| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkRasterPipeline_opts_DEFINED |
| #define SkRasterPipeline_opts_DEFINED |
| |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "include/private/base/SkSpan_impl.h" |
| #include "include/private/base/SkTemplates.h" |
| #include "modules/skcms/skcms.h" |
| #include "src/base/SkUtils.h" // unaligned_{load,store} |
| #include "src/core/SkRasterPipeline.h" |
| #include "src/core/SkRasterPipelineContextUtils.h" |
| #include "src/sksl/tracing/SkSLTraceHook.h" |
| |
| #include <cstdint> |
| #include <type_traits> |
| |
| // Every function in this file should be marked static and inline using SI. |
| #if defined(__clang__) |
| #define SI __attribute__((always_inline)) static inline |
| #else |
| #define SI static inline |
| #endif |
| |
| #if defined(__clang__) |
| #define SK_UNROLL _Pragma("unroll") |
| #else |
| #define SK_UNROLL |
| #endif |
| |
| template <typename Dst, typename Src> |
| SI Dst widen_cast(const Src& src) { |
| static_assert(sizeof(Dst) > sizeof(Src)); |
| static_assert(std::is_trivially_copyable<Dst>::value); |
| static_assert(std::is_trivially_copyable<Src>::value); |
| Dst dst; |
| memcpy(&dst, &src, sizeof(Src)); |
| return dst; |
| } |
| |
| struct Ctx { |
| SkRasterPipelineStage* fStage; |
| |
| template <typename T> |
| operator T*() { |
| return (T*)fStage->ctx; |
| } |
| }; |
| |
| using NoCtx = const void*; |
| |
| #if !defined(__clang__) |
| #define JUMPER_IS_SCALAR |
| #elif defined(SK_ARM_HAS_NEON) |
| #define JUMPER_IS_NEON |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| #define JUMPER_IS_HSW |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX |
| #define JUMPER_IS_AVX |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| #define JUMPER_IS_SSE41 |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| #define JUMPER_IS_SSE2 |
| #else |
| #define JUMPER_IS_SCALAR |
| #endif |
| |
| // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7. |
| #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32) |
| // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative. |
| #if defined(__apple_build_version__) && __clang_major__ < 9 |
| #define JUMPER_IS_SCALAR |
| #elif __clang_major__ < 5 |
| #define JUMPER_IS_SCALAR |
| #endif |
| |
| #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR) |
| #undef JUMPER_IS_NEON |
| #endif |
| #endif |
| |
| #if defined(JUMPER_IS_SCALAR) |
| #include <math.h> |
| #elif defined(JUMPER_IS_NEON) |
| #include <arm_neon.h> |
| #else |
| #include <immintrin.h> |
| #endif |
| |
| // Notes: |
| // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least |
| // 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise |
| // requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for |
| // Intel this requires one additional step because its estimate has 12 bit precision. |
| // |
| // * Don't call rcp_approx or rsqrt_approx directly; only use rcp_fast and rsqrt. |
| |
| namespace SK_OPTS_NS { |
| #if defined(JUMPER_IS_SCALAR) |
| // This path should lead to portable scalar code. |
| using F = float ; |
| using I32 = int32_t; |
| using U64 = uint64_t; |
| using U32 = uint32_t; |
| using U16 = uint16_t; |
| using U8 = uint8_t ; |
| |
| SI F min(F a, F b) { return fminf(a,b); } |
| SI I32 min(I32 a, I32 b) { return a < b ? a : b; } |
| SI U32 min(U32 a, U32 b) { return a < b ? a : b; } |
| SI F max(F a, F b) { return fmaxf(a,b); } |
| SI I32 max(I32 a, I32 b) { return a > b ? a : b; } |
| SI U32 max(U32 a, U32 b) { return a > b ? a : b; } |
| |
| SI F mad(F f, F m, F a) { return f*m+a; } |
| SI F abs_ (F v) { return fabsf(v); } |
| SI I32 abs_ (I32 v) { return v < 0 ? -v : v; } |
| SI F floor_(F v) { return floorf(v); } |
| SI F ceil_(F v) { return ceilf(v); } |
| SI F rcp_approx(F v) { return 1.0f / v; } // use rcp_fast instead |
| SI F rsqrt_approx(F v) { return 1.0f / sqrtf(v); } |
| SI F sqrt_ (F v) { return sqrtf(v); } |
| SI F rcp_precise (F v) { return 1.0f / v; } |
| |
| SI U32 round(F v) { return (uint32_t)(v + 0.5f); } |
| SI U32 round(F v, F scale) { return (uint32_t)(v*scale + 0.5f); } |
| SI U16 pack(U32 v) { return (U16)v; } |
| SI U8 pack(U16 v) { return (U8)v; } |
| |
| SI F if_then_else(I32 c, F t, F e) { return c ? t : e; } |
| SI bool any(I32 c) { return c != 0; } |
| SI bool all(I32 c) { return c != 0; } |
| |
| template <typename T> |
| SI T gather(const T* p, U32 ix) { return p[ix]; } |
| |
| template <typename T> |
| SI void scatter_masked(T src, T* dst, U32 ix, I32 mask) { |
| dst[ix] = mask ? src : dst[ix]; |
| } |
| |
| SI void load2(const uint16_t* ptr, U16* r, U16* g) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| } |
| SI void store2(uint16_t* ptr, U16 r, U16 g) { |
| ptr[0] = r; |
| ptr[1] = g; |
| } |
| SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| *b = ptr[2]; |
| *a = ptr[3]; |
| } |
| SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) { |
| ptr[0] = r; |
| ptr[1] = g; |
| ptr[2] = b; |
| ptr[3] = a; |
| } |
| |
| SI void load4(const float* ptr, F* r, F* g, F* b, F* a) { |
| *r = ptr[0]; |
| *g = ptr[1]; |
| *b = ptr[2]; |
| *a = ptr[3]; |
| } |
| SI void store4(float* ptr, F r, F g, F b, F a) { |
| ptr[0] = r; |
| ptr[1] = g; |
| ptr[2] = b; |
| ptr[3] = a; |
| } |
| |
| #elif defined(JUMPER_IS_NEON) |
| // Since we know we're using Clang, we can use its vector extensions. |
| template <typename T> using V = T __attribute__((ext_vector_type(4))); |
| using F = V<float >; |
| using I32 = V< int32_t>; |
| using U64 = V<uint64_t>; |
| using U32 = V<uint32_t>; |
| using U16 = V<uint16_t>; |
| using U8 = V<uint8_t >; |
| |
| // We polyfill a few routines that Clang doesn't build into ext_vector_types. |
| SI F min(F a, F b) { return vminq_f32(a,b); } |
| SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); } |
| SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); } |
| SI F max(F a, F b) { return vmaxq_f32(a,b); } |
| SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); } |
| SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); } |
| |
| SI F abs_ (F v) { return vabsq_f32(v); } |
| SI I32 abs_ (I32 v) { return vabsq_s32(v); } |
| SI F rcp_approx(F v) { auto e = vrecpeq_f32(v); return vrecpsq_f32 (v,e ) * e; } |
| SI F rcp_precise(F v) { auto e = rcp_approx(v); return vrecpsq_f32 (v,e ) * e; } |
| SI F rsqrt_approx(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; } |
| |
| SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); } |
| SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); } |
| |
| SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); } |
| |
| #if defined(SK_CPU_ARM64) |
| SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; } |
| SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; } |
| |
| SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); } |
| SI F floor_(F v) { return vrndmq_f32(v); } |
| SI F ceil_(F v) { return vrndpq_f32(v); } |
| SI F sqrt_(F v) { return vsqrtq_f32(v); } |
| SI U32 round(F v) { return vcvtnq_u32_f32(v); } |
| SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); } |
| #else |
| SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; } |
| SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; } |
| |
| SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); } |
| SI F floor_(F v) { |
| F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); |
| return roundtrip - if_then_else(roundtrip > v, 1, 0); |
| } |
| |
| SI F ceil_(F v) { |
| F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); |
| return roundtrip + if_then_else(roundtrip < v, 1, 0); |
| } |
| |
| SI F sqrt_(F v) { |
| auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v). |
| e *= vrsqrtsq_f32(v,e*e); |
| e *= vrsqrtsq_f32(v,e*e); |
| return v*e; // sqrt(v) == v*rsqrt(v). |
| } |
| |
| SI U32 round(F v) { |
| return vcvtq_u32_f32(v + 0.5f); |
| } |
| |
| SI U32 round(F v, F scale) { |
| return vcvtq_u32_f32(mad(v,scale,0.5f)); |
| } |
| #endif |
| |
| template <typename T> |
| SI V<T> gather(const T* p, U32 ix) { |
| return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; |
| } |
| template <typename V, typename S> |
| SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { |
| V before = gather(dst, ix); |
| V after = if_then_else(mask, src, before); |
| dst[ix[0]] = after[0]; |
| dst[ix[1]] = after[1]; |
| dst[ix[2]] = after[2]; |
| dst[ix[3]] = after[3]; |
| } |
| SI void load2(const uint16_t* ptr, U16* r, U16* g) { |
| uint16x4x2_t rg = vld2_u16(ptr); |
| *r = rg.val[0]; |
| *g = rg.val[1]; |
| } |
| SI void store2(uint16_t* ptr, U16 r, U16 g) { |
| vst2_u16(ptr, (uint16x4x2_t{{r,g}})); |
| } |
| SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) { |
| uint16x4x4_t rgba = vld4_u16(ptr); |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| *a = rgba.val[3]; |
| } |
| |
| SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) { |
| vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}})); |
| } |
| SI void load4(const float* ptr, F* r, F* g, F* b, F* a) { |
| float32x4x4_t rgba = vld4q_f32(ptr); |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| *a = rgba.val[3]; |
| } |
| SI void store4(float* ptr, F r, F g, F b, F a) { |
| vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}})); |
| } |
| |
| #elif defined(JUMPER_IS_HSW) |
| // These are __m256 and __m256i, but friendlier and strongly-typed. |
| template <typename T> using V = T __attribute__((ext_vector_type(8))); |
| using F = V<float >; |
| using I32 = V< int32_t>; |
| using U64 = V<uint64_t>; |
| using U32 = V<uint32_t>; |
| using U16 = V<uint16_t>; |
| using U8 = V<uint8_t >; |
| |
| SI F mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); } |
| |
| SI F min(F a, F b) { return _mm256_min_ps(a,b); } |
| SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); } |
| SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); } |
| SI F max(F a, F b) { return _mm256_max_ps(a,b); } |
| SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); } |
| SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); } |
| |
| SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); } |
| SI I32 abs_ (I32 v) { return _mm256_abs_epi32(v); } |
| SI F floor_(F v) { return _mm256_floor_ps(v); } |
| SI F ceil_(F v) { return _mm256_ceil_ps(v); } |
| SI F rcp_approx(F v) { return _mm256_rcp_ps (v); } // use rcp_fast instead |
| SI F rsqrt_approx(F v) { return _mm256_rsqrt_ps(v); } |
| SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); } |
| SI F rcp_precise (F v) { |
| F e = rcp_approx(v); |
| return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e; |
| } |
| |
| SI U32 round(F v) { return _mm256_cvtps_epi32(v); } |
| SI U32 round(F v, F scale) { return _mm256_cvtps_epi32(v*scale); } |
| SI U16 pack(U32 v) { |
| return _mm_packus_epi32(_mm256_extractf128_si256(v, 0), |
| _mm256_extractf128_si256(v, 1)); |
| } |
| SI U8 pack(U16 v) { |
| auto r = _mm_packus_epi16(v,v); |
| return sk_unaligned_load<U8>(&r); |
| } |
| |
| SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); } |
| // NOTE: This version of 'all' only works with mask values (true == all bits set) |
| SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); } |
| SI bool all(I32 c) { return _mm256_testc_si256(c, _mm256_set1_epi32(-1)); } |
| |
| template <typename T> |
| SI V<T> gather(const T* p, U32 ix) { |
| return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]], |
| p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], }; |
| } |
| SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); } |
| SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); } |
| SI U64 gather(const uint64_t* p, U32 ix) { |
| __m256i parts[] = { |
| _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8), |
| _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8), |
| }; |
| return sk_bit_cast<U64>(parts); |
| } |
| template <typename V, typename S> |
| SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { |
| V before = gather(dst, ix); |
| V after = if_then_else(mask, src, before); |
| dst[ix[0]] = after[0]; |
| dst[ix[1]] = after[1]; |
| dst[ix[2]] = after[2]; |
| dst[ix[3]] = after[3]; |
| dst[ix[4]] = after[4]; |
| dst[ix[5]] = after[5]; |
| dst[ix[6]] = after[6]; |
| dst[ix[7]] = after[7]; |
| } |
| |
| SI void load2(const uint16_t* ptr, U16* r, U16* g) { |
| U16 _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0), |
| _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1); |
| *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16), |
| _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16)); |
| *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16), |
| _mm_srai_epi32(_4567, 16)); |
| } |
| SI void store2(uint16_t* ptr, U16 r, U16 g) { |
| auto _0123 = _mm_unpacklo_epi16(r, g), |
| _4567 = _mm_unpackhi_epi16(r, g); |
| _mm_storeu_si128((__m128i*)ptr + 0, _0123); |
| _mm_storeu_si128((__m128i*)ptr + 1, _4567); |
| } |
| |
| SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) { |
| __m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0), |
| _23 = _mm_loadu_si128(((__m128i*)ptr) + 1), |
| _45 = _mm_loadu_si128(((__m128i*)ptr) + 2), |
| _67 = _mm_loadu_si128(((__m128i*)ptr) + 3); |
| |
| auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 |
| _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3 |
| _46 = _mm_unpacklo_epi16(_45, _67), |
| _57 = _mm_unpackhi_epi16(_45, _67); |
| |
| auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
| ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3 |
| rg4567 = _mm_unpacklo_epi16(_46, _57), |
| ba4567 = _mm_unpackhi_epi16(_46, _57); |
| |
| *r = _mm_unpacklo_epi64(rg0123, rg4567); |
| *g = _mm_unpackhi_epi64(rg0123, rg4567); |
| *b = _mm_unpacklo_epi64(ba0123, ba4567); |
| *a = _mm_unpackhi_epi64(ba0123, ba4567); |
| } |
| SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) { |
| auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3 |
| rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7 |
| ba0123 = _mm_unpacklo_epi16(b, a), |
| ba4567 = _mm_unpackhi_epi16(b, a); |
| |
| auto _01 = _mm_unpacklo_epi32(rg0123, ba0123), |
| _23 = _mm_unpackhi_epi32(rg0123, ba0123), |
| _45 = _mm_unpacklo_epi32(rg4567, ba4567), |
| _67 = _mm_unpackhi_epi32(rg4567, ba4567); |
| |
| _mm_storeu_si128((__m128i*)ptr + 0, _01); |
| _mm_storeu_si128((__m128i*)ptr + 1, _23); |
| _mm_storeu_si128((__m128i*)ptr + 2, _45); |
| _mm_storeu_si128((__m128i*)ptr + 3, _67); |
| } |
| |
| SI void load4(const float* ptr, F* r, F* g, F* b, F* a) { |
| F _04 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 0)), |
| _15 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 4)), |
| _26 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 8)), |
| _37 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+12)); |
| _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); |
| _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); |
| _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); |
| _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); |
| |
| F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5 |
| ba0145 = _mm256_unpackhi_ps(_04,_15), |
| rg2367 = _mm256_unpacklo_ps(_26,_37), |
| ba2367 = _mm256_unpackhi_ps(_26,_37); |
| |
| *r = _mm256_unpacklo_pd(rg0145, rg2367); |
| *g = _mm256_unpackhi_pd(rg0145, rg2367); |
| *b = _mm256_unpacklo_pd(ba0145, ba2367); |
| *a = _mm256_unpackhi_pd(ba0145, ba2367); |
| } |
| SI void store4(float* ptr, F r, F g, F b, F a) { |
| F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5 |
| rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ... |
| ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5 |
| ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ... |
| |
| F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4 |
| _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ... |
| _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ... |
| _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ... |
| |
| F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo |
| _23 = _mm256_permute2f128_ps(_26, _37, 32), |
| _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi |
| _67 = _mm256_permute2f128_ps(_26, _37, 49); |
| _mm256_storeu_ps(ptr+ 0, _01); |
| _mm256_storeu_ps(ptr+ 8, _23); |
| _mm256_storeu_ps(ptr+16, _45); |
| _mm256_storeu_ps(ptr+24, _67); |
| } |
| |
| #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| template <typename T> using V = T __attribute__((ext_vector_type(4))); |
| using F = V<float >; |
| using I32 = V< int32_t>; |
| using U64 = V<uint64_t>; |
| using U32 = V<uint32_t>; |
| using U16 = V<uint16_t>; |
| using U8 = V<uint8_t >; |
| |
| SI F if_then_else(I32 c, F t, F e) { |
| return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e)); |
| } |
| |
| SI F min(F a, F b) { return _mm_min_ps(a,b); } |
| SI F max(F a, F b) { return _mm_max_ps(a,b); } |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); } |
| SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); } |
| SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); } |
| SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); } |
| #else |
| SI I32 min(I32 a, I32 b) { |
| return sk_bit_cast<I32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| SI U32 min(U32 a, U32 b) { |
| return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| SI I32 max(I32 a, I32 b) { |
| return sk_bit_cast<I32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| SI U32 max(U32 a, U32 b) { |
| return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b))); |
| } |
| #endif |
| |
| SI F mad(F f, F m, F a) { return f*m+a; } |
| SI F abs_(F v) { return _mm_and_ps(v, 0-v); } |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| SI I32 abs_(I32 v) { return _mm_abs_epi32(v); } |
| #else |
| SI I32 abs_(I32 v) { return max(v, -v); } |
| #endif |
| SI F rcp_approx(F v) { return _mm_rcp_ps (v); } // use rcp_fast instead |
| SI F rcp_precise (F v) { F e = rcp_approx(v); return e * (2.0f - v * e); } |
| SI F rsqrt_approx(F v) { return _mm_rsqrt_ps(v); } |
| SI F sqrt_(F v) { return _mm_sqrt_ps (v); } |
| |
| SI U32 round(F v) { return _mm_cvtps_epi32(v); } |
| SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); } |
| |
| SI U16 pack(U32 v) { |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| auto p = _mm_packus_epi32(v,v); |
| #else |
| // Sign extend so that _mm_packs_epi32() does the pack we want. |
| auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16); |
| p = _mm_packs_epi32(p,p); |
| #endif |
| return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one. |
| } |
| SI U8 pack(U16 v) { |
| auto r = widen_cast<__m128i>(v); |
| r = _mm_packus_epi16(r,r); |
| return sk_unaligned_load<U8>(&r); |
| } |
| |
| // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values. |
| SI bool any(I32 c) { return _mm_movemask_ps(c) != 0b0000; } |
| SI bool all(I32 c) { return _mm_movemask_ps(c) == 0b1111; } |
| |
| SI F floor_(F v) { |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| return _mm_floor_ps(v); |
| #else |
| F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); |
| return roundtrip - if_then_else(roundtrip > v, 1, 0); |
| #endif |
| } |
| |
| SI F ceil_(F v) { |
| #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| return _mm_ceil_ps(v); |
| #else |
| F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); |
| return roundtrip + if_then_else(roundtrip < v, 1, 0); |
| #endif |
| } |
| |
| template <typename T> |
| SI V<T> gather(const T* p, U32 ix) { |
| return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; |
| } |
| template <typename V, typename S> |
| SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { |
| V before = gather(dst, ix); |
| V after = if_then_else(mask, src, before); |
| dst[ix[0]] = after[0]; |
| dst[ix[1]] = after[1]; |
| dst[ix[2]] = after[2]; |
| dst[ix[3]] = after[3]; |
| } |
| SI void load2(const uint16_t* ptr, U16* r, U16* g) { |
| __m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3 |
| auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3 |
| auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3 |
| |
| auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3 |
| auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3 |
| *r = sk_unaligned_load<U16>(&R); |
| *g = sk_unaligned_load<U16>(&G); |
| } |
| SI void store2(uint16_t* ptr, U16 r, U16 g) { |
| U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)); |
| _mm_storeu_si128((__m128i*)ptr + 0, rg); |
| } |
| |
| SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) { |
| __m128i _01 = _mm_loadu_si128(((__m128i*)ptr) + 0), // r0 g0 b0 a0 r1 g1 b1 a1 |
| _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3 |
| |
| auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 |
| _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3 |
| |
| auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 |
| ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3 |
| |
| *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0); |
| *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4); |
| *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0); |
| *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4); |
| } |
| |
| SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) { |
| auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)), |
| ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a)); |
| |
| _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba)); |
| _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba)); |
| } |
| |
| SI void load4(const float* ptr, F* r, F* g, F* b, F* a) { |
| F _0 = _mm_loadu_ps(ptr + 0), |
| _1 = _mm_loadu_ps(ptr + 4), |
| _2 = _mm_loadu_ps(ptr + 8), |
| _3 = _mm_loadu_ps(ptr +12); |
| _MM_TRANSPOSE4_PS(_0,_1,_2,_3); |
| *r = _0; |
| *g = _1; |
| *b = _2; |
| *a = _3; |
| } |
| |
| SI void store4(float* ptr, F r, F g, F b, F a) { |
| _MM_TRANSPOSE4_PS(r,g,b,a); |
| _mm_storeu_ps(ptr + 0, r); |
| _mm_storeu_ps(ptr + 4, g); |
| _mm_storeu_ps(ptr + 8, b); |
| _mm_storeu_ps(ptr +12, a); |
| } |
| #endif |
| |
| // We need to be a careful with casts. |
| // (F)x means cast x to float in the portable path, but bit_cast x to float in the others. |
| // These named casts and bit_cast() are always what they seem to be. |
| #if defined(JUMPER_IS_SCALAR) |
| SI F cast (U32 v) { return (F)v; } |
| SI F cast64(U64 v) { return (F)v; } |
| SI U32 trunc_(F v) { return (U32)v; } |
| SI U32 expand(U16 v) { return (U32)v; } |
| SI U32 expand(U8 v) { return (U32)v; } |
| #else |
| SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); } |
| SI F cast64(U64 v) { return __builtin_convertvector( v, F); } |
| SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); } |
| SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); } |
| SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); } |
| #endif |
| |
| template <typename V> |
| SI V if_then_else(I32 c, V t, V e) { |
| return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e))); |
| } |
| |
| SI F fract(F v) { return v - floor_(v); } |
| |
| // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html |
| SI F approx_log2(F x) { |
| // e - 127 is a fair approximation of log2(x) in its own right... |
| F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23)); |
| |
| // ... but using the mantissa to refine its error is _much_ better. |
| F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000); |
| return e |
| - 124.225514990f |
| - 1.498030302f * m |
| - 1.725879990f / (0.3520887068f + m); |
| } |
| |
| SI F approx_log(F x) { |
| const float ln2 = 0.69314718f; |
| return ln2 * approx_log2(x); |
| } |
| |
| SI F approx_pow2(F x) { |
| constexpr float kInfinityBits = 0x7f800000; |
| |
| F f = fract(x); |
| F approx = x + 121.274057500f; |
| approx -= f * 1.490129070f; |
| approx += 27.728023300f / (4.84252568f - f); |
| approx *= 1.0f * (1<<23); |
| approx = min(max(approx, F(0)), kInfinityBits); // guard against underflow/overflow |
| |
| return sk_bit_cast<F>(round(approx)); |
| } |
| |
| SI F approx_exp(F x) { |
| const float log2_e = 1.4426950408889634074f; |
| return approx_pow2(log2_e * x); |
| } |
| |
| SI F approx_powf(F x, F y) { |
| return if_then_else((x == 0)|(x == 1), x |
| , approx_pow2(approx_log2(x) * y)); |
| } |
| |
| SI F from_half(U16 h) { |
| #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ |
| && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. |
| return vcvt_f32_f16(h); |
| |
| #elif defined(JUMPER_IS_HSW) |
| return _mm256_cvtph_ps(h); |
| |
| #else |
| // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias. |
| U32 sem = expand(h), |
| s = sem & 0x8000, |
| em = sem ^ s; |
| |
| // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero. |
| auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here. |
| return if_then_else(denorm, F(0) |
| , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) )); |
| #endif |
| } |
| |
| SI U16 to_half(F f) { |
| #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ |
| && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. |
| return vcvt_f16_f32(f); |
| |
| #elif defined(JUMPER_IS_HSW) |
| return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION); |
| |
| #else |
| // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias. |
| U32 sem = sk_bit_cast<U32>(f), |
| s = sem & 0x80000000, |
| em = sem ^ s; |
| |
| // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero. |
| auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here. |
| return pack(if_then_else(denorm, U32(0) |
| , (s>>16) + (em>>13) - ((127-15)<<10))); |
| #endif |
| } |
| |
| static void patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches, |
| size_t dx, size_t dy, size_t tail) { |
| for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) { |
| SkRasterPipeline_MemoryCtx* ctx = patch.info.context; |
| |
| const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx); |
| void* ctxData = SkTAddOffset<void>(ctx->pixels, offset); |
| if (patch.info.load) { |
| memcpy(patch.scratch, ctxData, patch.info.bytesPerPixel * tail); |
| } |
| |
| SkASSERT(patch.backup == nullptr); |
| void* scratchFakeBase = SkTAddOffset<void>(patch.scratch, -offset); |
| patch.backup = ctx->pixels; |
| ctx->pixels = scratchFakeBase; |
| } |
| } |
| |
| static void restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches, |
| size_t dx, size_t dy, size_t tail) { |
| for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) { |
| SkRasterPipeline_MemoryCtx* ctx = patch.info.context; |
| |
| SkASSERT(patch.backup != nullptr); |
| ctx->pixels = patch.backup; |
| patch.backup = nullptr; |
| |
| const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx); |
| void* ctxData = SkTAddOffset<void>(ctx->pixels, offset); |
| if (patch.info.store) { |
| memcpy(ctxData, patch.scratch, patch.info.bytesPerPixel * tail); |
| } |
| } |
| } |
| |
| #if defined(JUMPER_IS_SCALAR) || defined(JUMPER_IS_SSE2) |
| // In scalar and SSE2 mode, we always use precise math so we can have more predictable results. |
| // Chrome will use the SSE2 implementation when --disable-skia-runtime-opts is set. (b/40042946) |
| SI F rcp_fast(F v) { return rcp_precise(v); } |
| SI F rsqrt(F v) { return rcp_precise(sqrt_(v)); } |
| #else |
| SI F rcp_fast(F v) { return rcp_approx(v); } |
| SI F rsqrt(F v) { return rsqrt_approx(v); } |
| #endif |
| |
| // Our fundamental vector depth is our pixel stride. |
| static constexpr size_t N = sizeof(F) / sizeof(float); |
| |
| // We're finally going to get to what a Stage function looks like! |
| // tail == 0 ~~> work on a full N pixels |
| // tail != 0 ~~> work on only the first tail pixels |
| // tail is always < N. |
| |
| // Any custom ABI to use for all (non-externally-facing) stage functions? |
| // Also decide here whether to use narrow (compromise) or wide (ideal) stages. |
| #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON) |
| // This lets us pass vectors more efficiently on 32-bit ARM. |
| // We can still only pass 16 floats, so best as 4x {r,g,b,a}. |
| #define ABI __attribute__((pcs("aapcs-vfp"))) |
| #define JUMPER_NARROW_STAGES 1 |
| #elif defined(_MSC_VER) |
| // Even if not vectorized, this lets us pass {r,g,b,a} as registers, |
| // instead of {b,a} on the stack. Narrow stages work best for __vectorcall. |
| #define ABI __vectorcall |
| #define JUMPER_NARROW_STAGES 1 |
| #elif defined(__x86_64__) || defined(SK_CPU_ARM64) |
| // These platforms are ideal for wider stages, and their default ABI is ideal. |
| #define ABI |
| #define JUMPER_NARROW_STAGES 0 |
| #else |
| // 32-bit or unknown... shunt them down the narrow path. |
| // Odds are these have few registers and are better off there. |
| #define ABI |
| #define JUMPER_NARROW_STAGES 1 |
| #endif |
| |
| #if JUMPER_NARROW_STAGES |
| struct Params { |
| size_t dx, dy, tail; |
| std::byte* base; |
| F dr,dg,db,da; |
| }; |
| using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a); |
| #else |
| using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, |
| std::byte* base, F,F,F,F, F,F,F,F); |
| #endif |
| |
| static void start_pipeline(size_t dx, size_t dy, |
| size_t xlimit, size_t ylimit, |
| SkRasterPipelineStage* program, |
| SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches) { |
| auto start = (Stage)program->fn; |
| const size_t x0 = dx; |
| std::byte* const base = nullptr; |
| for (; dy < ylimit; dy++) { |
| #if JUMPER_NARROW_STAGES |
| Params params = { x0,dy,0,base, 0,0,0,0 }; |
| while (params.dx + N <= xlimit) { |
| start(¶ms,program, 0,0,0,0); |
| params.dx += N; |
| } |
| if (size_t tail = xlimit - params.dx) { |
| patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail); |
| params.tail = tail; |
| start(¶ms,program, 0,0,0,0); |
| restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail); |
| } |
| #else |
| dx = x0; |
| while (dx + N <= xlimit) { |
| start(0,program,dx,dy,base, 0,0,0,0, 0,0,0,0); |
| dx += N; |
| } |
| if (size_t tail = xlimit - dx) { |
| patch_memory_contexts(memoryCtxPatches, dx, dy, tail); |
| start(tail,program,dx,dy,base, 0,0,0,0, 0,0,0,0); |
| restore_memory_contexts(memoryCtxPatches, dx, dy, tail); |
| } |
| #endif |
| } |
| } |
| |
| #if SK_HAS_MUSTTAIL |
| #define JUMPER_MUSTTAIL [[clang::musttail]] |
| #else |
| #define JUMPER_MUSTTAIL |
| #endif |
| |
| #if JUMPER_NARROW_STAGES |
| #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ |
| static void ABI name(Params* params, SkRasterPipelineStage* program, \ |
| F r, F g, F b, F a) { \ |
| OFFSET name##_k(Ctx{program}, params->dx,params->dy,params->tail,params->base, \ |
| r,g,b,a, params->dr, params->dg, params->db, params->da); \ |
| INC; \ |
| auto fn = (Stage)program->fn; \ |
| MUSTTAIL return fn(params, program, r,g,b,a); \ |
| } \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) |
| #else |
| #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ |
| static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \ |
| std::byte* base, F r, F g, F b, F a, F dr, F dg, F db, F da) { \ |
| OFFSET name##_k(Ctx{program}, dx,dy,tail,base, r,g,b,a, dr,dg,db,da); \ |
| INC; \ |
| auto fn = (Stage)program->fn; \ |
| MUSTTAIL return fn(tail, program, dx,dy,base, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, std::byte*& base, \ |
| F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) |
| #endif |
| |
| // A typical stage returns void, always increments the program counter by 1, and lets the optimizer |
| // decide whether or not tail-calling is appropriate. |
| #define STAGE(name, arg) \ |
| DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/) |
| |
| // A tail stage returns void, always increments the program counter by 1, and uses tail-calling. |
| // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and |
| // could overflow the stack (particularly in debug). |
| #define STAGE_TAIL(name, arg) \ |
| DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL) |
| |
| // A branch stage returns an integer, which is added directly to the program counter, and tailcalls. |
| #define STAGE_BRANCH(name, arg) \ |
| DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL) |
| |
| // just_return() is a simple no-op stage that only exists to end the chain, |
| // returning back up to start_pipeline(), and from there to the caller. |
| #if JUMPER_NARROW_STAGES |
| static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {} |
| #else |
| static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, std::byte*, |
| F,F,F,F, F,F,F,F) {} |
| #endif |
| |
| // Note that in release builds, most stages consume no stack (thanks to tail call optimization). |
| // However: certain builds (especially with non-clang compilers) may fail to optimize tail |
| // calls, resulting in actual stack frames being generated. |
| // |
| // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth. |
| // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point), |
| // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit. |
| // |
| // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of |
| // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the |
| // full state of the mutable registers that are normally passed to the next stage in the program. |
| // |
| // stack_rewind is the only stage other than just_return that actually returns (rather than jumping |
| // to the next stage in the program). Before it does so, it stashes all of the registers in the |
| // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once, |
| // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the |
| // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned, |
| // rather than a just_return). |
| // |
| // Normally, just_return is the only stage that returns, and no other stage does anything after a |
| // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline. |
| // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the |
| // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the |
| // context), and continues the linear execution of stages, but has reclaimed all of the stack frames |
| // pushed before the stack_rewind before doing so. |
| #if JUMPER_NARROW_STAGES |
| static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program, |
| F r, F g, F b, F a) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| while (program) { |
| auto next = (Stage)(++program)->fn; |
| |
| ctx->stage = nullptr; |
| next(params, program, r, g, b, a); |
| program = ctx->stage; |
| |
| if (program) { |
| r = sk_unaligned_load<F>(ctx->r ); |
| g = sk_unaligned_load<F>(ctx->g ); |
| b = sk_unaligned_load<F>(ctx->b ); |
| a = sk_unaligned_load<F>(ctx->a ); |
| params->dr = sk_unaligned_load<F>(ctx->dr); |
| params->dg = sk_unaligned_load<F>(ctx->dg); |
| params->db = sk_unaligned_load<F>(ctx->db); |
| params->da = sk_unaligned_load<F>(ctx->da); |
| params->base = ctx->base; |
| } |
| } |
| } |
| static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program, |
| F r, F g, F b, F a) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| sk_unaligned_store(ctx->r , r ); |
| sk_unaligned_store(ctx->g , g ); |
| sk_unaligned_store(ctx->b , b ); |
| sk_unaligned_store(ctx->a , a ); |
| sk_unaligned_store(ctx->dr, params->dr); |
| sk_unaligned_store(ctx->dg, params->dg); |
| sk_unaligned_store(ctx->db, params->db); |
| sk_unaligned_store(ctx->da, params->da); |
| ctx->base = params->base; |
| ctx->stage = program; |
| } |
| #else |
| static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program, |
| size_t dx, size_t dy, std::byte* base, |
| F r, F g, F b, F a, F dr, F dg, F db, F da) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| while (program) { |
| auto next = (Stage)(++program)->fn; |
| |
| ctx->stage = nullptr; |
| next(tail, program, dx, dy, base, r, g, b, a, dr, dg, db, da); |
| program = ctx->stage; |
| |
| if (program) { |
| r = sk_unaligned_load<F>(ctx->r ); |
| g = sk_unaligned_load<F>(ctx->g ); |
| b = sk_unaligned_load<F>(ctx->b ); |
| a = sk_unaligned_load<F>(ctx->a ); |
| dr = sk_unaligned_load<F>(ctx->dr); |
| dg = sk_unaligned_load<F>(ctx->dg); |
| db = sk_unaligned_load<F>(ctx->db); |
| da = sk_unaligned_load<F>(ctx->da); |
| base = ctx->base; |
| } |
| } |
| } |
| static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program, |
| size_t dx, size_t dy, std::byte* base, |
| F r, F g, F b, F a, F dr, F dg, F db, F da) { |
| SkRasterPipeline_RewindCtx* ctx = Ctx{program}; |
| sk_unaligned_store(ctx->r , r ); |
| sk_unaligned_store(ctx->g , g ); |
| sk_unaligned_store(ctx->b , b ); |
| sk_unaligned_store(ctx->a , a ); |
| sk_unaligned_store(ctx->dr, dr); |
| sk_unaligned_store(ctx->dg, dg); |
| sk_unaligned_store(ctx->db, db); |
| sk_unaligned_store(ctx->da, da); |
| ctx->base = base; |
| ctx->stage = program; |
| } |
| #endif |
| |
| |
| // We could start defining normal Stages now. But first, some helper functions. |
| |
| template <typename V, typename T> |
| SI V load(const T* src) { |
| return sk_unaligned_load<V>(src); |
| } |
| |
| template <typename V, typename T> |
| SI void store(T* dst, V v) { |
| sk_unaligned_store(dst, v); |
| } |
| |
| SI F from_byte(U8 b) { |
| return cast(expand(b)) * (1/255.0f); |
| } |
| SI F from_short(U16 s) { |
| return cast(expand(s)) * (1/65535.0f); |
| } |
| SI void from_565(U16 _565, F* r, F* g, F* b) { |
| U32 wide = expand(_565); |
| *r = cast(wide & (31<<11)) * (1.0f / (31<<11)); |
| *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5)); |
| *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0)); |
| } |
| SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) { |
| U32 wide = expand(_4444); |
| *r = cast(wide & (15<<12)) * (1.0f / (15<<12)); |
| *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8)); |
| *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4)); |
| *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0)); |
| } |
| SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) { |
| *r = cast((_8888 ) & 0xff) * (1/255.0f); |
| *g = cast((_8888 >> 8) & 0xff) * (1/255.0f); |
| *b = cast((_8888 >> 16) & 0xff) * (1/255.0f); |
| *a = cast((_8888 >> 24) ) * (1/255.0f); |
| } |
| SI void from_88(U16 _88, F* r, F* g) { |
| U32 wide = expand(_88); |
| *r = cast((wide ) & 0xff) * (1/255.0f); |
| *g = cast((wide >> 8) & 0xff) * (1/255.0f); |
| } |
| SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) { |
| *r = cast((rgba ) & 0x3ff) * (1/1023.0f); |
| *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f); |
| *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f); |
| *a = cast((rgba >> 30) ) * (1/ 3.0f); |
| } |
| SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) { |
| static constexpr float min = -0.752941f; |
| static constexpr float max = 1.25098f; |
| static constexpr float range = max - min; |
| *r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min; |
| *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min; |
| *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min; |
| *a = cast((rgba >> 30) ) * (1/ 3.0f); |
| } |
| SI void from_10x6(U64 _10x6, F* r, F* g, F* b, F* a) { |
| *r = cast64((_10x6 >> 6) & 0x3ff) * (1/1023.0f); |
| *g = cast64((_10x6 >> 22) & 0x3ff) * (1/1023.0f); |
| *b = cast64((_10x6 >> 38) & 0x3ff) * (1/1023.0f); |
| *a = cast64((_10x6 >> 54) & 0x3ff) * (1/1023.0f); |
| } |
| SI void from_1616(U32 _1616, F* r, F* g) { |
| *r = cast((_1616 ) & 0xffff) * (1/65535.0f); |
| *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f); |
| } |
| SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) { |
| *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f); |
| *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f); |
| *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f); |
| *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f); |
| } |
| |
| // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory. |
| template <typename T> |
| SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { |
| return (T*)ctx->pixels + dy*ctx->stride + dx; |
| } |
| |
| // clamp v to [0,limit). |
| SI F clamp(F v, F limit) { |
| F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive. |
| return min(max(0.0f, v), inclusive); |
| } |
| |
| // clamp to (0,limit). |
| SI F clamp_ex(F v, F limit) { |
| const F inclusiveZ = std::numeric_limits<float>::min(), |
| inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); |
| return min(max(inclusiveZ, v), inclusiveL); |
| } |
| |
| // Polynomial approximation of degree 5 for sin(x * 2 * pi) in the range [-1/4, 1/4] |
| // Adapted from https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf |
| SI F sin5q_(F x) { |
| // A * x + B * x^3 + C * x^5 |
| // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives, |
| // which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2 |
| constexpr float A = 6.28230858f; |
| constexpr float B = -41.1693687f; |
| constexpr float C = 74.4388885f; |
| F x2 = x * x; |
| return x * mad(mad(x2, C, B), x2, A); |
| } |
| |
| SI F sin_(F x) { |
| constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI); |
| x = mad(x, -one_over_pi2, 0.25f); |
| x = 0.25f - abs_(x - floor_(x + 0.5f)); |
| return sin5q_(x); |
| } |
| |
| SI F cos_(F x) { |
| constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI); |
| x *= one_over_pi2; |
| x = 0.25f - abs_(x - floor_(x + 0.5f)); |
| return sin5q_(x); |
| } |
| |
| /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" |
| https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf |
| |
| approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 |
| |
| Some simplifications: |
| 1. tan(x) is periodic, -PI/2 < x < PI/2 |
| 2. tan(x) is odd, so tan(-x) = -tan(x) |
| 3. Our polynomial approximation is best near zero, so we use the following identity |
| tan(x) + tan(y) |
| tan(x + y) = ----------------- |
| 1 - tan(x)*tan(y) |
| tan(PI/4) = 1 |
| |
| So for x > PI/8, we do the following refactor: |
| x' = x - PI/4 |
| |
| 1 + tan(x') |
| tan(x) = ------------ |
| 1 - tan(x') |
| */ |
| SI F tan_(F x) { |
| constexpr float Pi = SK_FloatPI; |
| // periodic between -pi/2 ... pi/2 |
| // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back |
| x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); |
| |
| I32 neg = (x < 0.0f); |
| x = if_then_else(neg, -x, x); |
| |
| // minimize total error by shifting if x > pi/8 |
| I32 use_quotient = (x > (Pi/8)); |
| x = if_then_else(use_quotient, x - (Pi/4), x); |
| |
| // 9th order poly = 4th order(x^2) * x |
| const float c4 = 62 / 2835.0f; |
| const float c3 = 17 / 315.0f; |
| const float c2 = 2 / 15.0f; |
| const float c1 = 1 / 3.0f; |
| const float c0 = 1.0f; |
| F x2 = x * x; |
| x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0); |
| x = if_then_else(use_quotient, (1+x)/(1-x), x); |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| /* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ |
| with 129 values of x,atan(x) for x:[0...1] |
| This only works for 0 <= x <= 1 |
| */ |
| SI F approx_atan_unit(F x) { |
| // y = 0.14130025741326729 x⁴ |
| // - 0.34312835980675116 x³ |
| // - 0.016172900528248768 x² |
| // + 1.00376969762003850 x |
| // - 0.00014758242182738969 |
| const float c4 = 0.14130025741326729f; |
| const float c3 = -0.34312835980675116f; |
| const float c2 = -0.016172900528248768f; |
| const float c1 = 1.0037696976200385f; |
| const float c0 = -0.00014758242182738969f; |
| return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0); |
| } |
| |
| // Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| SI F atan_(F x) { |
| I32 neg = (x < 0.0f); |
| x = if_then_else(neg, -x, x); |
| I32 flip = (x > 1.0f); |
| x = if_then_else(flip, 1/x, x); |
| x = approx_atan_unit(x); |
| x = if_then_else(flip, SK_FloatPI/2 - x, x); |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| // Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun: |
| // https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0 |
| // http://screen/8YGJxUGFQ49bVX6 |
| SI F asin_(F x) { |
| I32 neg = (x < 0.0f); |
| x = if_then_else(neg, -x, x); |
| const float c3 = -0.0187293f; |
| const float c2 = 0.0742610f; |
| const float c1 = -0.2121144f; |
| const float c0 = 1.5707288f; |
| F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0); |
| x = SK_FloatPI/2 - sqrt_(1 - x) * poly; |
| x = if_then_else(neg, -x, x); |
| return x; |
| } |
| |
| SI F acos_(F x) { |
| return SK_FloatPI/2 - asin_(x); |
| } |
| |
| /* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 |
| By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() |
| which avoids a 2nd divide instruction if we had instead called atan(). |
| */ |
| SI F atan2_(F y0, F x0) { |
| I32 flip = (abs_(y0) > abs_(x0)); |
| F y = if_then_else(flip, x0, y0); |
| F x = if_then_else(flip, y0, x0); |
| F arg = y/x; |
| |
| I32 neg = (arg < 0.0f); |
| arg = if_then_else(neg, -arg, arg); |
| |
| F r = approx_atan_unit(arg); |
| r = if_then_else(flip, SK_FloatPI/2 - r, r); |
| r = if_then_else(neg, -r, r); |
| |
| // handle quadrant distinctions |
| r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_FloatPI, r); |
| r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_FloatPI, r); |
| // Note: we don't try to handle 0,0 or infinities |
| return r; |
| } |
| |
| // Used by gather_ stages to calculate the base pointer and a vector of indices to load. |
| template <typename T> |
| SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { |
| // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would |
| // produce a NaN if applied to +0.f. |
| x = clamp_ex(x, ctx->width ); |
| y = clamp_ex(y, ctx->height); |
| x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger); |
| y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger); |
| *ptr = (const T*)ctx->pixels; |
| return trunc_(y)*ctx->stride + trunc_(x); |
| } |
| |
| // We often have a nominally [0,1] float value we need to scale and convert to an integer, |
| // whether for a table lookup or to pack back down into bytes for storage. |
| // |
| // In practice, especially when dealing with interesting color spaces, that notionally |
| // [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp. |
| // |
| // You can adjust the expected input to [0,bias] by tweaking that parameter. |
| SI U32 to_unorm(F v, F scale, F bias = 1.0f) { |
| // Any time we use round() we probably want to use to_unorm(). |
| return round(min(max(0.0f, v), bias), scale); |
| } |
| |
| SI I32 cond_to_mask(I32 cond) { |
| #if defined(JUMPER_IS_SCALAR) |
| // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks |
| // (eg, using bitwise operations to select values). |
| return if_then_else(cond, I32(~0), I32(0)); |
| #else |
| // In SIMD mode, our various instruction sets already represent conditions as masks. |
| return cond; |
| #endif |
| } |
| |
| #if defined(JUMPER_IS_SCALAR) |
| // In scalar mode, `data` only contains a single lane. |
| template <typename T> |
| SI T select_lane(T data, int lane) { |
| SkASSERT(lane == 0); |
| return data; |
| } |
| #else |
| // In SIMD mode, `data` contains a vector of lanes. |
| template <typename T> |
| SI T select_lane(V<T> data, int lane) { |
| return data[lane]; |
| } |
| #endif |
| |
| // Now finally, normal Stages! |
| |
| STAGE(seed_shader, NoCtx) { |
| static constexpr float iota[] = { |
| 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, |
| 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, |
| }; |
| // It's important for speed to explicitly cast(dx) and cast(dy), |
| // which has the effect of splatting them to vectors before converting to floats. |
| // On Intel this breaks a data dependency on previous loop iterations' registers. |
| r = cast(dx) + sk_unaligned_load<F>(iota); |
| g = cast(dy) + 0.5f; |
| b = 1.0f; // This is w=1 for matrix multiplies by the device coords. |
| a = 0; |
| } |
| |
| STAGE(dither, const float* rate) { |
| // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors. |
| uint32_t iota[] = {0,1,2,3,4,5,6,7}; |
| U32 X = dx + sk_unaligned_load<U32>(iota), |
| Y = dy; |
| |
| // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering. |
| // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ]. |
| |
| // We only need X and X^Y from here on, so it's easier to just think of that as "Y". |
| Y ^= X; |
| |
| // We'll mix the bottom 3 bits of each of X and Y to make 6 bits, |
| // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda. |
| U32 M = (Y & 1) << 5 | (X & 1) << 4 |
| | (Y & 2) << 2 | (X & 2) << 1 |
| | (Y & 4) >> 1 | (X & 4) >> 2; |
| |
| // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon. |
| // We want to make sure our dither is less than 0.5 in either direction to keep exact values |
| // like 0 and 1 unchanged after rounding. |
| F dither = cast(M) * (2/128.0f) - (63/128.0f); |
| |
| r += *rate*dither; |
| g += *rate*dither; |
| b += *rate*dither; |
| |
| r = max(0.0f, min(r, a)); |
| g = max(0.0f, min(g, a)); |
| b = max(0.0f, min(b, a)); |
| } |
| |
| // load 4 floats from memory, and splat them into r,g,b,a |
| STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { |
| r = c->r; |
| g = c->g; |
| b = c->b; |
| a = c->a; |
| } |
| STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) { |
| r = c->r; |
| g = c->g; |
| b = c->b; |
| a = c->a; |
| } |
| // load 4 floats from memory, and splat them into dr,dg,db,da |
| STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { |
| dr = c->r; |
| dg = c->g; |
| db = c->b; |
| da = c->a; |
| } |
| |
| // splats opaque-black into r,g,b,a |
| STAGE(black_color, NoCtx) { |
| r = g = b = 0.0f; |
| a = 1.0f; |
| } |
| |
| STAGE(white_color, NoCtx) { |
| r = g = b = a = 1.0f; |
| } |
| |
| // load registers r,g,b,a from context (mirrors store_src) |
| STAGE(load_src, const float* ptr) { |
| r = sk_unaligned_load<F>(ptr + 0*N); |
| g = sk_unaligned_load<F>(ptr + 1*N); |
| b = sk_unaligned_load<F>(ptr + 2*N); |
| a = sk_unaligned_load<F>(ptr + 3*N); |
| } |
| |
| // store registers r,g,b,a into context (mirrors load_src) |
| STAGE(store_src, float* ptr) { |
| sk_unaligned_store(ptr + 0*N, r); |
| sk_unaligned_store(ptr + 1*N, g); |
| sk_unaligned_store(ptr + 2*N, b); |
| sk_unaligned_store(ptr + 3*N, a); |
| } |
| // store registers r,g into context |
| STAGE(store_src_rg, float* ptr) { |
| sk_unaligned_store(ptr + 0*N, r); |
| sk_unaligned_store(ptr + 1*N, g); |
| } |
| // load registers r,g from context |
| STAGE(load_src_rg, float* ptr) { |
| r = sk_unaligned_load<F>(ptr + 0*N); |
| g = sk_unaligned_load<F>(ptr + 1*N); |
| } |
| // store register a into context |
| STAGE(store_src_a, float* ptr) { |
| sk_unaligned_store(ptr, a); |
| } |
| |
| // load registers dr,dg,db,da from context (mirrors store_dst) |
| STAGE(load_dst, const float* ptr) { |
| dr = sk_unaligned_load<F>(ptr + 0*N); |
| dg = sk_unaligned_load<F>(ptr + 1*N); |
| db = sk_unaligned_load<F>(ptr + 2*N); |
| da = sk_unaligned_load<F>(ptr + 3*N); |
| } |
| |
| // store registers dr,dg,db,da into context (mirrors load_dst) |
| STAGE(store_dst, float* ptr) { |
| sk_unaligned_store(ptr + 0*N, dr); |
| sk_unaligned_store(ptr + 1*N, dg); |
| sk_unaligned_store(ptr + 2*N, db); |
| sk_unaligned_store(ptr + 3*N, da); |
| } |
| |
| // Most blend modes apply the same logic to each channel. |
| #define BLEND_MODE(name) \ |
| SI F name##_channel(F s, F d, F sa, F da); \ |
| STAGE(name, NoCtx) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = name##_channel(a,da,a,da); \ |
| } \ |
| SI F name##_channel(F s, F d, F sa, F da) |
| |
| SI F inv(F x) { return 1.0f - x; } |
| SI F two(F x) { return x + x; } |
| |
| |
| BLEND_MODE(clear) { return 0; } |
| BLEND_MODE(srcatop) { return s*da + d*inv(sa); } |
| BLEND_MODE(dstatop) { return d*sa + s*inv(da); } |
| BLEND_MODE(srcin) { return s * da; } |
| BLEND_MODE(dstin) { return d * sa; } |
| BLEND_MODE(srcout) { return s * inv(da); } |
| BLEND_MODE(dstout) { return d * inv(sa); } |
| BLEND_MODE(srcover) { return mad(d, inv(sa), s); } |
| BLEND_MODE(dstover) { return mad(s, inv(da), d); } |
| |
| BLEND_MODE(modulate) { return s*d; } |
| BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } |
| BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa. |
| BLEND_MODE(screen) { return s + d - s*d; } |
| BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); } |
| #undef BLEND_MODE |
| |
| // Most other blend modes apply the same logic to colors, and srcover to alpha. |
| #define BLEND_MODE(name) \ |
| SI F name##_channel(F s, F d, F sa, F da); \ |
| STAGE(name, NoCtx) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = mad(da, inv(a), a); \ |
| } \ |
| SI F name##_channel(F s, F d, F sa, F da) |
| |
| BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; } |
| BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; } |
| BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); } |
| BLEND_MODE(exclusion) { return s + d - two(s*d); } |
| |
| BLEND_MODE(colorburn) { |
| return if_then_else(d == da, d + s*inv(da), |
| if_then_else(s == 0, /* s + */ d*inv(sa), |
| sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa))); |
| } |
| BLEND_MODE(colordodge) { |
| return if_then_else(d == 0, /* d + */ s*inv(da), |
| if_then_else(s == sa, s + d*inv(sa), |
| sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa))); |
| } |
| BLEND_MODE(hardlight) { |
| return s*inv(da) + d*inv(sa) |
| + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s))); |
| } |
| BLEND_MODE(overlay) { |
| return s*inv(da) + d*inv(sa) |
| + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s))); |
| } |
| |
| BLEND_MODE(softlight) { |
| F m = if_then_else(da > 0, d / da, 0), |
| s2 = two(s), |
| m4 = two(two(m)); |
| |
| // The logic forks three ways: |
| // 1. dark src? |
| // 2. light src, dark dst? |
| // 3. light src, light dst? |
| F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. |
| darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. |
| liteDst = sqrt_(m) - m, |
| liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3? |
| return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)? |
| } |
| #undef BLEND_MODE |
| |
| // We're basing our implemenation of non-separable blend modes on |
| // https://www.w3.org/TR/compositing-1/#blendingnonseparable. |
| // and |
| // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf |
| // They're equivalent, but ES' math has been better simplified. |
| // |
| // Anything extra we add beyond that is to make the math work with premul inputs. |
| |
| SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); } |
| SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); } |
| |
| SI void set_sat(F* r, F* g, F* b, F s) { |
| F mn = min(*r, min(*g,*b)), |
| mx = max(*r, max(*g,*b)), |
| sat = mx - mn; |
| |
| // Map min channel to 0, max channel to s, and scale the middle proportionally. |
| auto scale = [=](F c) { |
| return if_then_else(sat == 0, 0, (c - mn) * s / sat); |
| }; |
| *r = scale(*r); |
| *g = scale(*g); |
| *b = scale(*b); |
| } |
| SI void set_lum(F* r, F* g, F* b, F l) { |
| F diff = l - lum(*r, *g, *b); |
| *r += diff; |
| *g += diff; |
| *b += diff; |
| } |
| SI void clip_color(F* r, F* g, F* b, F a) { |
| F mn = min(*r, min(*g, *b)), |
| mx = max(*r, max(*g, *b)), |
| l = lum(*r, *g, *b); |
| |
| auto clip = [=](F c) { |
| c = if_then_else(mn < 0 && l != mn, l + (c - l) * ( l) / (l - mn), c); |
| c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c); |
| c = max(c, 0.0f); // Sometimes without this we may dip just a little negative. |
| return c; |
| }; |
| *r = clip(*r); |
| *g = clip(*g); |
| *b = clip(*b); |
| } |
| |
| STAGE(hue, NoCtx) { |
| F R = r*a, |
| G = g*a, |
| B = b*a; |
| |
| set_sat(&R, &G, &B, sat(dr,dg,db)*a); |
| set_lum(&R, &G, &B, lum(dr,dg,db)*a); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(saturation, NoCtx) { |
| F R = dr*a, |
| G = dg*a, |
| B = db*a; |
| |
| set_sat(&R, &G, &B, sat( r, g, b)*da); |
| set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.) |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(color, NoCtx) { |
| F R = r*da, |
| G = g*da, |
| B = b*da; |
| |
| set_lum(&R, &G, &B, lum(dr,dg,db)*a); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| STAGE(luminosity, NoCtx) { |
| F R = dr*a, |
| G = dg*a, |
| B = db*a; |
| |
| set_lum(&R, &G, &B, lum(r,g,b)*da); |
| clip_color(&R,&G,&B, a*da); |
| |
| r = r*inv(da) + dr*inv(a) + R; |
| g = g*inv(da) + dg*inv(a) + G; |
| b = b*inv(da) + db*inv(a) + B; |
| a = a + da - a*da; |
| } |
| |
| STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| |
| U32 dst = load<U32>(ptr); |
| dr = cast((dst ) & 0xff); |
| dg = cast((dst >> 8) & 0xff); |
| db = cast((dst >> 16) & 0xff); |
| da = cast((dst >> 24) ); |
| // {dr,dg,db,da} are in [0,255] |
| // { r, g, b, a} are in [0, 1] (but may be out of gamut) |
| |
| r = mad(dr, inv(a), r*255.0f); |
| g = mad(dg, inv(a), g*255.0f); |
| b = mad(db, inv(a), b*255.0f); |
| a = mad(da, inv(a), a*255.0f); |
| // { r, g, b, a} are now in [0,255] (but may be out of gamut) |
| |
| // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased. |
| dst = to_unorm(r, 1, 255) |
| | to_unorm(g, 1, 255) << 8 |
| | to_unorm(b, 1, 255) << 16 |
| | to_unorm(a, 1, 255) << 24; |
| store(ptr, dst); |
| } |
| |
| SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); } |
| |
| STAGE(clamp_01, NoCtx) { |
| r = clamp_01_(r); |
| g = clamp_01_(g); |
| b = clamp_01_(b); |
| a = clamp_01_(a); |
| } |
| |
| STAGE(clamp_gamut, NoCtx) { |
| a = min(max(a, 0.0f), 1.0f); |
| r = min(max(r, 0.0f), a); |
| g = min(max(g, 0.0f), a); |
| b = min(max(b, 0.0f), a); |
| } |
| |
| STAGE(set_rgb, const float* rgb) { |
| r = rgb[0]; |
| g = rgb[1]; |
| b = rgb[2]; |
| } |
| |
| STAGE(unbounded_set_rgb, const float* rgb) { |
| r = rgb[0]; |
| g = rgb[1]; |
| b = rgb[2]; |
| } |
| |
| STAGE(swap_rb, NoCtx) { |
| auto tmp = r; |
| r = b; |
| b = tmp; |
| } |
| STAGE(swap_rb_dst, NoCtx) { |
| auto tmp = dr; |
| dr = db; |
| db = tmp; |
| } |
| |
| STAGE(move_src_dst, NoCtx) { |
| dr = r; |
| dg = g; |
| db = b; |
| da = a; |
| } |
| STAGE(move_dst_src, NoCtx) { |
| r = dr; |
| g = dg; |
| b = db; |
| a = da; |
| } |
| STAGE(swap_src_dst, NoCtx) { |
| std::swap(r, dr); |
| std::swap(g, dg); |
| std::swap(b, db); |
| std::swap(a, da); |
| } |
| |
| STAGE(premul, NoCtx) { |
| r = r * a; |
| g = g * a; |
| b = b * a; |
| } |
| STAGE(premul_dst, NoCtx) { |
| dr = dr * da; |
| dg = dg * da; |
| db = db * da; |
| } |
| STAGE(unpremul, NoCtx) { |
| float inf = sk_bit_cast<float>(0x7f800000); |
| auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0); |
| r *= scale; |
| g *= scale; |
| b *= scale; |
| } |
| STAGE(unpremul_polar, NoCtx) { |
| float inf = sk_bit_cast<float>(0x7f800000); |
| auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0); |
| g *= scale; |
| b *= scale; |
| } |
| |
| STAGE(force_opaque , NoCtx) { a = 1; } |
| STAGE(force_opaque_dst, NoCtx) { da = 1; } |
| |
| STAGE(rgb_to_hsl, NoCtx) { |
| F mx = max(r, max(g,b)), |
| mn = min(r, min(g,b)), |
| d = mx - mn, |
| d_rcp = 1.0f / d; |
| |
| F h = (1/6.0f) * |
| if_then_else(mx == mn, 0, |
| if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0), |
| if_then_else(mx == g, (b-r)*d_rcp + 2.0f, |
| (r-g)*d_rcp + 4.0f))); |
| |
| F l = (mx + mn) * 0.5f; |
| F s = if_then_else(mx == mn, 0, |
| d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn)); |
| |
| r = h; |
| g = s; |
| b = l; |
| } |
| STAGE(hsl_to_rgb, NoCtx) { |
| // See GrRGBToHSLFilterEffect.fp |
| |
| F h = r, |
| s = g, |
| l = b, |
| c = (1.0f - abs_(2.0f * l - 1)) * s; |
| |
| auto hue_to_rgb = [&](F hue) { |
| F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f); |
| return (q - 0.5f) * c + l; |
| }; |
| |
| r = hue_to_rgb(h + 0.0f/3.0f); |
| g = hue_to_rgb(h + 2.0f/3.0f); |
| b = hue_to_rgb(h + 1.0f/3.0f); |
| } |
| |
| // Color conversion functions used in gradient interpolation, based on |
| // https://www.w3.org/TR/css-color-4/#color-conversion-code |
| STAGE(css_lab_to_xyz, NoCtx) { |
| constexpr float k = 24389 / 27.0f; |
| constexpr float e = 216 / 24389.0f; |
| |
| F f[3]; |
| f[1] = (r + 16) * (1 / 116.0f); |
| f[0] = (g * (1 / 500.0f)) + f[1]; |
| f[2] = f[1] - (b * (1 / 200.0f)); |
| |
| F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] }; |
| |
| F xyz[3] = { |
| if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)), |
| if_then_else(r > k * e, f_cubed[1], r * (1 / k)), |
| if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k)) |
| }; |
| |
| constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f }; |
| r = xyz[0]*D50[0]; |
| g = xyz[1]*D50[1]; |
| b = xyz[2]*D50[2]; |
| } |
| |
| STAGE(css_oklab_to_linear_srgb, NoCtx) { |
| F l_ = r + 0.3963377774f * g + 0.2158037573f * b, |
| m_ = r - 0.1055613458f * g - 0.0638541728f * b, |
| s_ = r - 0.0894841775f * g - 1.2914855480f * b; |
| |
| F l = l_*l_*l_, |
| m = m_*m_*m_, |
| s = s_*s_*s_; |
| |
| r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s; |
| g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s; |
| b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s; |
| } |
| |
| // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform |
| // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB. |
| // See similar comments & logic in SkGradientBaseShader.cpp. |
| STAGE(css_hcl_to_lab, NoCtx) { |
| F H = r, |
| C = g, |
| L = b; |
| |
| F hueRadians = H * (SK_FloatPI / 180); |
| |
| r = L; |
| g = C * cos_(hueRadians); |
| b = C * sin_(hueRadians); |
| } |
| |
| SI F mod_(F x, float y) { |
| return x - y * floor_(x * (1 / y)); |
| } |
| |
| struct RGB { F r, g, b; }; |
| |
| SI RGB css_hsl_to_srgb_(F h, F s, F l) { |
| h = mod_(h, 360); |
| |
| s *= 0.01f; |
| l *= 0.01f; |
| |
| F k[3] = { |
| mod_(0 + h * (1 / 30.0f), 12), |
| mod_(8 + h * (1 / 30.0f), 12), |
| mod_(4 + h * (1 / 30.0f), 12) |
| }; |
| F a = s * min(l, 1 - l); |
| return { |
| l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)), |
| l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)), |
| l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f)) |
| }; |
| } |
| |
| STAGE(css_hsl_to_srgb, NoCtx) { |
| RGB rgb = css_hsl_to_srgb_(r, g, b); |
| r = rgb.r; |
| g = rgb.g; |
| b = rgb.b; |
| } |
| |
| STAGE(css_hwb_to_srgb, NoCtx) { |
| g *= 0.01f; |
| b *= 0.01f; |
| |
| F gray = g / (g + b); |
| |
| RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f); |
| rgb.r = rgb.r * (1 - g - b) + g; |
| rgb.g = rgb.g * (1 - g - b) + g; |
| rgb.b = rgb.b * (1 - g - b) + g; |
| |
| auto isGray = (g + b) >= 1; |
| |
| r = if_then_else(isGray, gray, rgb.r); |
| g = if_then_else(isGray, gray, rgb.g); |
| b = if_then_else(isGray, gray, rgb.b); |
| } |
| |
| // Derive alpha's coverage from rgb coverage and the values of src and dst alpha. |
| SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) { |
| return if_then_else(a < da, min(cr, min(cg,cb)) |
| , max(cr, max(cg,cb))); |
| } |
| |
| STAGE(scale_1_float, const float* c) { |
| r = r * *c; |
| g = g * *c; |
| b = b * *c; |
| a = a * *c; |
| } |
| STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); |
| |
| auto scales = load<U8>(ptr); |
| auto c = from_byte(scales); |
| |
| r = r * c; |
| g = g * c; |
| b = b * c; |
| a = a * c; |
| } |
| STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| F cr,cg,cb; |
| from_565(load<U16>(ptr), &cr, &cg, &cb); |
| |
| F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); |
| |
| r = r * cr; |
| g = g * cg; |
| b = b * cb; |
| a = a * ca; |
| } |
| |
| SI F lerp(F from, F to, F t) { |
| return mad(to-from, t, from); |
| } |
| |
| STAGE(lerp_1_float, const float* c) { |
| r = lerp(dr, r, *c); |
| g = lerp(dg, g, *c); |
| b = lerp(db, b, *c); |
| a = lerp(da, a, *c); |
| } |
| STAGE(scale_native, const float scales[]) { |
| auto c = sk_unaligned_load<F>(scales); |
| r = r * c; |
| g = g * c; |
| b = b * c; |
| a = a * c; |
| } |
| STAGE(lerp_native, const float scales[]) { |
| auto c = sk_unaligned_load<F>(scales); |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); |
| |
| auto scales = load<U8>(ptr); |
| auto c = from_byte(scales); |
| |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| F cr,cg,cb; |
| from_565(load<U16>(ptr), &cr, &cg, &cb); |
| |
| F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); |
| |
| r = lerp(dr, r, cr); |
| g = lerp(dg, g, cg); |
| b = lerp(db, b, cb); |
| a = lerp(da, a, ca); |
| } |
| |
| STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) { |
| auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), |
| aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy); |
| |
| F mul = from_byte(load<U8>(mptr)), |
| add = from_byte(load<U8>(aptr)); |
| |
| r = mad(r, mul, add); |
| g = mad(g, mul, add); |
| b = mad(b, mul, add); |
| } |
| |
| STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) { |
| r = from_byte(gather(tables->r, to_unorm(r, 255))); |
| g = from_byte(gather(tables->g, to_unorm(g, 255))); |
| b = from_byte(gather(tables->b, to_unorm(b, 255))); |
| a = from_byte(gather(tables->a, to_unorm(a, 255))); |
| } |
| |
| SI F strip_sign(F x, U32* sign) { |
| U32 bits = sk_bit_cast<U32>(x); |
| *sign = bits & 0x80000000; |
| return sk_bit_cast<F>(bits ^ *sign); |
| } |
| |
| SI F apply_sign(F x, U32 sign) { |
| return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x)); |
| } |
| |
| STAGE(parametric, const skcms_TransferFunction* ctx) { |
| auto fn = [&](F v) { |
| U32 sign; |
| v = strip_sign(v, &sign); |
| |
| F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f) |
| , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e); |
| return apply_sign(r, sign); |
| }; |
| r = fn(r); |
| g = fn(g); |
| b = fn(b); |
| } |
| |
| STAGE(gamma_, const float* G) { |
| auto fn = [&](F v) { |
| U32 sign; |
| v = strip_sign(v, &sign); |
| return apply_sign(approx_powf(v, *G), sign); |
| }; |
| r = fn(r); |
| g = fn(g); |
| b = fn(b); |
| } |
| |
| STAGE(PQish, const skcms_TransferFunction* ctx) { |
| auto fn = [&](F v) { |
| U32 sign; |
| v = strip_sign(v, &sign); |
| |
| F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f) |
| / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)), |
| ctx->f); |
| |
| return apply_sign(r, sign); |
| }; |
| r = fn(r); |
| g = fn(g); |
| b = fn(b); |
| } |
| |
| STAGE(HLGish, const skcms_TransferFunction* ctx) { |
| auto fn = [&](F v) { |
| U32 sign; |
| v = strip_sign(v, &sign); |
| |
| const float R = ctx->a, G = ctx->b, |
| a = ctx->c, b = ctx->d, c = ctx->e, |
| K = ctx->f + 1.0f; |
| |
| F r = if_then_else(v*R <= 1, approx_powf(v*R, G) |
| , approx_exp((v-c)*a) + b); |
| |
| return K * apply_sign(r, sign); |
| }; |
| r = fn(r); |
| g = fn(g); |
| b = fn(b); |
| } |
| |
| STAGE(HLGinvish, const skcms_TransferFunction* ctx) { |
| auto fn = [&](F v) { |
| U32 sign; |
| v = strip_sign(v, &sign); |
| |
| const float R = ctx->a, G = ctx->b, |
| a = ctx->c, b = ctx->d, c = ctx->e, |
| K = ctx->f + 1.0f; |
| |
| v /= K; |
| F r = if_then_else(v <= 1, R * approx_powf(v, G) |
| , a * approx_log(v - b) + c); |
| |
| return apply_sign(r, sign); |
| }; |
| r = fn(r); |
| g = fn(g); |
| b = fn(b); |
| } |
| |
| STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); |
| |
| r = g = b = 0.0f; |
| a = from_byte(load<U8>(ptr)); |
| } |
| STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); |
| |
| dr = dg = db = 0.0f; |
| da = from_byte(load<U8>(ptr)); |
| } |
| STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint8_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| r = g = b = 0.0f; |
| a = from_byte(gather(ptr, ix)); |
| } |
| STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy); |
| |
| U8 packed = pack(pack(to_unorm(a, 255))); |
| store(ptr, packed); |
| } |
| STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy); |
| |
| U8 packed = pack(pack(to_unorm(r, 255))); |
| store(ptr, packed); |
| } |
| |
| STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| from_565(load<U16>(ptr), &r,&g,&b); |
| a = 1.0f; |
| } |
| STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| from_565(load<U16>(ptr), &dr,&dg,&db); |
| da = 1.0f; |
| } |
| STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_565(gather(ptr, ix), &r,&g,&b); |
| a = 1.0f; |
| } |
| STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); |
| |
| U16 px = pack( to_unorm(r, 31) << 11 |
| | to_unorm(g, 63) << 5 |
| | to_unorm(b, 31) ); |
| store(ptr, px); |
| } |
| |
| STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| from_4444(load<U16>(ptr), &r,&g,&b,&a); |
| } |
| STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| from_4444(load<U16>(ptr), &dr,&dg,&db,&da); |
| } |
| STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_4444(gather(ptr, ix), &r,&g,&b,&a); |
| } |
| STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); |
| U16 px = pack( to_unorm(r, 15) << 12 |
| | to_unorm(g, 15) << 8 |
| | to_unorm(b, 15) << 4 |
| | to_unorm(a, 15) ); |
| store(ptr, px); |
| } |
| |
| STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); |
| from_8888(load<U32>(ptr), &r,&g,&b,&a); |
| } |
| STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); |
| from_8888(load<U32>(ptr), &dr,&dg,&db,&da); |
| } |
| STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_8888(gather(ptr, ix), &r,&g,&b,&a); |
| } |
| STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| |
| U32 px = to_unorm(r, 255) |
| | to_unorm(g, 255) << 8 |
| | to_unorm(b, 255) << 16 |
| | to_unorm(a, 255) << 24; |
| store(ptr, px); |
| } |
| |
| STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); |
| from_88(load<U16>(ptr), &r, &g); |
| b = 0; |
| a = 1; |
| } |
| STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); |
| from_88(load<U16>(ptr), &dr, &dg); |
| db = 0; |
| da = 1; |
| } |
| STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| from_88(gather(ptr, ix), &r, &g); |
| b = 0; |
| a = 1; |
| } |
| STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy); |
| U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 ); |
| store(ptr, px); |
| } |
| |
| STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| r = g = b = 0; |
| a = from_short(load<U16>(ptr)); |
| } |
| STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); |
| dr = dg = db = 0.0f; |
| da = from_short(load<U16>(ptr)); |
| } |
| STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| r = g = b = 0.0f; |
| a = from_short(gather(ptr, ix)); |
| } |
| STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); |
| |
| U16 px = pack(to_unorm(a, 65535)); |
| store(ptr, px); |
| } |
| |
| STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); |
| b = 0; a = 1; |
| from_1616(load<U32>(ptr), &r,&g); |
| } |
| STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); |
| from_1616(load<U32>(ptr), &dr, &dg); |
| db = 0; |
| da = 1; |
| } |
| STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| from_1616(gather(ptr, ix), &r, &g); |
| b = 0; |
| a = 1; |
| } |
| STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| |
| U32 px = to_unorm(r, 65535) |
| | to_unorm(g, 65535) << 16; |
| store(ptr, px); |
| } |
| |
| STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy); |
| from_16161616(load<U64>(ptr), &r,&g, &b, &a); |
| } |
| STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy); |
| from_16161616(load<U64>(ptr), &dr, &dg, &db, &da); |
| } |
| STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint64_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| from_16161616(gather(ptr, ix), &r, &g, &b, &a); |
| } |
| STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy); |
| |
| U16 R = pack(to_unorm(r, 65535)), |
| G = pack(to_unorm(g, 65535)), |
| B = pack(to_unorm(b, 65535)), |
| A = pack(to_unorm(a, 65535)); |
| |
| store4(ptr, R,G,B,A); |
| } |
| |
| STAGE(load_10x6, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy); |
| from_10x6(load<U64>(ptr), &r,&g, &b, &a); |
| } |
| STAGE(load_10x6_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy); |
| from_10x6(load<U64>(ptr), &dr, &dg, &db, &da); |
| } |
| STAGE(gather_10x6, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint64_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| from_10x6(gather(ptr, ix), &r, &g, &b, &a); |
| } |
| STAGE(store_10x6, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy); |
| |
| U16 R = pack(to_unorm(r, 1023)) << 6, |
| G = pack(to_unorm(g, 1023)) << 6, |
| B = pack(to_unorm(b, 1023)) << 6, |
| A = pack(to_unorm(a, 1023)) << 6; |
| |
| store4(ptr, R,G,B,A); |
| } |
| |
| |
| STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); |
| from_1010102(load<U32>(ptr), &r,&g,&b,&a); |
| } |
| STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); |
| from_1010102(load<U32>(ptr), &dr,&dg,&db,&da); |
| } |
| STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); |
| from_1010102_xr(load<U32>(ptr), &r,&g,&b,&a); |
| } |
| STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); |
| from_1010102_xr(load<U32>(ptr), &dr,&dg,&db,&da); |
| } |
| STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| from_1010102(gather(ptr, ix), &r,&g,&b,&a); |
| } |
| STAGE(gather_1010102_xr, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| from_1010102_xr(gather(ptr, ix), &r,&g,&b,&a); |
| } |
| STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| |
| U32 px = to_unorm(r, 1023) |
| | to_unorm(g, 1023) << 10 |
| | to_unorm(b, 1023) << 20 |
| | to_unorm(a, 3) << 30; |
| store(ptr, px); |
| } |
| STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| static constexpr float min = -0.752941f; |
| static constexpr float max = 1.25098f; |
| static constexpr float range = max - min; |
| U32 px = to_unorm((r - min) / range, 1023) |
| | to_unorm((g - min) / range, 1023) << 10 |
| | to_unorm((b - min) / range, 1023) << 20 |
| | to_unorm(a, 3) << 30; |
| store(ptr, px); |
| } |
| |
| STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy); |
| |
| U16 R,G,B,A; |
| load4((const uint16_t*)ptr, &R,&G,&B,&A); |
| r = from_half(R); |
| g = from_half(G); |
| b = from_half(B); |
| a = from_half(A); |
| } |
| STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy); |
| |
| U16 R,G,B,A; |
| load4((const uint16_t*)ptr, &R,&G,&B,&A); |
| dr = from_half(R); |
| dg = from_half(G); |
| db = from_half(B); |
| da = from_half(A); |
| } |
| STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint64_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| auto px = gather(ptr, ix); |
| |
| U16 R,G,B,A; |
| load4((const uint16_t*)&px, &R,&G,&B,&A); |
| r = from_half(R); |
| g = from_half(G); |
| b = from_half(B); |
| a = from_half(A); |
| } |
| STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy); |
| store4((uint16_t*)ptr, to_half(r) |
| , to_half(g) |
| , to_half(b) |
| , to_half(a)); |
| } |
| |
| STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); |
| |
| U16 A = load<U16>((const uint16_t*)ptr); |
| r = 0; |
| g = 0; |
| b = 0; |
| a = from_half(A); |
| } |
| STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); |
| |
| U16 A = load<U16>((const uint16_t*)ptr); |
| dr = dg = db = 0.0f; |
| da = from_half(A); |
| } |
| STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| r = g = b = 0.0f; |
| a = from_half(gather(ptr, ix)); |
| } |
| STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); |
| store(ptr, to_half(a)); |
| } |
| |
| STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); |
| |
| U16 R,G; |
| load2((const uint16_t*)ptr, &R, &G); |
| r = from_half(R); |
| g = from_half(G); |
| b = 0; |
| a = 1; |
| } |
| STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); |
| |
| U16 R,G; |
| load2((const uint16_t*)ptr, &R, &G); |
| dr = from_half(R); |
| dg = from_half(G); |
| db = 0; |
| da = 1; |
| } |
| STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r, g); |
| auto px = gather(ptr, ix); |
| |
| U16 R,G; |
| load2((const uint16_t*)&px, &R, &G); |
| r = from_half(R); |
| g = from_half(G); |
| b = 0; |
| a = 1; |
| } |
| STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy); |
| store2((uint16_t*)ptr, to_half(r) |
| , to_half(g)); |
| } |
| |
| STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy); |
| load4(ptr, &r,&g,&b,&a); |
| } |
| STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy); |
| load4(ptr, &dr,&dg,&db,&da); |
| } |
| STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) { |
| const float* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, r,g); |
| r = gather(ptr, 4*ix + 0); |
| g = gather(ptr, 4*ix + 1); |
| b = gather(ptr, 4*ix + 2); |
| a = gather(ptr, 4*ix + 3); |
| } |
| STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy); |
| store4(ptr, r,g,b,a); |
| } |
| |
| SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) { |
| return v - floor_(v*ctx->invScale)*ctx->scale; |
| } |
| SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) { |
| auto limit = ctx->scale; |
| auto invLimit = ctx->invScale; |
| |
| // This is "repeat" over the range 0..2*limit |
| auto u = v - floor_(v*invLimit*0.5f)*2*limit; |
| // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g. |
| // [limit, 2*limit)). |
| auto s = floor_(u*invLimit); |
| // This is the mirror result. |
| auto m = u - 2*s*(u - limit); |
| // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in |
| // the logical infinite image. This is tested by mirror_tile GM. Note that all values |
| // that have a non-zero bias applied are > 0. |
| auto biasInUlps = trunc_(s); |
| return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps); |
| } |
| // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images). |
| // The gather stages will hard clamp the output of these stages to [0,limit)... |
| // we just need to do the basic repeat or mirroring. |
| STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); } |
| STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); } |
| STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); } |
| STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); } |
| |
| STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); } |
| STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); } |
| STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); } |
| |
| STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) { |
| r = min(ctx->max_x, max(ctx->min_x, r)); |
| g = min(ctx->max_y, max(ctx->min_y, g)); |
| } |
| |
| // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain: |
| // mask == 0x00000000 if the coordinate(s) are out of bounds |
| // mask == 0xFFFFFFFF if the coordinate(s) are in bounds |
| // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0 |
| // if either of the coordinates were out of bounds. |
| |
| STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto w = ctx->limit_x; |
| auto e = ctx->inclusiveEdge_x; |
| auto cond = ((0 < r) & (r < w)) | (r == e); |
| sk_unaligned_store(ctx->mask, cond_to_mask(cond)); |
| } |
| STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto h = ctx->limit_y; |
| auto e = ctx->inclusiveEdge_y; |
| auto cond = ((0 < g) & (g < h)) | (g == e); |
| sk_unaligned_store(ctx->mask, cond_to_mask(cond)); |
| } |
| STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto w = ctx->limit_x; |
| auto h = ctx->limit_y; |
| auto ex = ctx->inclusiveEdge_x; |
| auto ey = ctx->inclusiveEdge_y; |
| auto cond = (((0 < r) & (r < w)) | (r == ex)) |
| & (((0 < g) & (g < h)) | (g == ey)); |
| sk_unaligned_store(ctx->mask, cond_to_mask(cond)); |
| } |
| STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto mask = sk_unaligned_load<U32>(ctx->mask); |
| r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask); |
| g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask); |
| b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask); |
| a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask); |
| } |
| |
| STAGE(alpha_to_gray, NoCtx) { |
| r = g = b = a; |
| a = 1; |
| } |
| STAGE(alpha_to_gray_dst, NoCtx) { |
| dr = dg = db = da; |
| da = 1; |
| } |
| STAGE(alpha_to_red, NoCtx) { |
| r = a; |
| a = 1; |
| } |
| STAGE(alpha_to_red_dst, NoCtx) { |
| dr = da; |
| da = 1; |
| } |
| |
| STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) { |
| a = r*0.2126f + g*0.7152f + b*0.0722f; |
| r = g = b = 0; |
| } |
| STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) { |
| r = g = b = r*0.2126f + g*0.7152f + b*0.0722f; |
| } |
| |
| STAGE(matrix_translate, const float* m) { |
| r += m[0]; |
| g += m[1]; |
| } |
| STAGE(matrix_scale_translate, const float* m) { |
| r = mad(r,m[0], m[2]); |
| g = mad(g,m[1], m[3]); |
| } |
| STAGE(matrix_2x3, const float* m) { |
| auto R = mad(r,m[0], mad(g,m[1], m[2])), |
| G = mad(r,m[3], mad(g,m[4], m[5])); |
| r = R; |
| g = G; |
| } |
| STAGE(matrix_3x3, const float* m) { |
| auto R = mad(r,m[0], mad(g,m[3], b*m[6])), |
| G = mad(r,m[1], mad(g,m[4], b*m[7])), |
| B = mad(r,m[2], mad(g,m[5], b*m[8])); |
| r = R; |
| g = G; |
| b = B; |
| } |
| STAGE(matrix_3x4, const float* m) { |
| auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))), |
| G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))), |
| B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11]))); |
| r = R; |
| g = G; |
| b = B; |
| } |
| STAGE(matrix_4x5, const float* m) { |
| auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))), |
| G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))), |
| B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))), |
| A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19])))); |
| r = R; |
| g = G; |
| b = B; |
| a = A; |
| } |
| STAGE(matrix_4x3, const float* m) { |
| auto X = r, |
| Y = g; |
| |
| r = mad(X, m[0], mad(Y, m[4], m[ 8])); |
| g = mad(X, m[1], mad(Y, m[5], m[ 9])); |
| b = mad(X, m[2], mad(Y, m[6], m[10])); |
| a = mad(X, m[3], mad(Y, m[7], m[11])); |
| } |
| STAGE(matrix_perspective, const float* m) { |
| // N.B. Unlike the other matrix_ stages, this matrix is row-major. |
| auto R = mad(r,m[0], mad(g,m[1], m[2])), |
| G = mad(r,m[3], mad(g,m[4], m[5])), |
| Z = mad(r,m[6], mad(g,m[7], m[8])); |
| r = R * rcp_precise(Z); |
| g = G * rcp_precise(Z); |
| } |
| |
| SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t, |
| F* r, F* g, F* b, F* a) { |
| F fr, br, fg, bg, fb, bb, fa, ba; |
| #if defined(JUMPER_IS_HSW) |
| if (c->stopCount <=8) { |
| fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx); |
| br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx); |
| fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx); |
| bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx); |
| fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx); |
| bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx); |
| fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx); |
| ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx); |
| } else |
| #endif |
| { |
| fr = gather(c->fs[0], idx); |
| br = gather(c->bs[0], idx); |
| fg = gather(c->fs[1], idx); |
| bg = gather(c->bs[1], idx); |
| fb = gather(c->fs[2], idx); |
| bb = gather(c->bs[2], idx); |
| fa = gather(c->fs[3], idx); |
| ba = gather(c->bs[3], idx); |
| } |
| |
| *r = mad(t, fr, br); |
| *g = mad(t, fg, bg); |
| *b = mad(t, fb, bb); |
| *a = mad(t, fa, ba); |
| } |
| |
| STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) { |
| auto t = r; |
| auto idx = trunc_(t * (c->stopCount-1)); |
| gradient_lookup(c, idx, t, &r, &g, &b, &a); |
| } |
| |
| STAGE(gradient, const SkRasterPipeline_GradientCtx* c) { |
| auto t = r; |
| U32 idx = 0; |
| |
| // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. |
| for (size_t i = 1; i < c->stopCount; i++) { |
| idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); |
| } |
| |
| gradient_lookup(c, idx, t, &r, &g, &b, &a); |
| } |
| |
| STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) { |
| auto t = r; |
| r = mad(t, c->f[0], c->b[0]); |
| g = mad(t, c->f[1], c->b[1]); |
| b = mad(t, c->f[2], c->b[2]); |
| a = mad(t, c->f[3], c->b[3]); |
| } |
| |
| STAGE(xy_to_unit_angle, NoCtx) { |
| F X = r, |
| Y = g; |
| F xabs = abs_(X), |
| yabs = abs_(Y); |
| |
| F slope = min(xabs, yabs)/max(xabs, yabs); |
| F s = slope * slope; |
| |
| // Use a 7th degree polynomial to approximate atan. |
| // This was generated using sollya.gforge.inria.fr. |
| // A float optimized polynomial was generated using the following command. |
| // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); |
| F phi = slope |
| * (0.15912117063999176025390625f + s |
| * (-5.185396969318389892578125e-2f + s |
| * (2.476101927459239959716796875e-2f + s |
| * (-7.0547382347285747528076171875e-3f)))); |
| |
| phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); |
| phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi); |
| phi = if_then_else(Y < 0.0f , 1.0f - phi , phi); |
| phi = if_then_else(phi != phi , 0 , phi); // Check for NaN. |
| r = phi; |
| } |
| |
| STAGE(xy_to_radius, NoCtx) { |
| F X2 = r * r, |
| Y2 = g * g; |
| r = sqrt_(X2 + Y2); |
| } |
| |
| // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works. |
| |
| STAGE(negate_x, NoCtx) { r = -r; } |
| |
| STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) { |
| F x = r, y = g, &t = r; |
| t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0 |
| } |
| |
| STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) { |
| F x = r, y = g, &t = r; |
| t = x + y*y / x; // (x^2 + y^2) / x |
| } |
| |
| STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) { |
| F x = r, y = g, &t = r; |
| t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 |
| } |
| |
| STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) { |
| F x = r, y = g, &t = r; |
| t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 |
| } |
| |
| STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) { |
| F x = r, y = g, &t = r; |
| t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 |
| } |
| |
| STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) { |
| F& t = r; |
| t = t + ctx->fP1; // ctx->fP1 = f |
| } |
| |
| STAGE(alter_2pt_conical_unswap, NoCtx) { |
| F& t = r; |
| t = 1 - t; |
| } |
| |
| STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) { |
| F& t = r; |
| auto is_degenerate = (t != t); // NaN |
| t = if_then_else(is_degenerate, F(0), t); |
| sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate)); |
| } |
| |
| STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) { |
| F& t = r; |
| auto is_degenerate = (t <= 0) | (t != t); |
| t = if_then_else(is_degenerate, F(0), t); |
| sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate)); |
| } |
| |
| STAGE(apply_vector_mask, const uint32_t* ctx) { |
| const U32 mask = sk_unaligned_load<U32>(ctx); |
| r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask); |
| g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask); |
| b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask); |
| a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask); |
| } |
| |
| SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) { |
| // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy). |
| // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid |
| // surrounding (x,y) at (0.5,0.5) off-center. |
| F fx = fract(*r + 0.5f), |
| fy = fract(*g + 0.5f); |
| |
| // Samplers will need to load x and fx, or y and fy. |
| sk_unaligned_store(c->x, *r); |
| sk_unaligned_store(c->y, *g); |
| sk_unaligned_store(c->fx, fx); |
| sk_unaligned_store(c->fy, fy); |
| } |
| |
| STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) { |
| // Bilinear and bicubic filters are both separable, so we produce independent contributions |
| // from x and y, multiplying them together here to get each pixel's total scale factor. |
| auto scale = sk_unaligned_load<F>(c->scalex) |
| * sk_unaligned_load<F>(c->scaley); |
| dr = mad(scale, r, dr); |
| dg = mad(scale, g, dg); |
| db = mad(scale, b, db); |
| da = mad(scale, a, da); |
| } |
| |
| // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center |
| // are combined in direct proportion to their area overlapping that logical query pixel. |
| // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x. |
| // The y-axis is symmetric. |
| |
| template <int kScale> |
| SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) { |
| *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f); |
| F fx = sk_unaligned_load<F>(ctx->fx); |
| |
| F scalex; |
| if (kScale == -1) { scalex = 1.0f - fx; } |
| if (kScale == +1) { scalex = fx; } |
| sk_unaligned_store(ctx->scalex, scalex); |
| } |
| template <int kScale> |
| SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) { |
| *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f); |
| F fy = sk_unaligned_load<F>(ctx->fy); |
| |
| F scaley; |
| if (kScale == -1) { scaley = 1.0f - fy; } |
| if (kScale == +1) { scaley = fy; } |
| sk_unaligned_store(ctx->scaley, scaley); |
| } |
| |
| STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) { |
| save_xy(&r, &g, ctx); |
| // Init for accumulate |
| dr = dg = db = da = 0; |
| } |
| |
| STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); } |
| STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); } |
| STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); } |
| STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); } |
| |
| |
| // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample |
| // pixel center are combined with a non-uniform cubic filter, with higher values near the center. |
| // |
| // This helper computes the total weight along one axis (our bicubic filter is separable), given one |
| // column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details. |
| |
| SI F bicubic_wts(F t, float A, float B, float C, float D) { |
| return mad(t, mad(t, mad(t, D, C), B), A); |
| } |
| |
| template <int kScale> |
| SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) { |
| *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f); |
| |
| F scalex; |
| if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); } |
| if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); } |
| if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); } |
| if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); } |
| sk_unaligned_store(ctx->scalex, scalex); |
| } |
| template <int kScale> |
| SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) { |
| *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f); |
| |
| F scaley; |
| if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); } |
| if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); } |
| if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); } |
| if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); } |
| sk_unaligned_store(ctx->scaley, scaley); |
| } |
| |
| STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) { |
| save_xy(&r, &g, ctx); |
| |
| const float* w = ctx->weights; |
| |
| F fx = sk_unaligned_load<F>(ctx->fx); |
| sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12])); |
| sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13])); |
| sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14])); |
| sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15])); |
| |
| F fy = sk_unaligned_load<F>(ctx->fy); |
| sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12])); |
| sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13])); |
| sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14])); |
| sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15])); |
| |
| // Init for accumulate |
| dr = dg = db = da = 0; |
| } |
| |
| STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); } |
| STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); } |
| STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); } |
| STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); } |
| |
| STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); } |
| STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); } |
| STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); } |
| STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); } |
| |
| STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) { |
| sk_unaligned_store(ctx->x, r); |
| sk_unaligned_store(ctx->y, g); |
| } |
| |
| STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) { |
| sk_unaligned_store(ctx->r, r); |
| sk_unaligned_store(ctx->g, g); |
| sk_unaligned_store(ctx->b, b); |
| sk_unaligned_store(ctx->a, a); |
| |
| r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX; |
| g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY; |
| } |
| |
| STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) { |
| r = lerp(sk_unaligned_load<F>(ctx->r), r, ctx->lowerWeight); |
| g = lerp(sk_unaligned_load<F>(ctx->g), g, ctx->lowerWeight); |
| b = lerp(sk_unaligned_load<F>(ctx->b), b, ctx->lowerWeight); |
| a = lerp(sk_unaligned_load<F>(ctx->a), a, ctx->lowerWeight); |
| } |
| |
| STAGE(callback, SkRasterPipeline_CallbackCtx* c) { |
| store4(c->rgba, r,g,b,a); |
| c->fn(c, tail ? tail : N); |
| load4(c->read_from, &r,&g,&b,&a); |
| } |
| |
| STAGE_TAIL(set_base_pointer, std::byte* p) { |
| base = p; |
| } |
| |
| // All control flow stages used by SkSL maintain some state in the common registers: |
| // r: condition mask |
| // g: loop mask |
| // b: return mask |
| // a: execution mask (intersection of all three masks) |
| // After updating r/g/b, you must invoke update_execution_mask(). |
| #define execution_mask() sk_bit_cast<I32>(a) |
| #define update_execution_mask() a = sk_bit_cast<F>(sk_bit_cast<I32>(r) & \ |
| sk_bit_cast<I32>(g) & \ |
| sk_bit_cast<I32>(b)) |
| |
| STAGE_TAIL(init_lane_masks, NoCtx) { |
| uint32_t iota[] = {0,1,2,3,4,5,6,7}; |
| I32 mask = tail ? cond_to_mask(sk_unaligned_load<U32>(iota) < tail) : I32(~0); |
| r = g = b = a = sk_bit_cast<F>(mask); |
| } |
| |
| STAGE_TAIL(store_device_xy01, F* dst) { |
| // This is very similar to `seed_shader + store_src`, but b/a are backwards. |
| // (sk_FragCoord actually puts w=1 in the w slot.) |
| static constexpr float iota[] = { |
| 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, |
| 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, |
| }; |
| dst[0] = cast(dx) + sk_unaligned_load<F>(iota); |
| dst[1] = cast(dy) + 0.5f; |
| dst[2] = 0.0f; |
| dst[3] = 1.0f; |
| } |
| |
| STAGE_TAIL(exchange_src, F* rgba) { |
| // Swaps r,g,b,a registers with the values at `rgba`. |
| F temp[4] = {r, g, b, a}; |
| r = rgba[0]; |
| rgba[0] = temp[0]; |
| g = rgba[1]; |
| rgba[1] = temp[1]; |
| b = rgba[2]; |
| rgba[2] = temp[2]; |
| a = rgba[3]; |
| rgba[3] = temp[3]; |
| } |
| |
| STAGE_TAIL(load_condition_mask, F* ctx) { |
| r = sk_unaligned_load<F>(ctx); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(store_condition_mask, F* ctx) { |
| sk_unaligned_store(ctx, r); |
| } |
| |
| STAGE_TAIL(merge_condition_mask, I32* ptr) { |
| // Set the condition-mask to the intersection of two adjacent masks at the pointer. |
| r = sk_bit_cast<F>(ptr[0] & ptr[1]); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(merge_inv_condition_mask, I32* ptr) { |
| // Set the condition-mask to the intersection of the first mask and the inverse of the second. |
| r = sk_bit_cast<F>(ptr[0] & ~ptr[1]); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(load_loop_mask, F* ctx) { |
| g = sk_unaligned_load<F>(ctx); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(store_loop_mask, F* ctx) { |
| sk_unaligned_store(ctx, g); |
| } |
| |
| STAGE_TAIL(mask_off_loop_mask, NoCtx) { |
| // We encountered a break statement. If a lane was active, it should be masked off now, and stay |
| // masked-off until the termination of the loop. |
| g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask()); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(reenable_loop_mask, I32* ptr) { |
| // Set the loop-mask to the union of the current loop-mask with the mask at the pointer. |
| g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | ptr[0]); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(merge_loop_mask, I32* ptr) { |
| // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer. |
| // (Note: this behavior subtly differs from merge_condition_mask!) |
| g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ptr[0]); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(continue_op, I32* continueMask) { |
| // Set any currently-executing lanes in the continue-mask to true. |
| *continueMask |= execution_mask(); |
| |
| // Disable any currently-executing lanes from the loop mask. (Just like `mask_off_loop_mask`.) |
| g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask()); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* packed) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| |
| // Check each lane to see if the case value matches the expectation. |
| I32* actualValue = (I32*)(base + ctx.offset); |
| I32 caseMatches = cond_to_mask(*actualValue == ctx.expectedValue); |
| |
| // In lanes where we found a match, enable the loop mask... |
| g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | caseMatches); |
| update_execution_mask(); |
| |
| // ... and clear the default-case mask. |
| I32* defaultMask = actualValue + 1; |
| *defaultMask &= ~caseMatches; |
| } |
| |
| STAGE_TAIL(load_return_mask, F* ctx) { |
| b = sk_unaligned_load<F>(ctx); |
| update_execution_mask(); |
| } |
| |
| STAGE_TAIL(store_return_mask, F* ctx) { |
| sk_unaligned_store(ctx, b); |
| } |
| |
| STAGE_TAIL(mask_off_return_mask, NoCtx) { |
| // We encountered a return statement. If a lane was active, it should be masked off now, and |
| // stay masked-off until the end of the function. |
| b = sk_bit_cast<F>(sk_bit_cast<I32>(b) & ~execution_mask()); |
| update_execution_mask(); |
| } |
| |
| STAGE_BRANCH(branch_if_all_lanes_active, SkRasterPipeline_BranchCtx* ctx) { |
| if (tail) { |
| uint32_t iota[] = {0,1,2,3,4,5,6,7}; |
| I32 tailLanes = cond_to_mask(tail <= sk_unaligned_load<U32>(iota)); |
| return all(execution_mask() | tailLanes) ? ctx->offset : 1; |
| } else { |
| return all(execution_mask()) ? ctx->offset : 1; |
| } |
| } |
| |
| STAGE_BRANCH(branch_if_any_lanes_active, SkRasterPipeline_BranchCtx* ctx) { |
| return any(execution_mask()) ? ctx->offset : 1; |
| } |
| |
| STAGE_BRANCH(branch_if_no_lanes_active, SkRasterPipeline_BranchCtx* ctx) { |
| return any(execution_mask()) ? 1 : ctx->offset; |
| } |
| |
| STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) { |
| return ctx->offset; |
| } |
| |
| STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) { |
| // Compare each lane against the expected value... |
| I32 match = cond_to_mask(*(I32*)ctx->ptr == ctx->value); |
| // ... but mask off lanes that aren't executing. |
| match &= execution_mask(); |
| // If any lanes matched, don't take the branch. |
| return any(match) ? 1 : ctx->offset; |
| } |
| |
| STAGE_TAIL(trace_line, SkRasterPipeline_TraceLineCtx* ctx) { |
| I32* traceMask = (I32*)ctx->traceMask; |
| if (any(execution_mask() & *traceMask)) { |
| ctx->traceHook->line(ctx->lineNumber); |
| } |
| } |
| |
| STAGE_TAIL(trace_enter, SkRasterPipeline_TraceFuncCtx* ctx) { |
| I32* traceMask = (I32*)ctx->traceMask; |
| if (any(execution_mask() & *traceMask)) { |
| ctx->traceHook->enter(ctx->funcIdx); |
| } |
| } |
| |
| STAGE_TAIL(trace_exit, SkRasterPipeline_TraceFuncCtx* ctx) { |
| I32* traceMask = (I32*)ctx->traceMask; |
| if (any(execution_mask() & *traceMask)) { |
| ctx->traceHook->exit(ctx->funcIdx); |
| } |
| } |
| |
| STAGE_TAIL(trace_scope, SkRasterPipeline_TraceScopeCtx* ctx) { |
| // Note that trace_scope intentionally does not incorporate the execution mask. Otherwise, the |
| // scopes would become unbalanced if the execution mask changed in the middle of a block. The |
| // caller is responsible for providing a combined trace- and execution-mask. |
| I32* traceMask = (I32*)ctx->traceMask; |
| if (any(*traceMask)) { |
| ctx->traceHook->scope(ctx->delta); |
| } |
| } |
| |
| STAGE_TAIL(trace_var, SkRasterPipeline_TraceVarCtx* ctx) { |
| I32* traceMask = (I32*)ctx->traceMask; |
| I32 mask = execution_mask() & *traceMask; |
| if (any(mask)) { |
| for (size_t lane = 0; lane < N; ++lane) { |
| if (select_lane(mask, lane)) { |
| I32* data = (I32*)ctx->data; |
| int slotIdx = ctx->slotIdx, numSlots = ctx->numSlots; |
| if (ctx->indirectOffset) { |
| // If this was an indirect store, apply the indirect-offset to the data pointer. |
| uint32_t indirectOffset = select_lane(*(U32*)ctx->indirectOffset, lane); |
| indirectOffset = std::min<uint32_t>(indirectOffset, ctx->indirectLimit); |
| data += indirectOffset; |
| slotIdx += indirectOffset; |
| } |
| while (numSlots--) { |
| ctx->traceHook->var(slotIdx, select_lane(*data, lane)); |
| ++slotIdx; |
| ++data; |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| STAGE_TAIL(copy_uniform, SkRasterPipeline_UniformCtx* ctx) { |
| const float* src = ctx->src; |
| F* dst = (F*)ctx->dst; |
| dst[0] = src[0]; |
| } |
| STAGE_TAIL(copy_2_uniforms, SkRasterPipeline_UniformCtx* ctx) { |
| const float* src = ctx->src; |
| F* dst = (F*)ctx->dst; |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| } |
| STAGE_TAIL(copy_3_uniforms, SkRasterPipeline_UniformCtx* ctx) { |
| const float* src = ctx->src; |
| F* dst = (F*)ctx->dst; |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| } |
| STAGE_TAIL(copy_4_uniforms, SkRasterPipeline_UniformCtx* ctx) { |
| const float* src = ctx->src; |
| F* dst = (F*)ctx->dst; |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| dst[3] = src[3]; |
| } |
| |
| STAGE_TAIL(copy_constant, SkRasterPipeline_ConstantCtx* packed) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| F* dst = (F*)(base + ctx.dst); |
| F value = ctx.value; |
| dst[0] = value; |
| } |
| STAGE_TAIL(splat_2_constants, SkRasterPipeline_ConstantCtx* packed) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| F* dst = (F*)(base + ctx.dst); |
| F value = ctx.value; |
| dst[0] = dst[1] = value; |
| } |
| STAGE_TAIL(splat_3_constants, SkRasterPipeline_ConstantCtx* packed) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| F* dst = (F*)(base + ctx.dst); |
| F value = ctx.value; |
| dst[0] = dst[1] = dst[2] = value; |
| } |
| STAGE_TAIL(splat_4_constants, SkRasterPipeline_ConstantCtx* packed) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| F* dst = (F*)(base + ctx.dst); |
| F value = ctx.value; |
| dst[0] = dst[1] = dst[2] = dst[3] = value; |
| } |
| |
| template <int NumSlots> |
| SI void copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| F* dst = (F*)(base + ctx.dst); |
| F* src = (F*)(base + ctx.src); |
| // We don't even bother masking off the tail; we're filling slots, not the destination surface. |
| memcpy(dst, src, sizeof(F) * NumSlots); |
| } |
| |
| STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_unmasked_fn<1>(packed, base); |
| } |
| STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_unmasked_fn<2>(packed, base); |
| } |
| STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_unmasked_fn<3>(packed, base); |
| } |
| STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_unmasked_fn<4>(packed, base); |
| } |
| |
| template <int NumSlots> |
| SI void copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| |
| // Load the scalar values. |
| float* src = (float*)(base + ctx.src); |
| float values[NumSlots]; |
| SK_UNROLL for (int index = 0; index < NumSlots; ++index) { |
| values[index] = src[index]; |
| } |
| // Broadcast the scalars into the destination. |
| F* dst = (F*)(base + ctx.dst); |
| SK_UNROLL for (int index = 0; index < NumSlots; ++index) { |
| dst[index] = values[index]; |
| } |
| } |
| |
| STAGE_TAIL(copy_immutable_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_immutable_unmasked_fn<1>(packed, base); |
| } |
| STAGE_TAIL(copy_2_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_immutable_unmasked_fn<2>(packed, base); |
| } |
| STAGE_TAIL(copy_3_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_immutable_unmasked_fn<3>(packed, base); |
| } |
| STAGE_TAIL(copy_4_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_immutable_unmasked_fn<4>(packed, base); |
| } |
| |
| template <int NumSlots> |
| SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base, I32 mask) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| F* dst = (F*)(base + ctx.dst); |
| F* src = (F*)(base + ctx.src); |
| SK_UNROLL for (int count = 0; count < NumSlots; ++count) { |
| *dst = if_then_else(mask, *src, *dst); |
| dst += 1; |
| src += 1; |
| } |
| } |
| |
| STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_masked_fn<1>(packed, base, execution_mask()); |
| } |
| STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_masked_fn<2>(packed, base, execution_mask()); |
| } |
| STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_masked_fn<3>(packed, base, execution_mask()); |
| } |
| STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) { |
| copy_n_slots_masked_fn<4>(packed, base, execution_mask()); |
| } |
| |
| template <int LoopCount, typename OffsetType> |
| SI void shuffle_fn(std::byte* ptr, OffsetType* offsets, int numSlots) { |
| F scratch[16]; |
| SK_UNROLL for (int count = 0; count < LoopCount; ++count) { |
| scratch[count] = *(F*)(ptr + offsets[count]); |
| } |
| // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when |
| // the number of slots is unknown at compile time, and generates roughly identical code when the |
| // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead |
| // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes |
| // that `numSlots` could be arbitrarily large, and so it emits more code than we need. |
| F* dst = (F*)ptr; |
| switch (numSlots) { |
| case 16: dst[15] = scratch[15]; [[fallthrough]]; |
| case 15: dst[14] = scratch[14]; [[fallthrough]]; |
| case 14: dst[13] = scratch[13]; [[fallthrough]]; |
| case 13: dst[12] = scratch[12]; [[fallthrough]]; |
| case 12: dst[11] = scratch[11]; [[fallthrough]]; |
| case 11: dst[10] = scratch[10]; [[fallthrough]]; |
| case 10: dst[ 9] = scratch[ 9]; [[fallthrough]]; |
| case 9: dst[ 8] = scratch[ 8]; [[fallthrough]]; |
| case 8: dst[ 7] = scratch[ 7]; [[fallthrough]]; |
| case 7: dst[ 6] = scratch[ 6]; [[fallthrough]]; |
| case 6: dst[ 5] = scratch[ 5]; [[fallthrough]]; |
| case 5: dst[ 4] = scratch[ 4]; [[fallthrough]]; |
| case 4: dst[ 3] = scratch[ 3]; [[fallthrough]]; |
| case 3: dst[ 2] = scratch[ 2]; [[fallthrough]]; |
| case 2: dst[ 1] = scratch[ 1]; [[fallthrough]]; |
| case 1: dst[ 0] = scratch[ 0]; |
| } |
| } |
| |
| template <int N> |
| SI void small_swizzle_fn(SkRasterPipeline_SwizzleCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| shuffle_fn<N>(base + ctx.dst, ctx.offsets, N); |
| } |
| |
| STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* packed) { |
| small_swizzle_fn<1>(packed, base); |
| } |
| STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* packed) { |
| small_swizzle_fn<2>(packed, base); |
| } |
| STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* packed) { |
| small_swizzle_fn<3>(packed, base); |
| } |
| STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* packed) { |
| small_swizzle_fn<4>(packed, base); |
| } |
| STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) { |
| shuffle_fn<16>((std::byte*)ctx->ptr, ctx->offsets, ctx->count); |
| } |
| |
| template <int NumSlots> |
| SI void swizzle_copy_masked_fn(F* dst, const F* src, uint16_t* offsets, I32 mask) { |
| std::byte* dstB = (std::byte*)dst; |
| SK_UNROLL for (int count = 0; count < NumSlots; ++count) { |
| F* dstS = (F*)(dstB + *offsets); |
| *dstS = if_then_else(mask, *src, *dstS); |
| offsets += 1; |
| src += 1; |
| } |
| } |
| |
| STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { |
| swizzle_copy_masked_fn<1>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); |
| } |
| STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { |
| swizzle_copy_masked_fn<2>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); |
| } |
| STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { |
| swizzle_copy_masked_fn<3>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); |
| } |
| STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { |
| swizzle_copy_masked_fn<4>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); |
| } |
| |
| STAGE_TAIL(copy_from_indirect_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) { |
| // Clamp the indirect offsets to stay within the limit. |
| U32 offsets = *(U32*)ctx->indirectOffset; |
| offsets = min(offsets, ctx->indirectLimit); |
| |
| // Scale up the offsets to account for the N lanes per value. |
| offsets *= N; |
| |
| // Adjust the offsets forward so that they fetch from the correct lane. |
| static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; |
| offsets += sk_unaligned_load<I32>(iota); |
| |
| // Use gather to perform indirect lookups; write the results into `dst`. |
| const float* src = ctx->src; |
| F* dst = (F*)ctx->dst; |
| F* end = dst + ctx->slots; |
| do { |
| *dst = gather(src, offsets); |
| dst += 1; |
| src += N; |
| } while (dst != end); |
| } |
| |
| STAGE_TAIL(copy_from_indirect_uniform_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) { |
| // Clamp the indirect offsets to stay within the limit. |
| U32 offsets = *(U32*)ctx->indirectOffset; |
| offsets = min(offsets, ctx->indirectLimit); |
| |
| // Use gather to perform indirect lookups; write the results into `dst`. |
| const float* src = ctx->src; |
| F* dst = (F*)ctx->dst; |
| F* end = dst + ctx->slots; |
| do { |
| *dst = gather(src, offsets); |
| dst += 1; |
| src += 1; |
| } while (dst != end); |
| } |
| |
| STAGE_TAIL(copy_to_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) { |
| // Clamp the indirect offsets to stay within the limit. |
| U32 offsets = *(U32*)ctx->indirectOffset; |
| offsets = min(offsets, ctx->indirectLimit); |
| |
| // Scale up the offsets to account for the N lanes per value. |
| offsets *= N; |
| |
| // Adjust the offsets forward so that they store into the correct lane. |
| static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; |
| offsets += sk_unaligned_load<I32>(iota); |
| |
| // Perform indirect, masked writes into `dst`. |
| const F* src = (F*)ctx->src; |
| const F* end = src + ctx->slots; |
| float* dst = ctx->dst; |
| I32 mask = execution_mask(); |
| do { |
| scatter_masked(*src, dst, offsets, mask); |
| dst += N; |
| src += 1; |
| } while (src != end); |
| } |
| |
| STAGE_TAIL(swizzle_copy_to_indirect_masked, SkRasterPipeline_SwizzleCopyIndirectCtx* ctx) { |
| // Clamp the indirect offsets to stay within the limit. |
| U32 offsets = *(U32*)ctx->indirectOffset; |
| offsets = min(offsets, ctx->indirectLimit); |
| |
| // Scale up the offsets to account for the N lanes per value. |
| offsets *= N; |
| |
| // Adjust the offsets forward so that they store into the correct lane. |
| static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; |
| offsets += sk_unaligned_load<I32>(iota); |
| |
| // Perform indirect, masked, swizzled writes into `dst`. |
| const F* src = (F*)ctx->src; |
| const F* end = src + ctx->slots; |
| std::byte* dstB = (std::byte*)ctx->dst; |
| const uint16_t* swizzle = ctx->offsets; |
| I32 mask = execution_mask(); |
| do { |
| float* dst = (float*)(dstB + *swizzle); |
| scatter_masked(*src, dst, offsets, mask); |
| swizzle += 1; |
| src += 1; |
| } while (src != end); |
| } |
| |
| // Unary operations take a single input, and overwrite it with their output. |
| // Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide |
| // an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually. |
| template <typename T, void (*ApplyFn)(T*)> |
| SI void apply_adjacent_unary(T* dst, T* end) { |
| do { |
| ApplyFn(dst); |
| dst += 1; |
| } while (dst != end); |
| } |
| |
| #if defined(JUMPER_IS_SCALAR) |
| template <typename T> |
| SI void cast_to_float_from_fn(T* dst) { |
| *dst = sk_bit_cast<T>((F)*dst); |
| } |
| SI void cast_to_int_from_fn(F* dst) { |
| *dst = sk_bit_cast<F>((I32)*dst); |
| } |
| SI void cast_to_uint_from_fn(F* dst) { |
| *dst = sk_bit_cast<F>((U32)*dst); |
| } |
| #else |
| template <typename T> |
| SI void cast_to_float_from_fn(T* dst) { |
| *dst = sk_bit_cast<T>(__builtin_convertvector(*dst, F)); |
| } |
| SI void cast_to_int_from_fn(F* dst) { |
| *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, I32)); |
| } |
| SI void cast_to_uint_from_fn(F* dst) { |
| *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, U32)); |
| } |
| #endif |
| |
| SI void abs_fn(I32* dst) { |
| *dst = abs_(*dst); |
| } |
| |
| SI void floor_fn(F* dst) { |
| *dst = floor_(*dst); |
| } |
| |
| SI void ceil_fn(F* dst) { |
| *dst = ceil_(*dst); |
| } |
| |
| SI void invsqrt_fn(F* dst) { |
| *dst = rsqrt(*dst); |
| } |
| |
| #define DECLARE_UNARY_FLOAT(name) \ |
| STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); } \ |
| STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \ |
| STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \ |
| STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); } |
| |
| #define DECLARE_UNARY_INT(name) \ |
| STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); } \ |
| STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \ |
| STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \ |
| STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); } |
| |
| #define DECLARE_UNARY_UINT(name) \ |
| STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); } \ |
| STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \ |
| STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \ |
| STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); } |
| |
| DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from) |
| DECLARE_UNARY_FLOAT(cast_to_int_from) |
| DECLARE_UNARY_FLOAT(cast_to_uint_from) |
| DECLARE_UNARY_FLOAT(floor) |
| DECLARE_UNARY_FLOAT(ceil) |
| DECLARE_UNARY_FLOAT(invsqrt) |
| DECLARE_UNARY_INT(abs) |
| |
| #undef DECLARE_UNARY_FLOAT |
| #undef DECLARE_UNARY_INT |
| #undef DECLARE_UNARY_UINT |
| |
| // For complex unary ops, we only provide a 1-slot version to reduce code bloat. |
| STAGE_TAIL(sin_float, F* dst) { *dst = sin_(*dst); } |
| STAGE_TAIL(cos_float, F* dst) { *dst = cos_(*dst); } |
| STAGE_TAIL(tan_float, F* dst) { *dst = tan_(*dst); } |
| STAGE_TAIL(asin_float, F* dst) { *dst = asin_(*dst); } |
| STAGE_TAIL(acos_float, F* dst) { *dst = acos_(*dst); } |
| STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); } |
| STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); } |
| STAGE_TAIL(exp_float, F* dst) { *dst = approx_exp(*dst); } |
| STAGE_TAIL(exp2_float, F* dst) { *dst = approx_pow2(*dst); } |
| STAGE_TAIL(log_float, F* dst) { *dst = approx_log(*dst); } |
| STAGE_TAIL(log2_float, F* dst) { *dst = approx_log2(*dst); } |
| |
| STAGE_TAIL(inverse_mat2, F* dst) { |
| F a00 = dst[0], a01 = dst[1], |
| a10 = dst[2], a11 = dst[3]; |
| F det = mad(a00, a11, -a01 * a10), |
| invdet = rcp_precise(det); |
| dst[0] = invdet * a11; |
| dst[1] = -invdet * a01; |
| dst[2] = -invdet * a10; |
| dst[3] = invdet * a00; |
| } |
| |
| STAGE_TAIL(inverse_mat3, F* dst) { |
| F a00 = dst[0], a01 = dst[1], a02 = dst[2], |
| a10 = dst[3], a11 = dst[4], a12 = dst[5], |
| a20 = dst[6], a21 = dst[7], a22 = dst[8]; |
| F b01 = mad(a22, a11, -a12 * a21), |
| b11 = mad(a12, a20, -a22 * a10), |
| b21 = mad(a21, a10, -a11 * a20); |
| F det = mad(a00, b01, mad(a01, b11, a02 * b21)), |
| invdet = rcp_precise(det); |
| dst[0] = invdet * b01; |
| dst[1] = invdet * mad(a02, a21, -a22 * a01); |
| dst[2] = invdet * mad(a12, a01, -a02 * a11); |
| dst[3] = invdet * b11; |
| dst[4] = invdet * mad(a22, a00, -a02 * a20); |
| dst[5] = invdet * mad(a02, a10, -a12 * a00); |
| dst[6] = invdet * b21; |
| dst[7] = invdet * mad(a01, a20, -a21 * a00); |
| dst[8] = invdet * mad(a11, a00, -a01 * a10); |
| } |
| |
| STAGE_TAIL(inverse_mat4, F* dst) { |
| F a00 = dst[0], a01 = dst[1], a02 = dst[2], a03 = dst[3], |
| a10 = dst[4], a11 = dst[5], a12 = dst[6], a13 = dst[7], |
| a20 = dst[8], a21 = dst[9], a22 = dst[10], a23 = dst[11], |
| a30 = dst[12], a31 = dst[13], a32 = dst[14], a33 = dst[15]; |
| F b00 = mad(a00, a11, -a01 * a10), |
| b01 = mad(a00, a12, -a02 * a10), |
| b02 = mad(a00, a13, -a03 * a10), |
| b03 = mad(a01, a12, -a02 * a11), |
| b04 = mad(a01, a13, -a03 * a11), |
| b05 = mad(a02, a13, -a03 * a12), |
| b06 = mad(a20, a31, -a21 * a30), |
| b07 = mad(a20, a32, -a22 * a30), |
| b08 = mad(a20, a33, -a23 * a30), |
| b09 = mad(a21, a32, -a22 * a31), |
| b10 = mad(a21, a33, -a23 * a31), |
| b11 = mad(a22, a33, -a23 * a32), |
| det = mad(b00, b11, b05 * b06) + mad(b02, b09, b03 * b08) - mad(b01, b10, b04 * b07), |
| invdet = rcp_precise(det); |
| b00 *= invdet; |
| b01 *= invdet; |
| b02 *= invdet; |
| b03 *= invdet; |
| b04 *= invdet; |
| b05 *= invdet; |
| b06 *= invdet; |
| b07 *= invdet; |
| b08 *= invdet; |
| b09 *= invdet; |
| b10 *= invdet; |
| b11 *= invdet; |
| dst[0] = mad(a11, b11, a13*b09) - a12*b10; |
| dst[1] = a02*b10 - mad(a01, b11, a03*b09); |
| dst[2] = mad(a31, b05, a33*b03) - a32*b04; |
| dst[3] = a22*b04 - mad(a21, b05, a23*b03); |
| dst[4] = a12*b08 - mad(a10, b11, a13*b07); |
| dst[5] = mad(a00, b11, a03*b07) - a02*b08; |
| dst[6] = a32*b02 - mad(a30, b05, a33*b01); |
| dst[7] = mad(a20, b05, a23*b01) - a22*b02; |
| dst[8] = mad(a10, b10, a13*b06) - a11*b08; |
| dst[9] = a01*b08 - mad(a00, b10, a03*b06); |
| dst[10] = mad(a30, b04, a33*b00) - a31*b02; |
| dst[11] = a21*b02 - mad(a20, b04, a23*b00); |
| dst[12] = a11*b07 - mad(a10, b09, a12*b06); |
| dst[13] = mad(a00, b09, a02*b06) - a01*b07; |
| dst[14] = a31*b01 - mad(a30, b03, a32*b00); |
| dst[15] = mad(a20, b03, a22*b00) - a21*b01; |
| } |
| |
| // Binary operations take two adjacent inputs, and write their output in the first position. |
| template <typename T, void (*ApplyFn)(T*, T*)> |
| SI void apply_adjacent_binary(T* dst, T* src) { |
| T* end = src; |
| do { |
| ApplyFn(dst, src); |
| dst += 1; |
| src += 1; |
| } while (dst != end); |
| } |
| |
| template <typename T, void (*ApplyFn)(T*, T*)> |
| SI void apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| std::byte* dst = base + ctx.dst; |
| std::byte* src = base + ctx.src; |
| apply_adjacent_binary<T, ApplyFn>((T*)dst, (T*)src); |
| } |
| |
| template <int N, typename V, typename S, void (*ApplyFn)(V*, V*)> |
| SI void apply_binary_immediate(SkRasterPipeline_ConstantCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| V* dst = (V*)(base + ctx.dst); // get a pointer to the destination |
| S scalar = sk_bit_cast<S>(ctx.value); // bit-pun the constant value as desired |
| V src = scalar; // broadcast the constant value into a vector |
| SK_UNROLL for (int index = 0; index < N; ++index) { |
| ApplyFn(dst, &src); // perform the operation |
| dst += 1; |
| } |
| } |
| |
| template <typename T> |
| SI void add_fn(T* dst, T* src) { |
| *dst += *src; |
| } |
| |
| template <typename T> |
| SI void sub_fn(T* dst, T* src) { |
| *dst -= *src; |
| } |
| |
| template <typename T> |
| SI void mul_fn(T* dst, T* src) { |
| *dst *= *src; |
| } |
| |
| template <typename T> |
| SI void div_fn(T* dst, T* src) { |
| T divisor = *src; |
| if constexpr (!std::is_same_v<T, F>) { |
| // We will crash if we integer-divide against zero. Convert 0 to ~0 to avoid this. |
| divisor |= cond_to_mask(divisor == 0); |
| } |
| *dst /= divisor; |
| } |
| |
| SI void bitwise_and_fn(I32* dst, I32* src) { |
| *dst &= *src; |
| } |
| |
| SI void bitwise_or_fn(I32* dst, I32* src) { |
| *dst |= *src; |
| } |
| |
| SI void bitwise_xor_fn(I32* dst, I32* src) { |
| *dst ^= *src; |
| } |
| |
| template <typename T> |
| SI void max_fn(T* dst, T* src) { |
| *dst = max(*dst, *src); |
| } |
| |
| template <typename T> |
| SI void min_fn(T* dst, T* src) { |
| *dst = min(*dst, *src); |
| } |
| |
| template <typename T> |
| SI void cmplt_fn(T* dst, T* src) { |
| static_assert(sizeof(T) == sizeof(I32)); |
| I32 result = cond_to_mask(*dst < *src); |
| memcpy(dst, &result, sizeof(I32)); |
| } |
| |
| template <typename T> |
| SI void cmple_fn(T* dst, T* src) { |
| static_assert(sizeof(T) == sizeof(I32)); |
| I32 result = cond_to_mask(*dst <= *src); |
| memcpy(dst, &result, sizeof(I32)); |
| } |
| |
| template <typename T> |
| SI void cmpeq_fn(T* dst, T* src) { |
| static_assert(sizeof(T) == sizeof(I32)); |
| I32 result = cond_to_mask(*dst == *src); |
| memcpy(dst, &result, sizeof(I32)); |
| } |
| |
| template <typename T> |
| SI void cmpne_fn(T* dst, T* src) { |
| static_assert(sizeof(T) == sizeof(I32)); |
| I32 result = cond_to_mask(*dst != *src); |
| memcpy(dst, &result, sizeof(I32)); |
| } |
| |
| SI void atan2_fn(F* dst, F* src) { |
| *dst = atan2_(*dst, *src); |
| } |
| |
| SI void pow_fn(F* dst, F* src) { |
| *dst = approx_powf(*dst, *src); |
| } |
| |
| SI void mod_fn(F* dst, F* src) { |
| *dst = *dst - *src * floor_(*dst / *src); |
| } |
| |
| #define DECLARE_N_WAY_BINARY_FLOAT(name) \ |
| STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* packed) { \ |
| apply_adjacent_binary_packed<F, &name##_fn>(packed, base); \ |
| } |
| |
| #define DECLARE_BINARY_FLOAT(name) \ |
| STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); } \ |
| STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \ |
| STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \ |
| STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \ |
| DECLARE_N_WAY_BINARY_FLOAT(name) |
| |
| #define DECLARE_N_WAY_BINARY_INT(name) \ |
| STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* packed) { \ |
| apply_adjacent_binary_packed<I32, &name##_fn>(packed, base); \ |
| } |
| |
| #define DECLARE_BINARY_INT(name) \ |
| STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); } \ |
| STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \ |
| STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \ |
| STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \ |
| DECLARE_N_WAY_BINARY_INT(name) |
| |
| #define DECLARE_N_WAY_BINARY_UINT(name) \ |
| STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* packed) { \ |
| apply_adjacent_binary_packed<U32, &name##_fn>(packed, base); \ |
| } |
| |
| #define DECLARE_BINARY_UINT(name) \ |
| STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); } \ |
| STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \ |
| STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \ |
| STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \ |
| DECLARE_N_WAY_BINARY_UINT(name) |
| |
| // Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a |
| // two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.) |
| DECLARE_BINARY_FLOAT(add) DECLARE_BINARY_INT(add) |
| DECLARE_BINARY_FLOAT(sub) DECLARE_BINARY_INT(sub) |
| DECLARE_BINARY_FLOAT(mul) DECLARE_BINARY_INT(mul) |
| DECLARE_BINARY_FLOAT(div) DECLARE_BINARY_INT(div) DECLARE_BINARY_UINT(div) |
| DECLARE_BINARY_INT(bitwise_and) |
| DECLARE_BINARY_INT(bitwise_or) |
| DECLARE_BINARY_INT(bitwise_xor) |
| DECLARE_BINARY_FLOAT(mod) |
| DECLARE_BINARY_FLOAT(min) DECLARE_BINARY_INT(min) DECLARE_BINARY_UINT(min) |
| DECLARE_BINARY_FLOAT(max) DECLARE_BINARY_INT(max) DECLARE_BINARY_UINT(max) |
| DECLARE_BINARY_FLOAT(cmplt) DECLARE_BINARY_INT(cmplt) DECLARE_BINARY_UINT(cmplt) |
| DECLARE_BINARY_FLOAT(cmple) DECLARE_BINARY_INT(cmple) DECLARE_BINARY_UINT(cmple) |
| DECLARE_BINARY_FLOAT(cmpeq) DECLARE_BINARY_INT(cmpeq) |
| DECLARE_BINARY_FLOAT(cmpne) DECLARE_BINARY_INT(cmpne) |
| |
| // Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated |
| // 1-4 slot versions. |
| DECLARE_N_WAY_BINARY_FLOAT(atan2) |
| DECLARE_N_WAY_BINARY_FLOAT(pow) |
| |
| // Some ops have an optimized version when the right-side is an immediate value. |
| #define DECLARE_IMM_BINARY_FLOAT(name) \ |
| STAGE_TAIL(name##_imm_float, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<1, F, float, &name##_fn>(packed, base); \ |
| } |
| #define DECLARE_IMM_BINARY_INT(name) \ |
| STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \ |
| } |
| #define DECLARE_MULTI_IMM_BINARY_INT(name) \ |
| STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \ |
| } \ |
| STAGE_TAIL(name##_imm_2_ints, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<2, I32, int32_t, &name##_fn>(packed, base); \ |
| } \ |
| STAGE_TAIL(name##_imm_3_ints, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<3, I32, int32_t, &name##_fn>(packed, base); \ |
| } \ |
| STAGE_TAIL(name##_imm_4_ints, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<4, I32, int32_t, &name##_fn>(packed, base); \ |
| } |
| #define DECLARE_IMM_BINARY_UINT(name) \ |
| STAGE_TAIL(name##_imm_uint, SkRasterPipeline_ConstantCtx* packed) { \ |
| apply_binary_immediate<1, U32, uint32_t, &name##_fn>(packed, base); \ |
| } |
| |
| DECLARE_IMM_BINARY_FLOAT(add) DECLARE_IMM_BINARY_INT(add) |
| DECLARE_IMM_BINARY_FLOAT(mul) DECLARE_IMM_BINARY_INT(mul) |
| DECLARE_MULTI_IMM_BINARY_INT(bitwise_and) |
| DECLARE_IMM_BINARY_FLOAT(max) |
| DECLARE_IMM_BINARY_FLOAT(min) |
| DECLARE_IMM_BINARY_INT(bitwise_xor) |
| DECLARE_IMM_BINARY_FLOAT(cmplt) DECLARE_IMM_BINARY_INT(cmplt) DECLARE_IMM_BINARY_UINT(cmplt) |
| DECLARE_IMM_BINARY_FLOAT(cmple) DECLARE_IMM_BINARY_INT(cmple) DECLARE_IMM_BINARY_UINT(cmple) |
| DECLARE_IMM_BINARY_FLOAT(cmpeq) DECLARE_IMM_BINARY_INT(cmpeq) |
| DECLARE_IMM_BINARY_FLOAT(cmpne) DECLARE_IMM_BINARY_INT(cmpne) |
| |
| #undef DECLARE_MULTI_IMM_BINARY_INT |
| #undef DECLARE_IMM_BINARY_FLOAT |
| #undef DECLARE_IMM_BINARY_INT |
| #undef DECLARE_IMM_BINARY_UINT |
| #undef DECLARE_BINARY_FLOAT |
| #undef DECLARE_BINARY_INT |
| #undef DECLARE_BINARY_UINT |
| #undef DECLARE_N_WAY_BINARY_FLOAT |
| #undef DECLARE_N_WAY_BINARY_INT |
| #undef DECLARE_N_WAY_BINARY_UINT |
| |
| // Dots can be represented with multiply and add ops, but they are so foundational that it's worth |
| // having dedicated ops. |
| STAGE_TAIL(dot_2_floats, F* dst) { |
| dst[0] = mad(dst[0], dst[2], |
| dst[1] * dst[3]); |
| } |
| |
| STAGE_TAIL(dot_3_floats, F* dst) { |
| dst[0] = mad(dst[0], dst[3], |
| mad(dst[1], dst[4], |
| dst[2] * dst[5])); |
| } |
| |
| STAGE_TAIL(dot_4_floats, F* dst) { |
| dst[0] = mad(dst[0], dst[4], |
| mad(dst[1], dst[5], |
| mad(dst[2], dst[6], |
| dst[3] * dst[7]))); |
| } |
| |
| // MxM, VxM and MxV multiplication all use matrix_multiply. Vectors are treated like a matrix with a |
| // single column or row. |
| template <int N> |
| SI void matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| |
| int outColumns = ctx.rightColumns, |
| outRows = ctx.leftRows; |
| |
| SkASSERT(outColumns >= 1); |
| SkASSERT(outRows >= 1); |
| SkASSERT(outColumns <= 4); |
| SkASSERT(outRows <= 4); |
| |
| SkASSERT(ctx.leftColumns == ctx.rightRows); |
| SkASSERT(N == ctx.leftColumns); // N should match the result width |
| |
| #if !defined(JUMPER_IS_SCALAR) |
| // This prevents Clang from generating early-out checks for zero-sized matrices. |
| __builtin_assume(outColumns >= 1); |
| __builtin_assume(outRows >= 1); |
| __builtin_assume(outColumns <= 4); |
| __builtin_assume(outRows <= 4); |
| #endif |
| |
| // Get pointers to the adjacent left- and right-matrices. |
| F* resultMtx = (F*)(base + ctx.dst); |
| F* leftMtx = &resultMtx[ctx.rightColumns * ctx.leftRows]; |
| F* rightMtx = &leftMtx[N * ctx.leftRows]; |
| |
| // Emit each matrix element. |
| for (int c = 0; c < outColumns; ++c) { |
| for (int r = 0; r < outRows; ++r) { |
| // Dot a vector from leftMtx[*][r] with rightMtx[c][*]. |
| F* leftRow = &leftMtx [r]; |
| F* rightColumn = &rightMtx[c * N]; |
| |
| F element = *leftRow * *rightColumn; |
| for (int idx = 1; idx < N; ++idx) { |
| leftRow += outRows; |
| rightColumn += 1; |
| element = mad(*leftRow, *rightColumn, element); |
| } |
| |
| *resultMtx++ = element; |
| } |
| } |
| } |
| |
| STAGE_TAIL(matrix_multiply_2, SkRasterPipeline_MatrixMultiplyCtx* packed) { |
| matrix_multiply<2>(packed, base); |
| } |
| |
| STAGE_TAIL(matrix_multiply_3, SkRasterPipeline_MatrixMultiplyCtx* packed) { |
| matrix_multiply<3>(packed, base); |
| } |
| |
| STAGE_TAIL(matrix_multiply_4, SkRasterPipeline_MatrixMultiplyCtx* packed) { |
| matrix_multiply<4>(packed, base); |
| } |
| |
| // Refract always operates on 4-wide incident and normal vectors; for narrower inputs, the code |
| // generator fills in the input columns with zero, and discards the extra output columns. |
| STAGE_TAIL(refract_4_floats, F* dst) { |
| // Algorithm adapted from https://registry.khronos.org/OpenGL-Refpages/gl4/html/refract.xhtml |
| F *incident = dst + 0; |
| F *normal = dst + 4; |
| F eta = dst[8]; |
| |
| F dotNI = mad(normal[0], incident[0], |
| mad(normal[1], incident[1], |
| mad(normal[2], incident[2], |
| normal[3] * incident[3]))); |
| |
| F k = 1.0 - eta * eta * (1.0 - dotNI * dotNI); |
| F sqrt_k = sqrt_(k); |
| |
| for (int idx = 0; idx < 4; ++idx) { |
| dst[idx] = if_then_else(k >= 0, |
| eta * incident[idx] - (eta * dotNI + sqrt_k) * normal[idx], |
| 0.0); |
| } |
| } |
| |
| // Ternary operations work like binary ops (see immediately above) but take two source inputs. |
| template <typename T, void (*ApplyFn)(T*, T*, T*)> |
| SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) { |
| int count = src0 - dst; |
| #if !defined(JUMPER_IS_SCALAR) |
| __builtin_assume(count >= 1); |
| #endif |
| |
| for (int index = 0; index < count; ++index) { |
| ApplyFn(dst, src0, src1); |
| dst += 1; |
| src0 += 1; |
| src1 += 1; |
| } |
| } |
| |
| template <typename T, void (*ApplyFn)(T*, T*, T*)> |
| SI void apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx* packed, std::byte* base) { |
| auto ctx = SkRPCtxUtils::Unpack(packed); |
| std::byte* dst = base + ctx.dst; |
| std::byte* src0 = dst + ctx.delta; |
| std::byte* src1 = src0 + ctx.delta; |
| apply_adjacent_ternary<T, ApplyFn>((T*)dst, (T*)src0, (T*)src1); |
| } |
| |
| SI void mix_fn(F* a, F* x, F* y) { |
| // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last). |
| *a = lerp(*x, *y, *a); |
| } |
| |
| SI void mix_fn(I32* a, I32* x, I32* y) { |
| // We reorder the arguments here to match if_then_else's expected order (y before x). |
| *a = if_then_else(*a, *y, *x); |
| } |
| |
| SI void smoothstep_fn(F* edge0, F* edge1, F* x) { |
| F t = clamp_01_((*x - *edge0) / (*edge1 - *edge0)); |
| *edge0 = t * t * (3.0 - 2.0 * t); |
| } |
| |
| #define DECLARE_N_WAY_TERNARY_FLOAT(name) \ |
| STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* packed) { \ |
| apply_adjacent_ternary_packed<F, &name##_fn>(packed, base); \ |
| } |
| |
| #define DECLARE_TERNARY_FLOAT(name) \ |
| STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); } \ |
| STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \ |
| STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \ |
| STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \ |
| DECLARE_N_WAY_TERNARY_FLOAT(name) |
| |
| #define DECLARE_TERNARY_INT(name) \ |
| STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); } \ |
| STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); } \ |
| STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); } \ |
| STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); } \ |
| STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* packed) { \ |
| apply_adjacent_ternary_packed<I32, &name##_fn>(packed, base); \ |
| } |
| |
| DECLARE_N_WAY_TERNARY_FLOAT(smoothstep) |
| DECLARE_TERNARY_FLOAT(mix) |
| DECLARE_TERNARY_INT(mix) |
| |
| #undef DECLARE_N_WAY_TERNARY_FLOAT |
| #undef DECLARE_TERNARY_FLOAT |
| #undef DECLARE_TERNARY_INT |
| |
| STAGE(gauss_a_to_rgba, NoCtx) { |
| // x = 1 - x; |
| // exp(-x * x * 4) - 0.018f; |
| // ... now approximate with quartic |
| // |
| const float c4 = -2.26661229133605957031f; |
| const float c3 = 2.89795351028442382812f; |
| const float c2 = 0.21345567703247070312f; |
| const float c1 = 0.15489584207534790039f; |
| const float c0 = 0.00030726194381713867f; |
| a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0); |
| r = a; |
| g = a; |
| b = a; |
| } |
| |
| // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling. |
| STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { |
| // (cx,cy) are the center of our sample. |
| F cx = r, |
| cy = g; |
| |
| // All sample points are at the same fractional offset (fx,fy). |
| // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets. |
| F fx = fract(cx + 0.5f), |
| fy = fract(cy + 0.5f); |
| |
| // We'll accumulate the color of all four samples into {r,g,b,a} directly. |
| r = g = b = a = 0; |
| |
| for (float py = -0.5f; py <= +0.5f; py += 1.0f) |
| for (float px = -0.5f; px <= +0.5f; px += 1.0f) { |
| // (x,y) are the coordinates of this sample point. |
| F x = cx + px, |
| y = cy + py; |
| |
| // ix_and_ptr() will clamp to the image's bounds for us. |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, x,y); |
| |
| F sr,sg,sb,sa; |
| from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa); |
| |
| // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center |
| // are combined in direct proportion to their area overlapping that logical query pixel. |
| // At positive offsets, the x-axis contribution to that rectangle is fx, |
| // or (1-fx) at negative x. Same deal for y. |
| F sx = (px > 0) ? fx : 1.0f - fx, |
| sy = (py > 0) ? fy : 1.0f - fy, |
| area = sx * sy; |
| |
| r += sr * area; |
| g += sg * area; |
| b += sb * area; |
| a += sa * area; |
| } |
| } |
| |
| // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling. |
| STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { |
| // (cx,cy) are the center of our sample. |
| F cx = r, |
| cy = g; |
| |
| // All sample points are at the same fractional offset (fx,fy). |
| // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets. |
| F fx = fract(cx + 0.5f), |
| fy = fract(cy + 0.5f); |
| |
| // We'll accumulate the color of all four samples into {r,g,b,a} directly. |
| r = g = b = a = 0; |
| |
| const float* w = ctx->weights; |
| const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]), |
| bicubic_wts(fy, w[1], w[5], w[ 9], w[13]), |
| bicubic_wts(fy, w[2], w[6], w[10], w[14]), |
| bicubic_wts(fy, w[3], w[7], w[11], w[15])}; |
| const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]), |
| bicubic_wts(fx, w[1], w[5], w[ 9], w[13]), |
| bicubic_wts(fx, w[2], w[6], w[10], w[14]), |
| bicubic_wts(fx, w[3], w[7], w[11], w[15])}; |
| |
| F sample_y = cy - 1.5f; |
| for (int yy = 0; yy <= 3; ++yy) { |
| F sample_x = cx - 1.5f; |
| for (int xx = 0; xx <= 3; ++xx) { |
| F scale = scalex[xx] * scaley[yy]; |
| |
| // ix_and_ptr() will clamp to the image's bounds for us. |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y); |
| |
| F sr,sg,sb,sa; |
| from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa); |
| |
| r = mad(scale, sr, r); |
| g = mad(scale, sg, g); |
| b = mad(scale, sb, b); |
| a = mad(scale, sa, a); |
| |
| sample_x += 1; |
| } |
| sample_y += 1; |
| } |
| } |
| |
| // ~~~~~~ skgpu::Swizzle stage ~~~~~~ // |
| |
| STAGE(swizzle, void* ctx) { |
| auto ir = r, ig = g, ib = b, ia = a; |
| F* o[] = {&r, &g, &b, &a}; |
| char swiz[4]; |
| memcpy(swiz, &ctx, sizeof(swiz)); |
| |
| for (int i = 0; i < 4; ++i) { |
| switch (swiz[i]) { |
| case 'r': *o[i] = ir; break; |
| case 'g': *o[i] = ig; break; |
| case 'b': *o[i] = ib; break; |
| case 'a': *o[i] = ia; break; |
| case '0': *o[i] = F(0); break; |
| case '1': *o[i] = F(1); break; |
| default: break; |
| } |
| } |
| } |
| |
| namespace lowp { |
| #if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE) |
| // If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually), |
| // we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the |
| // highp float pipeline. |
| #define M(st) static void (*st)(void) = nullptr; |
| SK_RASTER_PIPELINE_OPS_LOWP(M) |
| #undef M |
| static void (*just_return)(void) = nullptr; |
| |
| static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*, |
| SkSpan<SkRasterPipeline_MemoryCtxPatch>) {} |
| |
| #else // We are compiling vector code with Clang... let's make some lowp stages! |
| |
| #if defined(JUMPER_IS_HSW) |
| using U8 = uint8_t __attribute__((ext_vector_type(16))); |
| using U16 = uint16_t __attribute__((ext_vector_type(16))); |
| using I16 = int16_t __attribute__((ext_vector_type(16))); |
| using I32 = int32_t __attribute__((ext_vector_type(16))); |
| using U32 = uint32_t __attribute__((ext_vector_type(16))); |
| using I64 = int64_t __attribute__((ext_vector_type(16))); |
| using U64 = uint64_t __attribute__((ext_vector_type(16))); |
| using F = float __attribute__((ext_vector_type(16))); |
| #else |
| using U8 = uint8_t __attribute__((ext_vector_type(8))); |
| using U16 = uint16_t __attribute__((ext_vector_type(8))); |
| using I16 = int16_t __attribute__((ext_vector_type(8))); |
| using I32 = int32_t __attribute__((ext_vector_type(8))); |
| using U32 = uint32_t __attribute__((ext_vector_type(8))); |
| using I64 = int64_t __attribute__((ext_vector_type(8))); |
| using U64 = uint64_t __attribute__((ext_vector_type(8))); |
| using F = float __attribute__((ext_vector_type(8))); |
| #endif |
| |
| static constexpr size_t N = sizeof(U16) / sizeof(uint16_t); |
| |
| // Once again, some platforms benefit from a restricted Stage calling convention, |
| // but others can pass tons and tons of registers and we're happy to exploit that. |
| // It's exactly the same decision and implementation strategy as the F stages above. |
| #if JUMPER_NARROW_STAGES |
| struct Params { |
| size_t dx, dy, tail; |
| U16 dr,dg,db,da; |
| }; |
| using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a); |
| #else |
| using Stage = void (ABI*)(size_t tail, SkRasterPipelineStage* program, |
| size_t dx, size_t dy, |
| U16 r, U16 g, U16 b, U16 a, |
| U16 dr, U16 dg, U16 db, U16 da); |
| #endif |
| |
| static void start_pipeline(size_t x0, size_t y0, |
| size_t xlimit, size_t ylimit, |
| SkRasterPipelineStage* program, |
| SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches) { |
| auto start = (Stage)program->fn; |
| for (size_t dy = y0; dy < ylimit; dy++) { |
| #if JUMPER_NARROW_STAGES |
| Params params = { x0,dy,0, 0,0,0,0 }; |
| for (; params.dx + N <= xlimit; params.dx += N) { |
| start(¶ms, program, 0,0,0,0); |
| } |
| if (size_t tail = xlimit - params.dx) { |
| patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail); |
| params.tail = tail; |
| start(¶ms, program, 0,0,0,0); |
| restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail); |
| } |
| #else |
| size_t dx = x0; |
| for (; dx + N <= xlimit; dx += N) { |
| start( 0, program, dx,dy, 0,0,0,0, 0,0,0,0); |
| } |
| if (size_t tail = xlimit - dx) { |
| patch_memory_contexts(memoryCtxPatches, dx, dy, tail); |
| start(tail, program, dx,dy, 0,0,0,0, 0,0,0,0); |
| restore_memory_contexts(memoryCtxPatches, dx, dy, tail); |
| } |
| #endif |
| } |
| } |
| |
| #if JUMPER_NARROW_STAGES |
| static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {} |
| #else |
| static void ABI just_return(size_t, SkRasterPipelineStage*,size_t,size_t, |
| U16,U16,U16,U16, U16,U16,U16,U16) {} |
| #endif |
| |
| // All stages use the same function call ABI to chain into each other, but there are three types: |
| // GG: geometry in, geometry out -- think, a matrix |
| // GP: geometry in, pixels out. -- think, a memory gather |
| // PP: pixels in, pixels out. -- think, a blend mode |
| // |
| // (Some stages ignore their inputs or produce no logical output. That's perfectly fine.) |
| // |
| // These three STAGE_ macros let you define each type of stage, |
| // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate. |
| |
| #if JUMPER_NARROW_STAGES |
| #define STAGE_GG(name, ARG) \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \ |
| static void ABI name(Params* params, SkRasterPipelineStage* program, \ |
| U16 r, U16 g, U16 b, U16 a) { \ |
| auto x = join<F>(r,g), \ |
| y = join<F>(b,a); \ |
| name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \ |
| split(x, &r,&g); \ |
| split(y, &b,&a); \ |
| auto fn = (Stage)(++program)->fn; \ |
| fn(params, program, r,g,b,a); \ |
| } \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y) |
| |
| #define STAGE_GP(name, ARG) \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da); \ |
| static void ABI name(Params* params, SkRasterPipelineStage* program, \ |
| U16 r, U16 g, U16 b, U16 a) { \ |
| auto x = join<F>(r,g), \ |
| y = join<F>(b,a); \ |
| name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \ |
| params->dr,params->dg,params->db,params->da); \ |
| auto fn = (Stage)(++program)->fn; \ |
| fn(params, program, r,g,b,a); \ |
| } \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da) |
| |
| #define STAGE_PP(name, ARG) \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da); \ |
| static void ABI name(Params* params, SkRasterPipelineStage* program, \ |
| U16 r, U16 g, U16 b, U16 a) { \ |
| name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \ |
| params->dr,params->dg,params->db,params->da); \ |
| auto fn = (Stage)(++program)->fn; \ |
| fn(params, program, r,g,b,a); \ |
| } \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da) |
| #else |
| #define STAGE_GG(name, ARG) \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \ |
| static void ABI name(size_t tail, SkRasterPipelineStage* program, \ |
| size_t dx, size_t dy, \ |
| U16 r, U16 g, U16 b, U16 a, \ |
| U16 dr, U16 dg, U16 db, U16 da) { \ |
| auto x = join<F>(r,g), \ |
| y = join<F>(b,a); \ |
| name##_k(Ctx{program}, dx,dy,tail, x,y); \ |
| split(x, &r,&g); \ |
| split(y, &b,&a); \ |
| auto fn = (Stage)(++program)->fn; \ |
| fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y) |
| |
| #define STAGE_GP(name, ARG) \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da); \ |
| static void ABI name(size_t tail, SkRasterPipelineStage* program, \ |
| size_t dx, size_t dy, \ |
| U16 r, U16 g, U16 b, U16 a, \ |
| U16 dr, U16 dg, U16 db, U16 da) { \ |
| auto x = join<F>(r,g), \ |
| y = join<F>(b,a); \ |
| name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \ |
| auto fn = (Stage)(++program)->fn; \ |
| fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da) |
| |
| #define STAGE_PP(name, ARG) \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da); \ |
| static void ABI name(size_t tail, SkRasterPipelineStage* program, \ |
| size_t dx, size_t dy, \ |
| U16 r, U16 g, U16 b, U16 a, \ |
| U16 dr, U16 dg, U16 db, U16 da) { \ |
| name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \ |
| auto fn = (Stage)(++program)->fn; \ |
| fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ |
| U16& r, U16& g, U16& b, U16& a, \ |
| U16& dr, U16& dg, U16& db, U16& da) |
| #endif |
| |
| // ~~~~~~ Commonly used helper functions ~~~~~~ // |
| |
| /** |
| * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow, |
| * thanks to a division by a non-power of two: |
| * [1] (v + 127) / 255 |
| * |
| * There is a two-step process that computes the correct answer for all inputs: |
| * [2] (v + 128 + ((v + 128) >> 8)) >> 8 |
| * |
| * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time: |
| * [3] (v + 255) >> 8; |
| * |
| * We offer two different implementations here, depending on the requirements of the calling stage. |
| */ |
| |
| /** |
| * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast |
| * as [3]), and uses [3] elsewhere. |
| */ |
| SI U16 div255(U16 v) { |
| #if defined(JUMPER_IS_NEON) |
| // With NEON we can compute [2] just as fast as [3], so let's be correct. |
| // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up: |
| return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8); |
| #else |
| // Otherwise, use [3], which is never wrong by more than 1: |
| return (v+255)/256; |
| #endif |
| } |
| |
| /** |
| * div255_accurate guarantees the right answer on all platforms, at the expense of performance. |
| */ |
| SI U16 div255_accurate(U16 v) { |
| #if defined(JUMPER_IS_NEON) |
| // Our NEON implementation of div255 is already correct for all inputs: |
| return div255(v); |
| #else |
| // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics: |
| v += 128; |
| return (v+(v/256))/256; |
| #endif |
| } |
| |
| SI U16 inv(U16 v) { return 255-v; } |
| |
| SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); } |
| SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); } |
| |
| SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); } |
| SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); } |
| |
| SI U16 from_float(float f) { return f * 255.0f + 0.5f; } |
| |
| SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); } |
| |
| template <typename D, typename S> |
| SI D cast(S src) { |
| return __builtin_convertvector(src, D); |
| } |
| |
| template <typename D, typename S> |
| SI void split(S v, D* lo, D* hi) { |
| static_assert(2*sizeof(D) == sizeof(S), ""); |
| memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D)); |
| memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D)); |
| } |
| template <typename D, typename S> |
| SI D join(S lo, S hi) { |
| static_assert(sizeof(D) == 2*sizeof(S), ""); |
| D v; |
| memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S)); |
| memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S)); |
| return v; |
| } |
| |
| SI F if_then_else(I32 c, F t, F e) { |
| return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) ); |
| } |
| SI F max(F x, F y) { return if_then_else(x < y, y, x); } |
| SI F min(F x, F y) { return if_then_else(x < y, x, y); } |
| |
| SI I32 if_then_else(I32 c, I32 t, I32 e) { |
| return (t & c) | (e & ~c); |
| } |
| SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); } |
| SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); } |
| |
| SI F mad(F f, F m, F a) { return f*m+a; } |
| SI U32 trunc_(F x) { return (U32)cast<I32>(x); } |
| |
| // Use approximate instructions and one Newton-Raphson step to calculate 1/x. |
| SI F rcp_precise(F x) { |
| #if defined(JUMPER_IS_HSW) |
| __m256 lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); |
| #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| __m128 lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); |
| #elif defined(JUMPER_IS_NEON) |
| float32x4_t lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); |
| #else |
| return 1.0f / x; |
| #endif |
| } |
| SI F sqrt_(F x) { |
| #if defined(JUMPER_IS_HSW) |
| __m256 lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi)); |
| #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| __m128 lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi)); |
| #elif defined(SK_CPU_ARM64) |
| float32x4_t lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi)); |
| #elif defined(JUMPER_IS_NEON) |
| auto sqrt = [](float32x4_t v) { |
| auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v). |
| est *= vrsqrtsq_f32(v,est*est); |
| est *= vrsqrtsq_f32(v,est*est); |
| return v*est; // sqrt(v) == v*rsqrt(v). |
| }; |
| float32x4_t lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(sqrt(lo), sqrt(hi)); |
| #else |
| return F{ |
| sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]), |
| sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]), |
| }; |
| #endif |
| } |
| |
| SI F floor_(F x) { |
| #if defined(SK_CPU_ARM64) |
| float32x4_t lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(vrndmq_f32(lo), vrndmq_f32(hi)); |
| #elif defined(JUMPER_IS_HSW) |
| __m256 lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi)); |
| #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| __m128 lo,hi; |
| split(x, &lo,&hi); |
| return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi)); |
| #else |
| F roundtrip = cast<F>(cast<I32>(x)); |
| return roundtrip - if_then_else(roundtrip > x, F(1), F(0)); |
| #endif |
| } |
| |
| // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally |
| // this multiply is: |
| // (2 * a * b + (1 << 15)) >> 16 |
| // The result is a number on [-1, 1). |
| // Note: on neon this is a saturating multiply while the others are not. |
| SI I16 scaled_mult(I16 a, I16 b) { |
| #if defined(JUMPER_IS_HSW) |
| return _mm256_mulhrs_epi16(a, b); |
| #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) |
| return _mm_mulhrs_epi16(a, b); |
| #elif defined(SK_CPU_ARM64) |
| return vqrdmulhq_s16(a, b); |
| #elif defined(JUMPER_IS_NEON) |
| return vqrdmulhq_s16(a, b); |
| #else |
| const I32 roundingTerm = 1 << 14; |
| return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15); |
| #endif |
| } |
| |
| // This sum is to support lerp where the result will always be a positive number. In general, |
| // a sum like this would require an additional bit, but because we know the range of the result |
| // we know that the extra bit will always be zero. |
| SI U16 constrained_add(I16 a, U16 b) { |
| #if defined(SK_DEBUG) |
| for (size_t i = 0; i < N; i++) { |
| // Ensure that a + b is on the interval [0, UINT16_MAX] |
| int ia = a[i], |
| ib = b[i]; |
| // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is |
| // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be |
| // interpreted as an uint32_t. |
| SkASSERT(-ib <= ia && ia <= 65535 - ib); |
| } |
| #endif |
| return b + a; |
| } |
| |
| SI F fract(F x) { return x - floor_(x); } |
| SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); } |
| |
| // ~~~~~~ Basic / misc. stages ~~~~~~ // |
| |
| STAGE_GG(seed_shader, NoCtx) { |
| static constexpr float iota[] = { |
| 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, |
| 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, |
| }; |
| x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota); |
| y = cast<F>(I32(dy)) + 0.5f; |
| } |
| |
| STAGE_GG(matrix_translate, const float* m) { |
| x += m[0]; |
| y += m[1]; |
| } |
| STAGE_GG(matrix_scale_translate, const float* m) { |
| x = mad(x,m[0], m[2]); |
| y = mad(y,m[1], m[3]); |
| } |
| STAGE_GG(matrix_2x3, const float* m) { |
| auto X = mad(x,m[0], mad(y,m[1], m[2])), |
| Y = mad(x,m[3], mad(y,m[4], m[5])); |
| x = X; |
| y = Y; |
| } |
| STAGE_GG(matrix_perspective, const float* m) { |
| // N.B. Unlike the other matrix_ stages, this matrix is row-major. |
| auto X = mad(x,m[0], mad(y,m[1], m[2])), |
| Y = mad(x,m[3], mad(y,m[4], m[5])), |
| Z = mad(x,m[6], mad(y,m[7], m[8])); |
| x = X * rcp_precise(Z); |
| y = Y * rcp_precise(Z); |
| } |
| |
| STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { |
| r = c->rgba[0]; |
| g = c->rgba[1]; |
| b = c->rgba[2]; |
| a = c->rgba[3]; |
| } |
| STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { |
| dr = c->rgba[0]; |
| dg = c->rgba[1]; |
| db = c->rgba[2]; |
| da = c->rgba[3]; |
| } |
| STAGE_PP(black_color, NoCtx) { r = g = b = 0; a = 255; } |
| STAGE_PP(white_color, NoCtx) { r = g = b = 255; a = 255; } |
| |
| STAGE_PP(set_rgb, const float rgb[3]) { |
| r = from_float(rgb[0]); |
| g = from_float(rgb[1]); |
| b = from_float(rgb[2]); |
| } |
| |
| // No need to clamp against 0 here (values are unsigned) |
| STAGE_PP(clamp_01, NoCtx) { |
| r = min(r, 255); |
| g = min(g, 255); |
| b = min(b, 255); |
| a = min(a, 255); |
| } |
| |
| STAGE_PP(clamp_gamut, NoCtx) { |
| a = min(a, 255); |
| r = min(r, a); |
| g = min(g, a); |
| b = min(b, a); |
| } |
| |
| STAGE_PP(premul, NoCtx) { |
| r = div255_accurate(r * a); |
| g = div255_accurate(g * a); |
| b = div255_accurate(b * a); |
| } |
| STAGE_PP(premul_dst, NoCtx) { |
| dr = div255_accurate(dr * da); |
| dg = div255_accurate(dg * da); |
| db = div255_accurate(db * da); |
| } |
| |
| STAGE_PP(force_opaque , NoCtx) { a = 255; } |
| STAGE_PP(force_opaque_dst, NoCtx) { da = 255; } |
| |
| STAGE_PP(swap_rb, NoCtx) { |
| auto tmp = r; |
| r = b; |
| b = tmp; |
| } |
| STAGE_PP(swap_rb_dst, NoCtx) { |
| auto tmp = dr; |
| dr = db; |
| db = tmp; |
| } |
| |
| STAGE_PP(move_src_dst, NoCtx) { |
| dr = r; |
| dg = g; |
| db = b; |
| da = a; |
| } |
| |
| STAGE_PP(move_dst_src, NoCtx) { |
| r = dr; |
| g = dg; |
| b = db; |
| a = da; |
| } |
| |
| STAGE_PP(swap_src_dst, NoCtx) { |
| std::swap(r, dr); |
| std::swap(g, dg); |
| std::swap(b, db); |
| std::swap(a, da); |
| } |
| |
| // ~~~~~~ Blend modes ~~~~~~ // |
| |
| // The same logic applied to all 4 channels. |
| #define BLEND_MODE(name) \ |
| SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \ |
| STAGE_PP(name, NoCtx) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = name##_channel(a,da,a,da); \ |
| } \ |
| SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da) |
| |
| #if defined(SK_USE_INACCURATE_DIV255_IN_BLEND) |
| BLEND_MODE(clear) { return 0; } |
| BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); } |
| BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); } |
| BLEND_MODE(srcin) { return div255( s*da ); } |
| BLEND_MODE(dstin) { return div255( d*sa ); } |
| BLEND_MODE(srcout) { return div255( s*inv(da) ); } |
| BLEND_MODE(dstout) { return div255( d*inv(sa) ); } |
| BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); } |
| BLEND_MODE(dstover) { return d + div255( s*inv(da) ); } |
| BLEND_MODE(modulate) { return div255( s*d ); } |
| BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); } |
| BLEND_MODE(plus_) { return min(s+d, 255); } |
| BLEND_MODE(screen) { return s + d - div255( s*d ); } |
| BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); } |
| #else |
| BLEND_MODE(clear) { return 0; } |
| BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); } |
| BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); } |
| BLEND_MODE(srcin) { return div255_accurate( s*da ); } |
| BLEND_MODE(dstin) { return div255_accurate( d*sa ); } |
| BLEND_MODE(srcout) { return div255_accurate( s*inv(da) ); } |
| BLEND_MODE(dstout) { return div255_accurate( d*inv(sa) ); } |
| BLEND_MODE(srcover) { return s + div255_accurate( d*inv(sa) ); } |
| BLEND_MODE(dstover) { return d + div255_accurate( s*inv(da) ); } |
| BLEND_MODE(modulate) { return div255_accurate( s*d ); } |
| BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); } |
| BLEND_MODE(plus_) { return min(s+d, 255); } |
| BLEND_MODE(screen) { return s + d - div255_accurate( s*d ); } |
| BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); } |
| #endif |
| #undef BLEND_MODE |
| |
| // The same logic applied to color, and srcover for alpha. |
| #define BLEND_MODE(name) \ |
| SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \ |
| STAGE_PP(name, NoCtx) { \ |
| r = name##_channel(r,dr,a,da); \ |
| g = name##_channel(g,dg,a,da); \ |
| b = name##_channel(b,db,a,da); \ |
| a = a + div255( da*inv(a) ); \ |
| } \ |
| SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da) |
| |
| BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); } |
| BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); } |
| BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); } |
| BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); } |
| |
| BLEND_MODE(hardlight) { |
| return div255( s*inv(da) + d*inv(sa) + |
| if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) ); |
| } |
| BLEND_MODE(overlay) { |
| return div255( s*inv(da) + d*inv(sa) + |
| if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) ); |
| } |
| #undef BLEND_MODE |
| |
| // ~~~~~~ Helpers for interacting with memory ~~~~~~ // |
| |
| template <typename T> |
| SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { |
| return (T*)ctx->pixels + dy*ctx->stride + dx; |
| } |
| |
| template <typename T> |
| SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { |
| // Exclusive -> inclusive. |
| const F w = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1), |
| h = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1); |
| |
| const F z = std::numeric_limits<float>::min(); |
| |
| x = min(max(z, x), w); |
| y = min(max(z, y), h); |
| |
| x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger); |
| y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger); |
| |
| *ptr = (const T*)ctx->pixels; |
| return trunc_(y)*ctx->stride + trunc_(x); |
| } |
| |
| template <typename T> |
| SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) { |
| // This flag doesn't make sense when the coords are integers. |
| SkASSERT(ctx->roundDownAtInteger == 0); |
| // Exclusive -> inclusive. |
| const I32 w = ctx->width - 1, |
| h = ctx->height - 1; |
| |
| U32 ax = cast<U32>(min(max(0, x), w)), |
| ay = cast<U32>(min(max(0, y), h)); |
| |
| *ptr = (const T*)ctx->pixels; |
| return ay * ctx->stride + ax; |
| } |
| |
| template <typename V, typename T> |
| SI V load(const T* ptr) { |
| V v; |
| memcpy(&v, ptr, sizeof(v)); |
| return v; |
| } |
| template <typename V, typename T> |
| SI void store(T* ptr, V v) { |
| memcpy(ptr, &v, sizeof(v)); |
| } |
| |
| #if defined(JUMPER_IS_HSW) |
| template <typename V, typename T> |
| SI V gather(const T* ptr, U32 ix) { |
| return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]], |
| ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], |
| ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]], |
| ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], }; |
| } |
| |
| template<> |
| F gather(const float* ptr, U32 ix) { |
| __m256i lo, hi; |
| split(ix, &lo, &hi); |
| |
| return join<F>(_mm256_i32gather_ps(ptr, lo, 4), |
| _mm256_i32gather_ps(ptr, hi, 4)); |
| } |
| |
| template<> |
| U32 gather(const uint32_t* ptr, U32 ix) { |
| __m256i lo, hi; |
| split(ix, &lo, &hi); |
| |
| return join<U32>(_mm256_i32gather_epi32(ptr, lo, 4), |
| _mm256_i32gather_epi32(ptr, hi, 4)); |
| } |
| #else |
| template <typename V, typename T> |
| SI V gather(const T* ptr, U32 ix) { |
| return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]], |
| ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], }; |
| } |
| #endif |
| |
| |
| // ~~~~~~ 32-bit memory loads and stores ~~~~~~ // |
| |
| SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) { |
| #if defined(JUMPER_IS_HSW) |
| // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely. |
| __m256i _01,_23; |
| split(rgba, &_01, &_23); |
| __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20), |
| _13 = _mm256_permute2x128_si256(_01,_23, 0x31); |
| rgba = join<U32>(_02, _13); |
| |
| auto cast_U16 = [](U32 v) -> U16 { |
| __m256i _02,_13; |
| split(v, &_02,&_13); |
| return _mm256_packus_epi32(_02,_13); |
| }; |
| #else |
| auto cast_U16 = [](U32 v) -> U16 { |
| return cast<U16>(v); |
| }; |
| #endif |
| *r = cast_U16(rgba & 65535) & 255; |
| *g = cast_U16(rgba & 65535) >> 8; |
| *b = cast_U16(rgba >> 16) & 255; |
| *a = cast_U16(rgba >> 16) >> 8; |
| } |
| |
| SI void load_8888_(const uint32_t* ptr, U16* r, U16* g, U16* b, U16* a) { |
| #if 1 && defined(JUMPER_IS_NEON) |
| uint8x8x4_t rgba = vld4_u8((const uint8_t*)(ptr)); |
| *r = cast<U16>(rgba.val[0]); |
| *g = cast<U16>(rgba.val[1]); |
| *b = cast<U16>(rgba.val[2]); |
| *a = cast<U16>(rgba.val[3]); |
| #else |
| from_8888(load<U32>(ptr), r,g,b,a); |
| #endif |
| } |
| SI void store_8888_(uint32_t* ptr, U16 r, U16 g, U16 b, U16 a) { |
| r = min(r, 255); |
| g = min(g, 255); |
| b = min(b, 255); |
| a = min(a, 255); |
| |
| #if 1 && defined(JUMPER_IS_NEON) |
| uint8x8x4_t rgba = {{ |
| cast<U8>(r), |
| cast<U8>(g), |
| cast<U8>(b), |
| cast<U8>(a), |
| }}; |
| vst4_u8((uint8_t*)(ptr), rgba); |
| #else |
| store(ptr, cast<U32>(r | (g<<8)) << 0 |
| | cast<U32>(b | (a<<8)) << 16); |
| #endif |
| } |
| |
| STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &r,&g,&b,&a); |
| } |
| STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &dr,&dg,&db,&da); |
| } |
| STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), r,g,b,a); |
| } |
| STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, x,y); |
| from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a); |
| } |
| |
| // ~~~~~~ 16-bit memory loads and stores ~~~~~~ // |
| |
| SI void from_565(U16 rgb, U16* r, U16* g, U16* b) { |
| // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0 |
| U16 R = (rgb >> 11) & 31, |
| G = (rgb >> 5) & 63, |
| B = (rgb >> 0) & 31; |
| |
| // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit. |
| *r = (R << 3) | (R >> 2); |
| *g = (G << 2) | (G >> 4); |
| *b = (B << 3) | (B >> 2); |
| } |
| SI void load_565_(const uint16_t* ptr, U16* r, U16* g, U16* b) { |
| from_565(load<U16>(ptr), r,g,b); |
| } |
| SI void store_565_(uint16_t* ptr, U16 r, U16 g, U16 b) { |
| r = min(r, 255); |
| g = min(g, 255); |
| b = min(b, 255); |
| |
| // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f. |
| // (Don't feel like you need to find some fundamental truth in these... |
| // they were brute-force searched.) |
| U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half. |
| G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly. |
| B = (b * 9 + 36) / 74; |
| // Pack them back into 15|rrrrr gggggg bbbbb|0. |
| store(ptr, R << 11 |
| | G << 5 |
| | B << 0); |
| } |
| |
| STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b); |
| a = 255; |
| } |
| STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db); |
| da = 255; |
| } |
| STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b); |
| } |
| STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, x,y); |
| from_565(gather<U16>(ptr, ix), &r, &g, &b); |
| a = 255; |
| } |
| |
| SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) { |
| // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0. |
| U16 R = (rgba >> 12) & 15, |
| G = (rgba >> 8) & 15, |
| B = (rgba >> 4) & 15, |
| A = (rgba >> 0) & 15; |
| |
| // Scale [0,15] to [0,255]. |
| *r = (R << 4) | R; |
| *g = (G << 4) | G; |
| *b = (B << 4) | B; |
| *a = (A << 4) | A; |
| } |
| SI void load_4444_(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) { |
| from_4444(load<U16>(ptr), r,g,b,a); |
| } |
| SI void store_4444_(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) { |
| r = min(r, 255); |
| g = min(g, 255); |
| b = min(b, 255); |
| a = min(a, 255); |
| |
| // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f). |
| U16 R = (r + 8) / 17, |
| G = (g + 8) / 17, |
| B = (b + 8) / 17, |
| A = (a + 8) / 17; |
| // Pack them back into 15|rrrr gggg bbbb aaaa|0. |
| store(ptr, R << 12 |
| | G << 8 |
| | B << 4 |
| | A << 0); |
| } |
| |
| STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b,&a); |
| } |
| STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db,&da); |
| } |
| STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) { |
| store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b,a); |
| } |
| STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, x,y); |
| from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a); |
| } |
| |
| SI void from_88(U16 rg, U16* r, U16* g) { |
| *r = (rg & 0xFF); |
| *g = (rg >> 8); |
| } |
| |
| SI void load_88_(const uint16_t* ptr, U16* r, U16* g) { |
| #if 1 && defined(JUMPER_IS_NEON) |
| uint8x8x2_t rg = vld2_u8((const uint8_t*)(ptr)); |
| *r = cast<U16>(rg.val[0]); |
| *g = cast<U16>(rg.val[1]); |
| #else |
| from_88(load<U16>(ptr), r,g); |
| #endif |
| } |
| |
| SI void store_88_(uint16_t* ptr, U16 r, U16 g) { |
| r = min(r, 255); |
| g = min(g, 255); |
| |
| #if 1 && defined(JUMPER_IS_NEON) |
| uint8x8x2_t rg = {{ |
| cast<U8>(r), |
| cast<U8>(g), |
| }}; |
| vst2_u8((uint8_t*)(ptr), rg); |
| #else |
| store(ptr, cast<U16>(r | (g<<8)) << 0); |
| #endif |
| } |
| |
| STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &r, &g); |
| b = 0; |
| a = 255; |
| } |
| STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &dr, &dg); |
| db = 0; |
| da = 255; |
| } |
| STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) { |
| store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), r, g); |
| } |
| STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint16_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, x, y); |
| from_88(gather<U16>(ptr, ix), &r, &g); |
| b = 0; |
| a = 255; |
| } |
| |
| // ~~~~~~ 8-bit memory loads and stores ~~~~~~ // |
| |
| SI U16 load_8(const uint8_t* ptr) { |
| return cast<U16>(load<U8>(ptr)); |
| } |
| SI void store_8(uint8_t* ptr, U16 v) { |
| v = min(v, 255); |
| store(ptr, cast<U8>(v)); |
| } |
| |
| STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) { |
| r = g = b = 0; |
| a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy)); |
| } |
| STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) { |
| dr = dg = db = 0; |
| da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy)); |
| } |
| STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) { |
| store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), a); |
| } |
| STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) { |
| const uint8_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, x,y); |
| r = g = b = 0; |
| a = cast<U16>(gather<U8>(ptr, ix)); |
| } |
| STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) { |
| store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), r); |
| } |
| |
| STAGE_PP(alpha_to_gray, NoCtx) { |
| r = g = b = a; |
| a = 255; |
| } |
| STAGE_PP(alpha_to_gray_dst, NoCtx) { |
| dr = dg = db = da; |
| da = 255; |
| } |
| STAGE_PP(alpha_to_red, NoCtx) { |
| r = a; |
| a = 255; |
| } |
| STAGE_PP(alpha_to_red_dst, NoCtx) { |
| dr = da; |
| da = 255; |
| } |
| |
| STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) { |
| a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator. |
| r = g = b = 0; |
| } |
| STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) { |
| r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator. |
| } |
| |
| // ~~~~~~ Coverage scales / lerps ~~~~~~ // |
| |
| STAGE_PP(load_src, const uint16_t* ptr) { |
| r = sk_unaligned_load<U16>(ptr + 0*N); |
| g = sk_unaligned_load<U16>(ptr + 1*N); |
| b = sk_unaligned_load<U16>(ptr + 2*N); |
| a = sk_unaligned_load<U16>(ptr + 3*N); |
| } |
| STAGE_PP(store_src, uint16_t* ptr) { |
| sk_unaligned_store(ptr + 0*N, r); |
| sk_unaligned_store(ptr + 1*N, g); |
| sk_unaligned_store(ptr + 2*N, b); |
| sk_unaligned_store(ptr + 3*N, a); |
| } |
| STAGE_PP(store_src_a, uint16_t* ptr) { |
| sk_unaligned_store(ptr, a); |
| } |
| STAGE_PP(load_dst, const uint16_t* ptr) { |
| dr = sk_unaligned_load<U16>(ptr + 0*N); |
| dg = sk_unaligned_load<U16>(ptr + 1*N); |
| db = sk_unaligned_load<U16>(ptr + 2*N); |
| da = sk_unaligned_load<U16>(ptr + 3*N); |
| } |
| STAGE_PP(store_dst, uint16_t* ptr) { |
| sk_unaligned_store(ptr + 0*N, dr); |
| sk_unaligned_store(ptr + 1*N, dg); |
| sk_unaligned_store(ptr + 2*N, db); |
| sk_unaligned_store(ptr + 3*N, da); |
| } |
| |
| // ~~~~~~ Coverage scales / lerps ~~~~~~ // |
| |
| STAGE_PP(scale_1_float, const float* f) { |
| U16 c = from_float(*f); |
| r = div255( r * c ); |
| g = div255( g * c ); |
| b = div255( b * c ); |
| a = div255( a * c ); |
| } |
| STAGE_PP(lerp_1_float, const float* f) { |
| U16 c = from_float(*f); |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| STAGE_PP(scale_native, const uint16_t scales[]) { |
| auto c = sk_unaligned_load<U16>(scales); |
| r = div255( r * c ); |
| g = div255( g * c ); |
| b = div255( b * c ); |
| a = div255( a * c ); |
| } |
| |
| STAGE_PP(lerp_native, const uint16_t scales[]) { |
| auto c = sk_unaligned_load<U16>(scales); |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| |
| STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { |
| U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy)); |
| r = div255( r * c ); |
| g = div255( g * c ); |
| b = div255( b * c ); |
| a = div255( a * c ); |
| } |
| STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { |
| U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy)); |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| |
| // Derive alpha's coverage from rgb coverage and the values of src and dst alpha. |
| SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) { |
| return if_then_else(a < da, min(cr, min(cg,cb)) |
| , max(cr, max(cg,cb))); |
| } |
| STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| U16 cr,cg,cb; |
| load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb); |
| U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); |
| |
| r = div255( r * cr ); |
| g = div255( g * cg ); |
| b = div255( b * cb ); |
| a = div255( a * ca ); |
| } |
| STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { |
| U16 cr,cg,cb; |
| load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb); |
| U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); |
| |
| r = lerp(dr, r, cr); |
| g = lerp(dg, g, cg); |
| b = lerp(db, b, cb); |
| a = lerp(da, a, ca); |
| } |
| |
| STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) { |
| U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy)), |
| add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy)); |
| |
| r = min(div255(r*mul) + add, a); |
| g = min(div255(g*mul) + add, a); |
| b = min(div255(b*mul) + add, a); |
| } |
| |
| |
| // ~~~~~~ Gradient stages ~~~~~~ // |
| |
| // Clamp x to [0,1], both sides inclusive (think, gradients). |
| // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN. |
| SI F clamp_01_(F v) { return min(max(0, v), 1); } |
| |
| STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); } |
| STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); } |
| STAGE_GG(mirror_x_1, NoCtx) { |
| auto two = [](F x){ return x+x; }; |
| x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f )); |
| } |
| |
| SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); } |
| |
| STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto w = ctx->limit_x; |
| sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w))); |
| } |
| STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto h = ctx->limit_y; |
| sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h))); |
| } |
| STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto w = ctx->limit_x; |
| auto h = ctx->limit_y; |
| sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h))); |
| } |
| STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) { |
| x = min(ctx->max_x, max(ctx->min_x, x)); |
| y = min(ctx->max_y, max(ctx->min_y, y)); |
| } |
| STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) { |
| auto mask = sk_unaligned_load<U16>(ctx->mask); |
| r = r & mask; |
| g = g & mask; |
| b = b & mask; |
| a = a & mask; |
| } |
| |
| SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) { |
| auto round_color = [](F x) { return cast<U16>(x * 255.0f + 0.5f); }; |
| |
| *r = round_color(min(max(0, R), 1)); |
| *g = round_color(min(max(0, G), 1)); |
| *b = round_color(min(max(0, B), 1)); |
| *a = round_color(A); // we assume alpha is already in [0,1]. |
| } |
| |
| SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t, |
| U16* r, U16* g, U16* b, U16* a) { |
| |
| F fr, fg, fb, fa, br, bg, bb, ba; |
| #if defined(JUMPER_IS_HSW) |
| if (c->stopCount <=8) { |
| __m256i lo, hi; |
| split(idx, &lo, &hi); |
| |
| fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi)); |
| br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi)); |
| fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi)); |
| bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi)); |
| fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi)); |
| bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi)); |
| fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi)); |
| ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo), |
| _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi)); |
| } else |
| #endif |
| { |
| fr = gather<F>(c->fs[0], idx); |
| fg = gather<F>(c->fs[1], idx); |
| fb = gather<F>(c->fs[2], idx); |
| fa = gather<F>(c->fs[3], idx); |
| br = gather<F>(c->bs[0], idx); |
| bg = gather<F>(c->bs[1], idx); |
| bb = gather<F>(c->bs[2], idx); |
| ba = gather<F>(c->bs[3], idx); |
| } |
| round_F_to_U16(mad(t, fr, br), |
| mad(t, fg, bg), |
| mad(t, fb, bb), |
| mad(t, fa, ba), |
| r,g,b,a); |
| } |
| |
| STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) { |
| auto t = x; |
| U32 idx = 0; |
| |
| // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. |
| for (size_t i = 1; i < c->stopCount; i++) { |
| idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); |
| } |
| |
| gradient_lookup(c, idx, t, &r, &g, &b, &a); |
| } |
| |
| STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) { |
| auto t = x; |
| auto idx = trunc_(t * (c->stopCount-1)); |
| gradient_lookup(c, idx, t, &r, &g, &b, &a); |
| } |
| |
| STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) { |
| auto t = x; |
| round_F_to_U16(mad(t, c->f[0], c->b[0]), |
| mad(t, c->f[1], c->b[1]), |
| mad(t, c->f[2], c->b[2]), |
| mad(t, c->f[3], c->b[3]), |
| &r,&g,&b,&a); |
| } |
| |
| STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { |
| // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed |
| // point number. |
| I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768, |
| qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768; |
| |
| // Calculate screen coordinates sx & sy by flooring qx and qy. |
| I32 sx = qx >> 16, |
| sy = qy >> 16; |
| |
| // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1). |
| // This will put tx in Q15 format for use with q_mult. |
| // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval |
| // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows |
| // the same math: |
| // tx = 2 * {qx} - 1, so |
| // {qx} = (tx + 1) / 2. |
| // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1 |
| // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in |
| // order to use the full 16-bit resolution. |
| I16 tx = cast<I16>(qx ^ 0x8000), |
| ty = cast<I16>(qy ^ 0x8000); |
| |
| // Substituting the {qx} by the equation for tx from above into the lerp equation where v is |
| // the lerped value: |
| // v = {qx}*(R - L) + L, |
| // v = 1/2*(tx + 1)*(R - L) + L |
| // 2 * v = (tx + 1)*(R - L) + 2*L |
| // = tx*R - tx*L + R - L + 2*L |
| // = tx*(R - L) + (R + L). |
| // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form |
| // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In |
| // code, we can multiply by 2^7 to get the value directly. |
| // 2 * v = tx*(R - L) + (R + L) |
| // 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9 |
| // 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L)) |
| // v = 1/2 * (tx*(R - L) + (R + L)) |
| auto lerpX = [&](U16 left, U16 right) -> U16 { |
| I16 width = (I16)(right - left) << 7; |
| U16 middle = (right + left) << 7; |
| // The constrained_add is the most subtle part of lerp. The first term is on the interval |
| // [-1, 1), and the second term is on the interval is on the interval [0, 1) because |
| // both terms are too high by a factor of 2 which will be handled below. (Both R and L are |
| // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below |
| // should overflow, but because we know that sum produces an output on the |
| // interval [0, 1) we know that the extra bit that would be needed will always be 0. So |
| // we need to be careful to treat this sum as an unsigned positive number in the divide |
| // by 2 below. Add +1 for rounding. |
| U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1; |
| // Divide by 2 to calculate v and at the same time bring the intermediate value onto the |
| // interval [0, 1/2] to set up for the lerpY. |
| return v2 >> 1; |
| }; |
| |
| const uint32_t* ptr; |
| U32 ix = ix_and_ptr(&ptr, ctx, sx, sy); |
| U16 leftR, leftG, leftB, leftA; |
| from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA); |
| |
| ix = ix_and_ptr(&ptr, ctx, sx+1, sy); |
| U16 rightR, rightG, rightB, rightA; |
| from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA); |
| |
| U16 topR = lerpX(leftR, rightR), |
| topG = lerpX(leftG, rightG), |
| topB = lerpX(leftB, rightB), |
| topA = lerpX(leftA, rightA); |
| |
| ix = ix_and_ptr(&ptr, ctx, sx, sy+1); |
| from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA); |
| |
| ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1); |
| from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA); |
| |
| U16 bottomR = lerpX(leftR, rightR), |
| bottomG = lerpX(leftG, rightG), |
| bottomB = lerpX(leftB, rightB), |
| bottomA = lerpX(leftA, rightA); |
| |
| // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting |
| // in a value on [0, 255]. |
| auto lerpY = [&](U16 top, U16 bottom) -> U16 { |
| I16 width = (I16)bottom - top; |
| U16 middle = bottom + top; |
| // Add + 0x80 for rounding. |
| U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80; |
| |
| return blend >> 8; |
| }; |
| |
| r = lerpY(topR, bottomR); |
| g = lerpY(topG, bottomG); |
| b = lerpY(topB, bottomB); |
| a = lerpY(topA, bottomA); |
| } |
| |
| STAGE_GG(xy_to_unit_angle, NoCtx) { |
| F xabs = abs_(x), |
| yabs = abs_(y); |
| |
| F slope = min(xabs, yabs)/max(xabs, yabs); |
| F s = slope * slope; |
| |
| // Use a 7th degree polynomial to approximate atan. |
| // This was generated using sollya.gforge.inria.fr. |
| // A float optimized polynomial was generated using the following command. |
| // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); |
| F phi = slope |
| * (0.15912117063999176025390625f + s |
| * (-5.185396969318389892578125e-2f + s |
| * (2.476101927459239959716796875e-2f + s |
| * (-7.0547382347285747528076171875e-3f)))); |
| |
| phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); |
| phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi); |
| phi = if_then_else(y < 0.0f , 1.0f - phi , phi); |
| phi = if_then_else(phi != phi , 0 , phi); // Check for NaN. |
| x = phi; |
| } |
| STAGE_GG(xy_to_radius, NoCtx) { |
| x = sqrt_(x*x + y*y); |
| } |
| |
| // ~~~~~~ Compound stages ~~~~~~ // |
| |
| STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { |
| auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); |
| |
| load_8888_(ptr, &dr,&dg,&db,&da); |
| r = r + div255( dr*inv(a) ); |
| g = g + div255( dg*inv(a) ); |
| b = b + div255( db*inv(a) ); |
| a = a + div255( da*inv(a) ); |
| store_8888_(ptr, r,g,b,a); |
| } |
| |
| // ~~~~~~ skgpu::Swizzle stage ~~~~~~ // |
| |
| STAGE_PP(swizzle, void* ctx) { |
| auto ir = r, ig = g, ib = b, ia = a; |
| U16* o[] = {&r, &g, &b, &a}; |
| char swiz[4]; |
| memcpy(swiz, &ctx, sizeof(swiz)); |
| |
| for (int i = 0; i < 4; ++i) { |
| switch (swiz[i]) { |
| case 'r': *o[i] = ir; break; |
| case 'g': *o[i] = ig; break; |
| case 'b': *o[i] = ib; break; |
| case 'a': *o[i] = ia; break; |
| case '0': *o[i] = U16(0); break; |
| case '1': *o[i] = U16(255); break; |
| default: break; |
| } |
| } |
| } |
| |
| #endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages |
| } // namespace lowp |
| |
| /* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */ |
| namespace lowp { static constexpr size_t lowp_N = N; } |
| |
| /** Allow outside code to access the Raster Pipeline pixel stride. */ |
| constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; } |
| constexpr size_t raster_pipeline_highp_stride() { return N; } |
| |
| } // namespace SK_OPTS_NS |
| |
| #undef SI |
| |
| #endif//SkRasterPipeline_opts_DEFINED |