipelineStage* program, \
size_t dx, size_t dy, \
U16 r, U16 g, U16 b, U16 a, \
U16 dr, U16 dg, U16 db, U16 da) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, dx,dy,tail, x,y); \
split(x, &r,&g); \
split(y, &b,&a); \
auto fn = (Stage)(++program)->fn; \
fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y)
#define STAGE_GP(name, ARG) \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(size_t tail, SkRasterPipelineStage* program, \
size_t dx, size_t dy, \
U16 r, U16 g, U16 b, U16 a, \
U16 dr, U16 dg, U16 db, U16 da) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \
auto fn = (Stage)(++program)->fn; \
fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#define STAGE_PP(name, ARG) \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(size_t tail, SkRasterPipelineStage* program, \
size_t dx, size_t dy, \
U16 r, U16 g, U16 b, U16 a, \
U16 dr, U16 dg, U16 db, U16 da) { \
name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \
auto fn = (Stage)(++program)->fn; \
fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#endif
// ~~~~~~ Commonly used helper functions ~~~~~~ //
/**
* Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
* thanks to a division by a non-power of two:
* [1] (v + 127) / 255
*
* There is a two-step process that computes the correct answer for all inputs:
* [2] (v + 128 + ((v + 128) >> 8)) >> 8
*
* There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
* [3] (v + 255) >> 8;
*
* We offer two different implementations here, depending on the requirements of the calling stage.
*/
/**
* div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
* as [3]), and uses [3] elsewhere.
*/
SI U16 div255(U16 v) {
#if defined(JUMPER_IS_NEON)
// With NEON we can compute [2] just as fast as [3], so let's be correct.
// First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
#else
// Otherwise, use [3], which is never wrong by more than 1:
return (v+255)/256;
#endif
}
/**
* div255_accurate guarantees the right answer on all platforms, at the expense of performance.
*/
SI U16 div255_accurate(U16 v) {
#if defined(JUMPER_IS_NEON)
// Our NEON implementation of div255 is already correct for all inputs:
return div255(v);
#else
// This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
v += 128;
return (v+(v/256))/256;
#endif
}
SI U16 inv(U16 v) { return 255-v; }
SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
template <typename D, typename S>
SI D cast(S src) {
return __builtin_convertvector(src, D);
}
template <typename D, typename S>
SI void split(S v, D* lo, D* hi) {
static_assert(2*sizeof(D) == sizeof(S), "");
memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
}
template <typename D, typename S>
SI D join(S lo, S hi) {
static_assert(sizeof(D) == 2*sizeof(S), "");
D v;
memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
return v;
}
SI F if_then_else(I32 c, F t, F e) {
return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
}
SI F max(F x, F y) { return if_then_else(x < y, y, x); }
SI F min(F x, F y) { return if_then_else(x < y, x, y); }
SI I32 if_then_else(I32 c, I32 t, I32 e) {
return (t & c) | (e & ~c);
}
SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
SI F mad(F f, F m, F a) { return f*m+a; }
SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
// Use approximate instructions and one Newton-Raphson step to calculate 1/x.
SI F rcp_precise(F x) {
#if defined(JUMPER_IS_HSW)
__m256 lo,hi;
split(x, &lo,&hi);
return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
__m128 lo,hi;
split(x, &lo,&hi);
return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
#elif defined(JUMPER_IS_NEON)
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
#else
return 1.0f / x;
#endif
}
SI F sqrt_(F x) {
#if defined(JUMPER_IS_HSW)
__m256 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
__m128 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
#elif defined(SK_CPU_ARM64)
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
#elif defined(JUMPER_IS_NEON)
auto sqrt = [](float32x4_t v) {
auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
est *= vrsqrtsq_f32(v,est*est);
est *= vrsqrtsq_f32(v,est*est);
return v*est; // sqrt(v) == v*rsqrt(v).
};
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(sqrt(lo), sqrt(hi));
#else
return F{
sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
};
#endif
}
SI F floor_(F x) {
#if defined(SK_CPU_ARM64)
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
#elif defined(JUMPER_IS_HSW)
__m256 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
#elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
__m128 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
#else
F roundtrip = cast<F>(cast<I32>(x));
return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
#endif
}
// scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
// this multiply is:
// (2 * a * b + (1 << 15)) >> 16
// The result is a number on [-1, 1).
// Note: on neon this is a saturating multiply while the others are not.
SI I16 scaled_mult(I16 a, I16 b) {
#if defined(JUMPER_IS_HSW)
return _mm256_mulhrs_epi16(a, b);
#elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
return _mm_mulhrs_epi16(a, b);
#elif defined(SK_CPU_ARM64)
return vqrdmulhq_s16(a, b);
#elif defined(JUMPER_IS_NEON)
return vqrdmulhq_s16(a, b);
#else
const I32 roundingTerm = 1 << 14;
return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
#endif
}
// This sum is to support lerp where the result will always be a positive number. In general,
// a sum like this would require an additional bit, but because we know the range of the result
// we know that the extra bit will always be zero.
SI U16 constrained_add(I16 a, U16 b) {
#if defined(SK_DEBUG)
for (size_t i = 0; i < N; i++) {
// Ensure that a + b is on the interval [0, UINT16_MAX]
int ia = a[i],
ib = b[i];
// Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
// 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
// interpreted as an uint32_t.
SkASSERT(-ib <= ia && ia <= 65535 - ib);
}
#endif
return b + a;
}
SI F fract(F x) { return x - floor_(x); }
SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
// ~~~~~~ Basic / misc. stages ~~~~~~ //
STAGE_GG(seed_shader, NoCtx) {
static constexpr float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota);
y = cast<F>(I32(dy)) + 0.5f;
}
STAGE_GG(matrix_translate, const float* m) {
x += m[0];
y += m[1];
}
STAGE_GG(matrix_scale_translate, const float* m) {
x = mad(x,m[0], m[2]);
y = mad(y,m[1], m[3]);
}
STAGE_GG(matrix_2x3, const float* m) {
auto X = mad(x,m[0], mad(y,m[1], m[2])),
Y = mad(x,m[3], mad(y,m[4], m[5]));
x = X;
y = Y;
}
STAGE_GG(matrix_perspective, const float* m) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto X = mad(x,m[0], mad(y,m[1], m[2])),
Y = mad(x,m[3], mad(y,m[4], m[5])),
Z = mad(x,m[6], mad(y,m[7], m[8]));
x = X * rcp_precise(Z);
y = Y * rcp_precise(Z);
}
STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->rgba[0];
g = c->rgba[1];
b = c->rgba[2];
a = c->rgba[3];
}
STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
dr = c->rgba[0];
dg = c->rgba[1];
db = c->rgba[2];
da = c->rgba[3];
}
STAGE_PP(black_color, NoCtx) { r = g = b = 0; a = 255; }
STAGE_PP(white_color, NoCtx) { r = g = b = 255; a = 255; }
STAGE_PP(set_rgb, const float rgb[3]) {
r = from_float(rgb[0]);
g = from_float(rgb[1]);
b = from_float(rgb[2]);
}
// No need to clamp against 0 here (values are unsigned)
STAGE_PP(clamp_01, NoCtx) {
r = min(r, 255);
g = min(g, 255);
b = min(b, 255);
a = min(a, 255);
}
STAGE_PP(clamp_gamut, NoCtx) {
a = min(a, 255);
r = min(r, a);
g = min(g, a);
b = min(b, a);
}
STAGE_PP(premul, NoCtx) {
r = div255_accurate(r * a);
g = div255_accurate(g * a);
b = div255_accurate(b * a);
}
STAGE_PP(premul_dst, NoCtx) {
dr = div255_accurate(dr * da);
dg = div255_accurate(dg * da);
db = div255_accurate(db * da);
}
STAGE_PP(force_opaque , NoCtx) { a = 255; }
STAGE_PP(force_opaque_dst, NoCtx) { da = 255; }
STAGE_PP(swap_rb, NoCtx) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE_PP(swap_rb_dst, NoCtx) {
auto tmp = dr;
dr = db;
db = tmp;
}
STAGE_PP(move_src_dst, NoCtx) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE_PP(move_dst_src, NoCtx) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE_PP(swap_src_dst, NoCtx) {
std::swap(r, dr);
std::swap(g, dg);
std::swap(b, db);
std::swap(a, da);
}
// ~~~~~~ Blend modes ~~~~~~ //
// The same logic applied to all 4 channels.
#define BLEND_MODE(name) \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
STAGE_PP(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
#if defined(SK_USE_INACCURATE_DIV255_IN_BLEND)
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
BLEND_MODE(srcin) { return div255( s*da ); }
BLEND_MODE(dstin) { return div255( d*sa ); }
BLEND_MODE(srcout) { return div255( s*inv(da) ); }
BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
BLEND_MODE(modulate) { return div255( s*d ); }
BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
BLEND_MODE(plus_) { return min(s+d, 255); }
BLEND_MODE(screen) { return s + d - div255( s*d ); }
BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
#else
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
BLEND_MODE(srcin) { return div255_accurate( s*da ); }
BLEND_MODE(dstin) { return div255_accurate( d*sa ); }
BLEND_MODE(srcout) { return div255_accurate( s*inv(da) ); }
BLEND_MODE(dstout) { return div255_accurate( d*inv(sa) ); }
BLEND_MODE(srcover) { return s + div255_accurate( d*inv(sa) ); }
BLEND_MODE(dstover) { return d + div255_accurate( s*inv(da) ); }
BLEND_MODE(modulate) { return div255_accurate( s*d ); }
BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
BLEND_MODE(plus_) { return min(s+d, 255); }
BLEND_MODE(screen) { return s + d - div255_accurate( s*d ); }
BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
#endif
#undef BLEND_MODE
// The same logic applied to color, and srcover for alpha.
#define BLEND_MODE(name) \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
STAGE_PP(name, NoCtx) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = a + div255( da*inv(a) ); \
} \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
BLEND_MODE(hardlight) {
return div255( s*inv(da) + d*inv(sa) +
if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
}
BLEND_MODE(overlay) {
return div255( s*inv(da) + d*inv(sa) +
if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
}
#undef BLEND_MODE
// ~~~~~~ Helpers for interacting with memory ~~~~~~ //
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
// Exclusive -> inclusive.
const F w = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1),
h = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1);
const F z = std::numeric_limits<float>::min();
x = min(max(z, x), w);
y = min(max(z, y), h);
x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
// This flag doesn't make sense when the coords are integers.
SkASSERT(ctx->roundDownAtInteger == 0);
// Exclusive -> inclusive.
const I32 w = ctx->width - 1,
h = ctx->height - 1;
U32 ax = cast<U32>(min(max(0, x), w)),
ay = cast<U32>(min(max(0, y), h));
*ptr = (const T*)ctx->pixels;
return ay * ctx->stride + ax;
}
template <typename V, typename T>
SI V load(const T* ptr) {
V v;
memcpy(&v, ptr, sizeof(v));
return v;
}
template <typename V, typename T>
SI void store(T* ptr, V v) {
memcpy(ptr, &v, sizeof(v));
}
#if defined(JUMPER_IS_HSW)
template <typename V, typename T>
SI V gather(const T* ptr, U32 ix) {
return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
}
template<>
F gather(const float* ptr, U32 ix) {
__m256i lo, hi;
split(ix, &lo, &hi);
return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
_mm256_i32gather_ps(ptr, hi, 4));
}
template<>
U32 gather(const uint32_t* ptr, U32 ix) {
__m256i lo, hi;
split(ix, &lo, &hi);
return join<U32>(_mm256_i32gather_epi32(ptr, lo, 4),
_mm256_i32gather_epi32(ptr, hi, 4));
}
#else
template <typename V, typename T>
SI V gather(const T* ptr, U32 ix) {
return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
}
#endif
// ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
#if defined(JUMPER_IS_HSW)
// Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
__m256i _01,_23;
split(rgba, &_01, &_23);
__m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
_13 = _mm256_permute2x128_si256(_01,_23, 0x31);
rgba = join<U32>(_02, _13);
auto cast_U16 = [](U32 v) -> U16 {
__m256i _02,_13;
split(v, &_02,&_13);
return _mm256_packus_epi32(_02,_13);
};
#else
auto cast_U16 = [](U32 v) -> U16 {
return cast<U16>(v);
};
#endif
*r = cast_U16(rgba & 65535) & 255;
*g = cast_U16(rgba & 65535) >> 8;
*b = cast_U16(rgba >> 16) & 255;
*a = cast_U16(rgba >> 16) >> 8;
}
SI void load_8888_(const uint32_t* ptr, U16* r, U16* g, U16* b, U16* a) {
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x4_t rgba = vld4_u8((const uint8_t*)(ptr));
*r = cast<U16>(rgba.val[0]);
*g = cast<U16>(rgba.val[1]);
*b = cast<U16>(rgba.val[2]);
*a = cast<U16>(rgba.val[3]);
#else
from_8888(load<U32>(ptr), r,g,b,a);
#endif
}
SI void store_8888_(uint32_t* ptr, U16 r, U16 g, U16 b, U16 a) {
r = min(r, 255);
g = min(g, 255);
b = min(b, 255);
a = min(a, 255);
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x4_t rgba = {{
cast<U8>(r),
cast<U8>(g),
cast<U8>(b),
cast<U8>(a),
}};
vst4_u8((uint8_t*)(ptr), rgba);
#else
store(ptr, cast<U32>(r | (g<<8)) << 0
| cast<U32>(b | (a<<8)) << 16);
#endif
}
STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &r,&g,&b,&a);
}
STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &dr,&dg,&db,&da);
}
STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), r,g,b,a);
}
STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
}
// ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
// Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
U16 R = (rgb >> 11) & 31,
G = (rgb >> 5) & 63,
B = (rgb >> 0) & 31;
// These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
*r = (R << 3) | (R >> 2);
*g = (G << 2) | (G >> 4);
*b = (B << 3) | (B >> 2);
}
SI void load_565_(const uint16_t* ptr, U16* r, U16* g, U16* b) {
from_565(load<U16>(ptr), r,g,b);
}
SI void store_565_(uint16_t* ptr, U16 r, U16 g, U16 b) {
r = min(r, 255);
g = min(g, 255);
b = min(b, 255);
// Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
// (Don't feel like you need to find some fundamental truth in these...
// they were brute-force searched.)
U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half.
G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly.
B = (b * 9 + 36) / 74;
// Pack them back into 15|rrrrr gggggg bbbbb|0.
store(ptr, R << 11
| G << 5
| B << 0);
}
STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b);
a = 255;
}
STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db);
da = 255;
}
STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b);
}
STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_565(gather<U16>(ptr, ix), &r, &g, &b);
a = 255;
}
SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
// Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
U16 R = (rgba >> 12) & 15,
G = (rgba >> 8) & 15,
B = (rgba >> 4) & 15,
A = (rgba >> 0) & 15;
// Scale [0,15] to [0,255].
*r = (R << 4) | R;
*g = (G << 4) | G;
*b = (B << 4) | B;
*a = (A << 4) | A;
}
SI void load_4444_(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
from_4444(load<U16>(ptr), r,g,b,a);
}
SI void store_4444_(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
r = min(r, 255);
g = min(g, 255);
b = min(b, 255);
a = min(a, 255);
// Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
U16 R = (r + 8) / 17,
G = (g + 8) / 17,
B = (b + 8) / 17,
A = (a + 8) / 17;
// Pack them back into 15|rrrr gggg bbbb aaaa|0.
store(ptr, R << 12
| G << 8
| B << 4
| A << 0);
}
STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b,&a);
}
STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db,&da);
}
STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b,a);
}
STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
}
SI void from_88(U16 rg, U16* r, U16* g) {
*r = (rg & 0xFF);
*g = (rg >> 8);
}
SI void load_88_(const uint16_t* ptr, U16* r, U16* g) {
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x2_t rg = vld2_u8((const uint8_t*)(ptr));
*r = cast<U16>(rg.val[0]);
*g = cast<U16>(rg.val[1]);
#else
from_88(load<U16>(ptr), r,g);
#endif
}
SI void store_88_(uint16_t* ptr, U16 r, U16 g) {
r = min(r, 255);
g = min(g, 255);
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x2_t rg = {{
cast<U8>(r),
cast<U8>(g),
}};
vst2_u8((uint8_t*)(ptr), rg);
#else
store(ptr, cast<U16>(r | (g<<8)) << 0);
#endif
}
STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &r, &g);
b = 0;
a = 255;
}
STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &dr, &dg);
db = 0;
da = 255;
}
STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), r, g);
}
STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x, y);
from_88(gather<U16>(ptr, ix), &r, &g);
b = 0;
a = 255;
}
// ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
SI U16 load_8(const uint8_t* ptr) {
return cast<U16>(load<U8>(ptr));
}
SI void store_8(uint8_t* ptr, U16 v) {
v = min(v, 255);
store(ptr, cast<U8>(v));
}
STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
r = g = b = 0;
a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
}
STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
dr = dg = db = 0;
da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
}
STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), a);
}
STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
r = g = b = 0;
a = cast<U16>(gather<U8>(ptr, ix));
}
STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), r);
}
STAGE_PP(alpha_to_gray, NoCtx) {
r = g = b = a;
a = 255;
}
STAGE_PP(alpha_to_gray_dst, NoCtx) {
dr = dg = db = da;
da = 255;
}
STAGE_PP(alpha_to_red, NoCtx) {
r = a;
a = 255;
}
STAGE_PP(alpha_to_red_dst, NoCtx) {
dr = da;
da = 255;
}
STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) {
a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
r = g = b = 0;
}
STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) {
r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
}
// ~~~~~~ Coverage scales / lerps ~~~~~~ //
STAGE_PP(load_src, const uint16_t* ptr) {
r = sk_unaligned_load<U16>(ptr + 0*N);
g = sk_unaligned_load<U16>(ptr + 1*N);
b = sk_unaligned_load<U16>(ptr + 2*N);
a = sk_unaligned_load<U16>(ptr + 3*N);
}
STAGE_PP(store_src, uint16_t* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
sk_unaligned_store(ptr + 2*N, b);
sk_unaligned_store(ptr + 3*N, a);
}
STAGE_PP(store_src_a, uint16_t* ptr) {
sk_unaligned_store(ptr, a);
}
STAGE_PP(load_dst, const uint16_t* ptr) {
dr = sk_unaligned_load<U16>(ptr + 0*N);
dg = sk_unaligned_load<U16>(ptr + 1*N);
db = sk_unaligned_load<U16>(ptr + 2*N);
da = sk_unaligned_load<U16>(ptr + 3*N);
}
STAGE_PP(store_dst, uint16_t* ptr) {
sk_unaligned_store(ptr + 0*N, dr);
sk_unaligned_store(ptr + 1*N, dg);
sk_unaligned_store(ptr + 2*N, db);
sk_unaligned_store(ptr + 3*N, da);
}
// ~~~~~~ Coverage scales / lerps ~~~~~~ //
STAGE_PP(scale_1_float, const float* f) {
U16 c = from_float(*f);
r = div255( r * c );
g = div255( g * c );
b = div255( b * c );
a = div255( a * c );
}
STAGE_PP(lerp_1_float, const float* f) {
U16 c = from_float(*f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE_PP(scale_native, const uint16_t scales[]) {
auto c = sk_unaligned_load<U16>(scales);
r = div255( r * c );
g = div255( g * c );
b = div255( b * c );
a = div255( a * c );
}
STAGE_PP(lerp_native, const uint16_t scales[]) {
auto c = sk_unaligned_load<U16>(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
r = div255( r * c );
g = div255( g * c );
b = div255( b * c );
a = div255( a * c );
}
STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
return if_then_else(a < da, min(cr, min(cg,cb))
, max(cr, max(cg,cb)));
}
STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
U16 cr,cg,cb;
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = div255( r * cr );
g = div255( g * cg );
b = div255( b * cb );
a = div255( a * ca );
}
STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
U16 cr,cg,cb;
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = lerp(da, a, ca);
}
STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy)),
add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy));
r = min(div255(r*mul) + add, a);
g = min(div255(g*mul) + add, a);
b = min(div255(b*mul) + add, a);
}
// ~~~~~~ Gradient stages ~~~~~~ //
// Clamp x to [0,1], both sides inclusive (think, gradients).
// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
SI F clamp_01_(F v) { return min(max(0, v), 1); }
STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); }
STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); }
STAGE_GG(mirror_x_1, NoCtx) {
auto two = [](F x){ return x+x; };
x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
}
SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
}
STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto h = ctx->limit_y;
sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
}
STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
auto h = ctx->limit_y;
sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
}
STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) {
x = min(ctx->max_x, max(ctx->min_x, x));
y = min(ctx->max_y, max(ctx->min_y, y));
}
STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
auto mask = sk_unaligned_load<U16>(ctx->mask);
r = r & mask;
g = g & mask;
b = b & mask;
a = a & mask;
}
SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) {
auto round_color = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
*r = round_color(min(max(0, R), 1));
*g = round_color(min(max(0, G), 1));
*b = round_color(min(max(0, B), 1));
*a = round_color(A); // we assume alpha is already in [0,1].
}
SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
U16* r, U16* g, U16* b, U16* a) {
F fr, fg, fb, fa, br, bg, bb, ba;
#if defined(JUMPER_IS_HSW)
if (c->stopCount <=8) {
__m256i lo, hi;
split(idx, &lo, &hi);
fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
} else
#endif
{
fr = gather<F>(c->fs[0], idx);
fg = gather<F>(c->fs[1], idx);
fb = gather<F>(c->fs[2], idx);
fa = gather<F>(c->fs[3], idx);
br = gather<F>(c->bs[0], idx);
bg = gather<F>(c->bs[1], idx);
bb = gather<F>(c->bs[2], idx);
ba = gather<F>(c->bs[3], idx);
}
round_F_to_U16(mad(t, fr, br),
mad(t, fg, bg),
mad(t, fb, bb),
mad(t, fa, ba),
r,g,b,a);
}
STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = x;
U32 idx = 0;
// N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
for (size_t i = 1; i < c->stopCount; i++) {
idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
}
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = x;
auto idx = trunc_(t * (c->stopCount-1));
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
auto t = x;
round_F_to_U16(mad(t, c->f[0], c->b[0]),
mad(t, c->f[1], c->b[1]),
mad(t, c->f[2], c->b[2]),
mad(t, c->f[3], c->b[3]),
&r,&g,&b,&a);
}
STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
// Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
// point number.
I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
// Calculate screen coordinates sx & sy by flooring qx and qy.
I32 sx = qx >> 16,
sy = qy >> 16;
// We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
// This will put tx in Q15 format for use with q_mult.
// Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
// [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
// the same math:
// tx = 2 * {qx} - 1, so
// {qx} = (tx + 1) / 2.
// Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
// is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
// order to use the full 16-bit resolution.
I16 tx = cast<I16>(qx ^ 0x8000),
ty = cast<I16>(qy ^ 0x8000);
// Substituting the {qx} by the equation for tx from above into the lerp equation where v is
// the lerped value:
// v = {qx}*(R - L) + L,
// v = 1/2*(tx + 1)*(R - L) + L
// 2 * v = (tx + 1)*(R - L) + 2*L
// = tx*R - tx*L + R - L + 2*L
// = tx*(R - L) + (R + L).
// Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
// for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
// code, we can multiply by 2^7 to get the value directly.
// 2 * v = tx*(R - L) + (R + L)
// 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
// 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
// v = 1/2 * (tx*(R - L) + (R + L))
auto lerpX = [&](U16 left, U16 right) -> U16 {
I16 width = (I16)(right - left) << 7;
U16 middle = (right + left) << 7;
// The constrained_add is the most subtle part of lerp. The first term is on the interval
// [-1, 1), and the second term is on the interval is on the interval [0, 1) because
// both terms are too high by a factor of 2 which will be handled below. (Both R and L are
// on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
// should overflow, but because we know that sum produces an output on the
// interval [0, 1) we know that the extra bit that would be needed will always be 0. So
// we need to be careful to treat this sum as an unsigned positive number in the divide
// by 2 below. Add +1 for rounding.
U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1;
// Divide by 2 to calculate v and at the same time bring the intermediate value onto the
// interval [0, 1/2] to set up for the lerpY.
return v2 >> 1;
};
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
U16 leftR, leftG, leftB, leftA;
from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
U16 rightR, rightG, rightB, rightA;
from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
U16 topR = lerpX(leftR, rightR),
topG = lerpX(leftG, rightG),
topB = lerpX(leftB, rightB),
topA = lerpX(leftA, rightA);
ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
U16 bottomR = lerpX(leftR, rightR),
bottomG = lerpX(leftG, rightG),
bottomB = lerpX(leftB, rightB),
bottomA = lerpX(leftA, rightA);
// lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
// in a value on [0, 255].
auto lerpY = [&](U16 top, U16 bottom) -> U16 {
I16 width = (I16)bottom - top;
U16 middle = bottom + top;
// Add + 0x80 for rounding.
U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80;
return blend >> 8;
};
r = lerpY(topR, bottomR);
g = lerpY(topG, bottomG);
b = lerpY(topB, bottomB);
a = lerpY(topA, bottomA);
}
STAGE_GG(xy_to_unit_angle, NoCtx) {
F xabs = abs_(x),
yabs = abs_(y);
F slope = min(xabs, yabs)/max(xabs, yabs);
F s = slope * slope;
// Use a 7th degree polynomial to approximate atan.
// This was generated using sollya.gforge.inria.fr.
// A float optimized polynomial was generated using the following command.
// P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
F phi = slope
* (0.15912117063999176025390625f + s
* (-5.185396969318389892578125e-2f + s
* (2.476101927459239959716796875e-2f + s
* (-7.0547382347285747528076171875e-3f))));
phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
x = phi;
}
STAGE_GG(xy_to_radius, NoCtx) {
x = sqrt_(x*x + y*y);
}
// ~~~~~~ Compound stages ~~~~~~ //
STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
load_8888_(ptr, &dr,&dg,&db,&da);
r = r + div255( dr*inv(a) );
g = g + div255( dg*inv(a) );
b = b + div255( db*inv(a) );
a = a + div255( da*inv(a) );
store_8888_(ptr, r,g,b,a);
}
// ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
STAGE_PP(swizzle, void* ctx) {
auto ir = r, ig = g, ib = b, ia = a;
U16* o[] = {&r, &g, &b, &a};
char swiz[4];
memcpy(swiz, &ctx, sizeof(swiz));
for (int i = 0; i < 4; ++i) {
switch (swiz[i]) {
case 'r': *o[i] = ir; break;
case 'g': *o[i] = ig; break;
case 'b': *o[i] = ib; break;
case 'a': *o[i] = ia; break;
case '0': *o[i] = U16(0); break;
case '1': *o[i] = U16(255); break;
default: break;
}
}
}
#endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages
} // namespace lowp
/* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */
namespace lowp { static constexpr size_t lowp_N = N; }
/** Allow outside code to access the Raster Pipeline pixel stride. */
constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; }
constexpr size_t raster_pipeline_highp_stride() { return N; }
} // namespace SK_OPTS_NS
#undef SI
#endif//SkRasterPipeline_opts_DEFINED