blob: 7cedaea00bc0070472004522a8a4560467798c7d [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCanvas.h"
#include "SkGlyph.h"
#include "SkPathEffect.h"
#include "SkMaskFilter.h"
#include "SkData.h"
#include "SkDescriptor.h"
#include "SkGraphics.h"
#include "SkNoDrawCanvas.h"
#include "SkPictureRecorder.h"
#include "SkSerialProcs.h"
#include "SkSurface.h"
#include "SkTypeface.h"
#include "SkWriteBuffer.h"
#include "SkTextBlobRunIterator.h"
#include "SkGlyphCache.h"
#include "SkDrawFilter.h"
#include "SkDevice.h"
#include <type_traits>
#include <chrono>
#include <ctype.h>
#include <err.h>
#include <memory>
#include <stdio.h>
#include <thread>
#include <tuple>
#include <iostream>
#include <unordered_map>
#include <iomanip>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/mman.h>
#include <SkFindAndPlaceGlyph.h>
#include <SkDrawLooper.h>
#include "SkTypeface_remote.h"
#include "SkRemoteGlyphCache.h"
#include "SkMakeUnique.h"
static const size_t kPageSize = 4096;
static bool gUseGpu = true;
static bool gPurgeFontCaches = true;
static bool gUseProcess = true;
static int gFontMetrics;
static int gMetricsImage;
static int gPath;
enum direction : int {kRead = 0, kWrite = 1};
#define INSTRUMENT 0
template <typename T>
class SkArraySlice : public std::tuple<const T*, size_t> {
public:
// Additional constructors as needed.
SkArraySlice(const T* data, size_t size) : std::tuple<const T*, size_t>{data, size} { }
SkArraySlice() : SkArraySlice<T>(nullptr, 0) { }
friend const T* begin(const SkArraySlice<T>& slice) {
return slice.data();
}
friend const T* end(const SkArraySlice<T>& slice) {
return &slice.data()[slice.size()];
}
const T* data() const {
return std::get<0>(*this);
}
size_t size() const {
return std::get<1>(*this);
}
};
// TODO: handle alignment
// TODO: handle overflow
class Transport {
public:
enum IOResult : bool {kFail = false, kSuccess = true};
Transport(Transport&& t)
: fReadFd{t.fReadFd}
, fWriteFd{t.fWriteFd}
, fBuffer{std::move(t.fBuffer)}
, fCloser{t.fCloser} { }
Transport(const Transport& t)
: fReadFd{t.fReadFd}
, fWriteFd{t.fWriteFd}
, fBuffer{new uint8_t[kBufferSize]}
, fCloser{t.fCloser} { }
Transport(int readFd, int writeFd)
: fReadFd{readFd}
, fWriteFd{writeFd}
, fCloser{std::make_shared<Closer>(readFd, writeFd)} { }
static Transport DoubleBuffer(const Transport& transport) {
return Transport{transport};
}
struct Closer {
Closer(int readFd, int writeFd) : fReadFd{readFd}, fWriteFd{writeFd} { }
~Closer() {
close(fWriteFd);
close(fReadFd);
}
int fReadFd,
fWriteFd;
};
void startRead() {
fCursor = 0;
fEnd = 0;
}
template <typename T>
T* startRead() {
this->startRead();
return this->read<T>();
}
template <typename T>
T* read() {
T* result = (T*)this->ensureAtLeast(sizeof(T));
fCursor += sizeof(T);
return result;
}
SkDescriptor* readDescriptor() {
SkDescriptor* result = (SkDescriptor*)this->ensureAtLeast(sizeof(SkDescriptor));
size_t size = result->getLength();
this->ensureAtLeast(size);
fCursor += size;
return result;
}
template <typename T>
SkArraySlice<T> readArray(int count) {
size_t size = count * sizeof(T);
const T* base = (const T*)this->ensureAtLeast(size);
SkArraySlice<T> result = SkArraySlice<T>{base, (uint32_t)count};
fCursor += size;
return result;
}
size_t endRead() {return size();}
sk_sp<SkData> readEntireData() {
size_t* size = this->startRead<size_t>();
if (size == nullptr) {
return nullptr;
}
const uint8_t* data = this->readArray<uint8_t>(*size).data();
if (size == nullptr || data == nullptr) {
this->endRead();
return sk_sp<SkData>(nullptr);
}
auto result = SkData::MakeWithCopy(data, *size);
this->endRead();
return result;
}
void startWrite() {
fCursor = 0;
}
template <typename T>
void startWrite(const T& data) {
this->startWrite();
this->write<T>(data);
}
template <typename T, typename... Args>
T* startEmplace(Args&&... args) {
this->startWrite();
return this->emplace<T>(std::forward<Args>(args)...);
}
template <typename T, typename... Args>
T* emplace(Args&&... args) {
T* result = new (&fBuffer[fCursor]) T{std::forward<Args>(args)...};
fCursor += sizeof(T);
return result;
}
template <typename T>
void write(const T& data) {
// TODO: guard against bad T.
memcpy(&fBuffer[fCursor], &data, sizeof(data));
fCursor += sizeof(data);
}
void writeDescriptor(const SkDescriptor& desc) {
memcpy(&fBuffer[fCursor], &desc, desc.getLength());
fCursor += desc.getLength();
}
template <typename T>
T* allocateArray(int count) {
T* result = (T*)&fBuffer[fCursor];
fCursor += count * sizeof(T);
return result;
}
IOResult endWrite() {
ssize_t written;
if((written = ::write(fWriteFd, fBuffer.get(), fCursor)) < 0) {
return kFail;
}
return kSuccess;
}
IOResult writeEntireData(const SkData& data) {
size_t size = data.size();
iovec vec[2];
vec[0].iov_base = &size;
vec[0].iov_len = sizeof(size);
vec[1].iov_base = (void *)data.data();
vec[1].iov_len = size;
if(::writev(fWriteFd, vec, 2) < 0) {
return kFail;
}
return kSuccess;
}
size_t size() {return fCursor;}
private:
void* ensureAtLeast(size_t size) {
if (size > fEnd - fCursor) {
if (readAtLeast(size) == kFail) {
return nullptr;
}
}
return &fBuffer[fCursor];
}
IOResult readAtLeast(size_t size) {
size_t readSoFar = 0;
size_t bufferLeft = kBufferSize - fCursor;
size_t needed = size - (fEnd - fCursor);
while (readSoFar < needed) {
ssize_t readSize;
if ((readSize = ::read(fReadFd, &fBuffer[fEnd+readSoFar], bufferLeft - readSoFar)) <= 0) {
if (readSize != 0) {
err(1,"Failed read %zu", size);
}
return kFail;
}
readSoFar += readSize;
}
fEnd += readSoFar;
return kSuccess;
}
static constexpr size_t kBufferSize = kPageSize * 2000;
const int fReadFd,
fWriteFd;
std::unique_ptr<uint8_t[]> fBuffer{new uint8_t[kBufferSize]};
std::shared_ptr<Closer> fCloser;
size_t fCursor{0};
size_t fEnd{0};
};
enum class OpCode : int32_t {
kFontMetrics = 0,
kGlyphPath = 1,
kGlyphMetricsAndImage = 2,
kPrepopulateCache = 3,
};
class Op {
public:
Op(OpCode opCode, SkFontID typefaceId, const SkScalerContextRec& rec)
: opCode{opCode}
, typefaceId{typefaceId}
, descriptor{rec} { }
const OpCode opCode;
const SkFontID typefaceId;
const SkScalerContextRecDescriptor descriptor;
union {
// op 0
SkPaint::FontMetrics fontMetrics;
// op 1, 2, and 4
SkGlyph glyph;
// op 3
struct {
SkGlyphID glyphId;
size_t pathSize;
};
};
};
class TrackLayerDevice : public SkNoPixelsDevice {
public:
TrackLayerDevice(const SkIRect& bounds, const SkSurfaceProps& props)
: SkNoPixelsDevice(bounds, props) { }
SkBaseDevice* onCreateDevice(const CreateInfo& cinfo, const SkPaint*) override {
const SkSurfaceProps surfaceProps(this->surfaceProps().flags(), cinfo.fPixelGeometry);
return new TrackLayerDevice(this->getGlobalBounds(), surfaceProps);
}
};
class TextBlobFilterCanvas : public SkNoDrawCanvas {
public:
struct StrikeSpec {
StrikeSpec(SkFontID typefaceID_, uint32_t descLength_, int glyphCount_)
: typefaceID{typefaceID_}
, descLength{descLength_}
, glyphCount{glyphCount_} { }
SkFontID typefaceID;
uint32_t descLength;
int glyphCount;
/* desc */
/* n X (glyphs ids) */
};
struct Header {
Header(int strikeCount_) : strikeCount{strikeCount_} {}
const int strikeCount;
};
TextBlobFilterCanvas(int width, int height,
const SkMatrix& deviceMatrix,
const SkSurfaceProps& props,
SkScalerContextFlags flags)
: SkNoDrawCanvas{new TrackLayerDevice{SkIRect::MakeWH(width, height), props}}
, fDeviceMatrix{deviceMatrix}
, fSurfaceProps{props}
, fScalerContextFlags{flags} { }
void writeSpecToTransport(Transport* transport) {
transport->emplace<Header>((int)fDescMap.size());
for (auto& i : fDescMap) {
auto accum = &i.second;
transport->emplace<StrikeSpec>(
accum->typefaceID, accum->desc->getLength(), accum->glyphIDs->count());
transport->writeDescriptor(*accum->desc);
accum->glyphIDs->foreach([&](SkPackedGlyphID id) {
transport->write<SkPackedGlyphID>(id);
});
}
}
static void WriteDataToTransport(
Transport* in, Transport* out, SkRemoteGlyphCacheRenderer* rc) {
auto perHeader = [out](Header* header) {
out->write<Header>(*header);
};
struct {
SkScalerContext* scaler{nullptr};
} strikeData;
auto perStrike = [out, &strikeData, rc](StrikeSpec* spec, SkDescriptor* desc) {
out->write<StrikeSpec>(*spec);
out->writeDescriptor(*desc);
SkScalerContextRecDescriptor recDesc{*desc};
strikeData.scaler = rc->generateScalerContext(recDesc, spec->typefaceID);
SkPaint::FontMetrics fontMetrics;
strikeData.scaler->getFontMetrics(&fontMetrics);
out->write<SkPaint::FontMetrics>(fontMetrics);
};
auto perGlyph = [out, &strikeData](SkPackedGlyphID glyphID) {
SkGlyph glyph;
glyph.initWithGlyphID(glyphID);
strikeData.scaler->getMetrics(&glyph);
auto imageSize = glyph.computeImageSize();
glyph.fImage = nullptr;
glyph.fPathData = nullptr;
out->write<SkGlyph>(glyph);
if (imageSize > 0) {
glyph.fImage = out->allocateArray<uint8_t>(imageSize);
strikeData.scaler->getImage(glyph);
}
};
ReadSpecFromTransport(in, perHeader, perStrike, perGlyph);
}
template <typename PerHeader, typename PerStrike, typename PerGlyph>
static void ReadSpecFromTransport(Transport* transport,
PerHeader perHeader,
PerStrike perStrike,
PerGlyph perGlyph) {
auto header = transport->read<TextBlobFilterCanvas::Header>();
perHeader(header);
for (int i = 0; i < header->strikeCount; i++) {
auto strike = transport->read<TextBlobFilterCanvas::StrikeSpec>();
auto desc = transport->readDescriptor();
//desc->assertChecksum();
perStrike(strike, desc);
auto glyphIDs = transport->readArray<SkPackedGlyphID>(strike->glyphCount);
for (auto glyphID : glyphIDs) {
perGlyph(glyphID);
}
}
}
template <typename PerStrike, typename PerGlyph, typename FinishStrike>
void readDataFromTransport(
Transport* transport, PerStrike perStrike, PerGlyph perGlyph, FinishStrike finishStrike) {
auto header = transport->read<Header>();
for (int i = 0; i < header->strikeCount; i++) {
auto strike = transport->read<StrikeSpec>();
auto desc = transport->readDescriptor();
auto fontMetrics = transport->read<SkPaint::FontMetrics>();
perStrike(strike, desc, fontMetrics);
for (int j = 0; j < strike->glyphCount; j++) {
auto glyph = transport->read<SkGlyph>();
SkArraySlice<uint8_t> image = SkArraySlice<uint8_t>{};
auto imageSize = glyph->computeImageSize();
if (imageSize != 0) {
image = transport->readArray<uint8_t>(imageSize);
}
perGlyph(glyph, image);
}
finishStrike();
}
}
protected:
SaveLayerStrategy getSaveLayerStrategy(const SaveLayerRec& rec) override {
return kFullLayer_SaveLayerStrategy;
}
void onDrawTextBlob(
const SkTextBlob* blob, SkScalar x, SkScalar y, const SkPaint& paint) override
{
SkPoint position{x, y};
SkPaint runPaint{paint};
SkTextBlobRunIterator it(blob);
for (;!it.done(); it.next()) {
// applyFontToPaint() always overwrites the exact same attributes,
// so it is safe to not re-seed the paint for this reason.
it.applyFontToPaint(&runPaint);
runPaint.setFlags(this->getTopDevice()->filterTextFlags(runPaint));
if (auto looper = runPaint.getLooper()) {
this->processLooper(position, it, runPaint, looper, this);
} else {
this->processGlyphRun(position, it, runPaint);
}
}
}
void onDrawText(const void*, size_t, SkScalar, SkScalar, const SkPaint&) override {
SK_ABORT("DrawText");
}
void onDrawPosText(const void*, size_t, const SkPoint[], const SkPaint&) override {
SK_ABORT("DrawPosText");
}
void onDrawPosTextH(const void*, size_t, const SkScalar[], SkScalar, const SkPaint&) override {
SK_ABORT("DrawPosTextH");
}
private:
using PosFn = SkPoint(*)(int index, const SkScalar* pos);
using MapFn = SkPoint(*)(const SkMatrix& m, SkPoint pt);
struct CacheAccum {
SkFontID typefaceID;
SkDescriptor* desc;
//std::vector<SkPackedGlyphID> glyphIDs;
std::unique_ptr<SkTHashSet<SkPackedGlyphID>> glyphIDs;
};
void processLooper(
const SkPoint& position,
const SkTextBlobRunIterator& it,
const SkPaint& origPaint,
SkDrawLooper* looper,
SkCanvas* canvas)
{
SkSTArenaAlloc<48> alloc;
auto context = looper->makeContext(canvas, &alloc);
SkPaint runPaint = origPaint;
while (context->next(this, &runPaint)) {
canvas->save();
this->processGlyphRun(position, it, runPaint);
canvas->restore();
runPaint = origPaint;
}
}
void processGlyphRun(
const SkPoint& position,
const SkTextBlobRunIterator& it,
const SkPaint& runPaint)
{
if (runPaint.getTextEncoding() != SkPaint::TextEncoding::kGlyphID_TextEncoding) {
return;
}
// All other alignment modes need the glyph advances. Use the slow drawing mode.
if (runPaint.getTextAlign() != SkPaint::kLeft_Align) {
return;
}
PosFn posFn;
switch (it.positioning()) {
case SkTextBlob::kDefault_Positioning:
// Default positioning needs advances. Can't do that.
return;
case SkTextBlob::kHorizontal_Positioning:
posFn = [](int index, const SkScalar* pos) {
return SkPoint{pos[index], 0};
};
break;
case SkTextBlob::kFull_Positioning:
posFn = [](int index, const SkScalar* pos) {
return SkPoint{pos[2 * index], pos[2 * index + 1]};
};
break;
default:
posFn = nullptr;
SK_ABORT("unhandled positioning mode");
}
SkMatrix blobMatrix{fDeviceMatrix};
blobMatrix.preConcat(this->getTotalMatrix());
if (blobMatrix.hasPerspective()) {
return;
}
blobMatrix.preTranslate(position.x(), position.y());
SkMatrix runMatrix{blobMatrix};
runMatrix.preTranslate(it.offset().x(), it.offset().y());
MapFn mapFn;
switch ((int)runMatrix.getType()) {
case SkMatrix::kIdentity_Mask:
case SkMatrix::kTranslate_Mask:
mapFn = [](const SkMatrix& m, SkPoint pt) {
pt.offset(m.getTranslateX(), m.getTranslateY());
return pt;
};
break;
case SkMatrix::kScale_Mask:
case SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask:
mapFn = [](const SkMatrix& m, SkPoint pt) {
return SkPoint{pt.x() * m.getScaleX() + m.getTranslateX(),
pt.y() * m.getScaleY() + m.getTranslateY()};
};
break;
case SkMatrix::kAffine_Mask | SkMatrix::kScale_Mask:
case SkMatrix::kAffine_Mask | SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask:
mapFn = [](const SkMatrix& m, SkPoint pt) {
return SkPoint{
pt.x() * m.getScaleX() + pt.y() * m.getSkewX() + m.getTranslateX(),
pt.x() * m.getSkewY() + pt.y() * m.getScaleY() + m.getTranslateY()};
};
break;
default:
mapFn = nullptr;
SK_ABORT("Bad matrix.");
}
SkAutoDescriptor ad;
SkScalerContextRec rec;
SkScalerContextEffects effects;
SkScalerContext::MakeRecAndEffects(runPaint, &fSurfaceProps, &runMatrix,
fScalerContextFlags, &rec, &effects);
SkAxisAlignment axisAlignment = SkAxisAlignment::kNone_SkAxisAlignment;
if (it.positioning() == SkTextBlob::kHorizontal_Positioning) {
axisAlignment = rec.computeAxisAlignmentForHText();
}
auto desc = SkScalerContext::AutoDescriptorGivenRecAndEffects(rec, effects, &ad);
auto mapIter = fDescMap.find(desc);
if (mapIter == fDescMap.end()) {
auto newDesc = desc->copy();
auto newDescPtr = newDesc.get();
fUniqueDescriptors.emplace_back(std::move(newDesc));
CacheAccum newAccum;
newAccum.desc = newDescPtr;
newAccum.typefaceID =
SkTypefaceProxy::DownCast(runPaint.getTypeface())->fontID();
newAccum.glyphIDs = skstd::make_unique<SkTHashSet<SkPackedGlyphID>>();
mapIter = fDescMap.emplace_hint(mapIter, newDescPtr, std::move(newAccum));
}
auto accum = &mapIter->second;
auto cache = SkGlyphCache::FindStrikeExclusive(*desc);
bool isSubpixel = SkToBool(rec.fFlags & SkScalerContext::kSubpixelPositioning_Flag);
auto pos = it.pos();
const uint16_t* glyphs = it.glyphs();
for (uint32_t index = 0; index < it.glyphCount(); index++) {
SkIPoint subPixelPos{0, 0};
if (runPaint.isAntiAlias() && isSubpixel) {
SkPoint glyphPos = mapFn(runMatrix, posFn(index, pos));
subPixelPos = SkFindAndPlaceGlyph::SubpixelAlignment(axisAlignment, glyphPos);
}
if (cache &&
cache->isGlyphCached(glyphs[index], subPixelPos.x(), subPixelPos.y())) {
continue;
}
SkPackedGlyphID glyphID{glyphs[index], subPixelPos.x(), subPixelPos.y()};
accum->glyphIDs->add(glyphID);
}
}
const SkMatrix fDeviceMatrix;
const SkSurfaceProps fSurfaceProps;
const SkScalerContextFlags fScalerContextFlags;
struct DescHash {
size_t operator()(const SkDescriptor* key) const {
return key->getChecksum();
}
};
struct DescEq {
bool operator()(const SkDescriptor* lhs, const SkDescriptor* rhs) const {
return lhs->getChecksum() == rhs->getChecksum();
}
};
using DescMap = std::unordered_map<SkDescriptor*, CacheAccum, DescHash, DescEq>;
DescMap fDescMap{16, DescHash(), DescEq()};
std::vector<std::unique_ptr<SkDescriptor>> fUniqueDescriptors;
std::vector<SkPackedGlyphID> fTempGlyphs;
std::vector<SkPackedGlyphID> runGlyphs;
};
class RemoteScalerContextFIFO : public SkRemoteScalerContext {
public:
explicit RemoteScalerContextFIFO(Transport* transport)
: fTransport{transport} { }
void generateFontMetrics(const SkTypefaceProxy& tf,
const SkScalerContextRec& rec,
SkPaint::FontMetrics* metrics) override {
gFontMetrics += 1;
//SK_ABORT("generateFontMetrics should not be called.");
// Send generateFontMetrics
Op* op = this->startOpWrite(OpCode::kFontMetrics, tf, rec);
fTransport->endWrite();
#if INSTRUMENT
SkScalerContextRecDescriptor rd{rec};
std::cout << " metrics font op rec tf: " << rec.fFontID
<< " tf id: " << tf.fontID()
<< " rec: " << rd.desc().getChecksum()
<< rec.dump().c_str() << std::endl;
#endif
// Receive generateFontMetrics
op = fTransport->startRead<Op>();
*metrics = op->fontMetrics;
fTransport->endRead();
}
void generateMetricsAndImage(const SkTypefaceProxy& tf,
const SkScalerContextRec& rec,
SkArenaAlloc* alloc,
SkGlyph* glyph) override {
gMetricsImage += 1;
//SK_ABORT("generateMetricsAndImage should not be called.");
// Send generateMetricsAndImage
SkScalerContextRecDescriptor rd{rec};
#if INSTRUMENT
std::cout << " metrics image op rec tf: " << rec.fFontID
<< " tf id: " << tf.fontID()
<< " rec: " << rd.desc().getChecksum()
<< " glyphid: " << glyph->getPackedID().getPackedID() << "\n"
<< rec.dump().c_str() << std::endl;
#endif
Op* op = this->startOpWrite(OpCode::kGlyphMetricsAndImage, tf, rec);
op->glyph = *glyph;
fTransport->endWrite();
// Receive generateMetricsAndImage
op = fTransport->startRead<Op>();
*glyph = op->glyph;
auto imageSize = op->glyph.computeImageSize();
glyph->fPathData = nullptr;
if (imageSize > 0) {
auto image = fTransport->readArray<uint8_t>(imageSize);
SkASSERT(imageSize == image.size());
glyph->allocImage(alloc);
memcpy(glyph->fImage, image.data(), imageSize);
} else {
glyph->fImage = nullptr;
}
fTransport->endRead();
}
void generatePath(const SkTypefaceProxy& tf,
const SkScalerContextRec& rec,
SkGlyphID glyph, SkPath* path) override {
gPath += 1;
// Send generatePath
SkScalerContextRecDescriptor rd{rec};
std::cout << " path op rec tf: " << rec.fFontID
<< " tf id: " << tf.fontID()
<< " rec: " << rd.desc().getChecksum()
<< " glyphid: " << glyph << std::endl;
Op* op = this->startOpWrite(OpCode::kGlyphPath, tf, rec);
op->glyphId = glyph;
fTransport->endWrite();
op = fTransport->startRead<Op>();
auto rawPath = fTransport->readArray<uint8_t>(op->pathSize);
path->readFromMemory(rawPath.data(), rawPath.size());
fTransport->endRead();
}
private:
Op* startOpWrite(OpCode opCode, const SkTypefaceProxy& tf,
const SkScalerContextRec& rec) {
return fTransport->startEmplace<Op>(opCode, tf.fontID(), rec);
}
Transport* const fTransport;
};
static void prepopulate_cache(
Transport* transport,
SkRemoteGlyphCacheGPU* cache,
sk_sp<SkPicture> pic,
TextBlobFilterCanvas* filter) {
pic->playback(filter);
transport->startEmplace<Op>(OpCode::kPrepopulateCache, SkFontID{0},
SkScalerContextRec{});
filter->writeSpecToTransport(transport);
transport->endWrite();
SkExclusiveStrikePtr strike;
auto perStrike = [&strike, cache](TextBlobFilterCanvas::StrikeSpec* spec,
SkDescriptor* desc,
SkPaint::FontMetrics* fontMetrics) {
auto tf = cache->lookupTypeface(spec->typefaceID);
// TODO: implement effects handling.
SkScalerContextEffects effects;
if ((strike = SkGlyphCache::FindStrikeExclusive(*desc)) == nullptr) {
auto scaler = SkGlyphCache::CreateScalerContext(*desc, effects, *tf);
strike = SkGlyphCache::CreateStrikeExclusive(*desc, std::move(scaler), fontMetrics);
}
#if INSTRUMENT
std::cout << std::hex << "prepop cache " << (intptr_t)cache
<< " desc: " << desc->getChecksum()
<< " typeface id: " << tf->uniqueID()
<< " glyph count: " << spec->glyphCount << std::endl;
auto rec = (SkScalerContextRec*)desc->findEntry(kRec_SkDescriptorTag, nullptr);
SkDebugf("%s\n", rec->dump().c_str());
#endif
};
auto perGlyph = [&strike](SkGlyph* glyph, SkArraySlice<uint8_t> image) {
SkGlyph* allocatedGlyph = strike->getRawGlyphByID(glyph->getPackedID());
*allocatedGlyph = *glyph;
allocatedGlyph->allocImage(strike->getAlloc());
memcpy(allocatedGlyph->fImage, image.data(), image.size());
};
auto finishStrike = [&strike]() {
strike.reset(nullptr);
};
// needed for font metrics mistake.
Transport in = Transport::DoubleBuffer(*transport);
#if INSTRUMENT
SkDebugf("========= Sending prep cache ========\n");
#endif
in.startRead();
filter->readDataFromTransport(&in, perStrike, perGlyph, finishStrike);
in.endRead();
}
std::string gSkpName;
static void final_draw(std::string outFilename,
Transport* transport,
SkDeserialProcs* procs,
SkData* picData,
SkRemoteGlyphCacheGPU* cache) {
auto pic = SkPicture::MakeFromData(picData, procs);
auto cullRect = pic->cullRect();
auto r = cullRect.round();
auto s = SkSurface::MakeRasterN32Premul(r.width(), r.height());
auto c = s->getCanvas();
auto picUnderTest = SkPicture::MakeFromData(picData, procs);
SkMatrix deviceMatrix = SkMatrix::I();
// kFakeGammaAndBoostContrast
TextBlobFilterCanvas filter(
r.width(), r.height(), deviceMatrix, s->props(),
SkScalerContextFlags::kFakeGammaAndBoostContrast);
if (cache != nullptr) {
for (int i = 0; i < 0; i++) {
auto start = std::chrono::high_resolution_clock::now();
prepopulate_cache(transport, cache, picUnderTest, &filter);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
(void)elapsed_seconds;
if (i == 0) {
std::cout << "filter time: " << elapsed_seconds.count() * 1e6
<< "us size: " << transport->size() << std::endl;
}
}
}
std::chrono::duration<double> total_seconds{0.0};
for (int i = 0; i < 100; i++) { // 20
if (gPurgeFontCaches) {
SkGraphics::PurgeFontCache();
}
auto start = std::chrono::high_resolution_clock::now();
if (cache != nullptr) {
prepopulate_cache(transport, cache, picUnderTest, &filter);
}
c->drawPicture(picUnderTest);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed_seconds = end-start;
total_seconds += elapsed_seconds;
}
std::cout << "useProcess: " << gUseProcess
<< " useGPU: " << gUseGpu
<< " purgeCache: " << gPurgeFontCaches << std::endl;
fprintf(stderr, "%s use GPU %s elapsed time %8.6f s\n", gSkpName.c_str(),
gUseGpu ? "true" : "false", total_seconds.count());
/*std::cerr << gSkpName << " use GPU " << std::boolalpha << gUseGpu << " elapsed time: "
<< std::fixed << std::setw( 6 ) << std::setprecision( 1 )
<< total_seconds.count() << " s\n";*/
auto i = s->makeImageSnapshot();
auto data = i->encodeToData();
SkFILEWStream f(outFilename.c_str());
f.write(data->data(), data->size());
}
static void gpu(int readFd, int writeFd) {
Transport transport{readFd, writeFd};
auto picData = transport.readEntireData();
if (picData == nullptr) {
return;
}
SkRemoteGlyphCacheGPU rc{
skstd::make_unique<RemoteScalerContextFIFO>(&transport)
};
SkDeserialProcs procs;
rc.prepareDeserializeProcs(&procs);
final_draw("test.png", &transport, &procs, picData.get(), &rc);
if (gFontMetrics + gMetricsImage + gPath > 0) {
fprintf(stderr, "exceptions - fm: %d mi: %d p: %d\n", gFontMetrics, gMetricsImage, gPath);
}
}
static int renderer(
const std::string& skpName, int readFd, int writeFd)
{
Transport transport{readFd, writeFd};
auto skpData = SkData::MakeFromFileName(skpName.c_str());
std::cout << "skp stream is " << skpData->size() << " bytes long " << std::endl;
SkRemoteGlyphCacheRenderer rc;
SkSerialProcs procs;
sk_sp<SkData> stream;
if (gUseGpu) {
auto pic = SkPicture::MakeFromData(skpData.get());
rc.prepareSerializeProcs(&procs);
stream = pic->serialize(&procs);
} else {
stream = skpData;
}
std::cout << "stream is " << stream->size() << " bytes long" << std::endl;
if (!gUseGpu) {
final_draw("test-direct.png", &transport, nullptr, stream.get(), nullptr);
return 0;
}
if (transport.writeEntireData(*stream) == Transport::kFail) {
return 1;
}
std::cout << "Waiting for scaler context ops." << std::endl;
while (true) {
// Share the buffer between read and write.
Op* op = transport.startRead<Op>();
if (op == nullptr) { std::cout << "Exit op loop" << std::endl; break;}
switch (op->opCode) {
case OpCode::kFontMetrics : {
auto sc = rc.generateScalerContext(op->descriptor, op->typefaceId);
sc->getFontMetrics(&op->fontMetrics);
transport.endWrite();
break;
}
case OpCode::kGlyphPath : {
auto sc = rc.generateScalerContext(op->descriptor, op->typefaceId);
// TODO: check for buffer overflow.
SkPath path;
sc->getPath(op->glyphId, &path);
size_t pathSize = path.writeToMemory(nullptr);
auto pathData = transport.allocateArray<uint8_t>(pathSize);
op->pathSize = path.writeToMemory(pathData);
transport.endWrite();
break;
}
case OpCode::kGlyphMetricsAndImage : {
auto sc = rc.generateScalerContext(op->descriptor, op->typefaceId);
// TODO: check for buffer overflow.
auto glyphId = op->glyph.getPackedID();
op->glyph.initWithGlyphID(glyphId);
sc->getMetrics(&op->glyph);
auto imageSize = op->glyph.computeImageSize();
op->glyph.fPathData = nullptr;
if (imageSize > 0) {
op->glyph.fImage = transport.allocateArray<uint8_t>(imageSize);
sk_bzero(op->glyph.fImage, imageSize);
sc->getImage(op->glyph);
} else {
op->glyph.fImage = nullptr;
}
transport.endWrite();
break;
}
case OpCode::kPrepopulateCache : {
Transport& in = transport;
Transport out = Transport::DoubleBuffer(transport);
out.startWrite();
TextBlobFilterCanvas::WriteDataToTransport(&in ,&out, &rc);
out.endWrite();
in.endRead();
//std::cout << "read prepopulate spec size: " << in.size() << std::endl;
//std::cout << "write prepopulate data size: " << out.size() << std::endl;
break;
}
default:
SK_ABORT("Bad op");
}
}
std::cout << "Returning from render" << std::endl;
return 0;
}
static void start_gpu(int render_to_gpu[2], int gpu_to_render[2]) {
std::cout << "gpu - Starting GPU" << std::endl;
close(gpu_to_render[kRead]);
close(render_to_gpu[kWrite]);
gpu(render_to_gpu[kRead], gpu_to_render[kWrite]);
}
static void start_render(std::string& skpName, int render_to_gpu[2], int gpu_to_render[2]) {
std::cout << "renderer - Starting Renderer" << std::endl;
close(render_to_gpu[kRead]);
close(gpu_to_render[kWrite]);
renderer(skpName, gpu_to_render[kRead], render_to_gpu[kWrite]);
}
int main(int argc, char** argv) {
std::string skpName = argc > 1 ? std::string{argv[1]} : std::string{"skps/desk_nytimes.skp"};
int mode = argc > 2 ? atoi(argv[2]) : -1;
printf("skp: %s\n", skpName.c_str());
gSkpName = skpName;
int render_to_gpu[2],
gpu_to_render[2];
for (int m = 0; m < 8; m++) {
int r = pipe(render_to_gpu);
if (r < 0) {
perror("Can't write picture from render to GPU ");
return 1;
}
r = pipe(gpu_to_render);
if (r < 0) {
perror("Can't write picture from render to GPU ");
return 1;
}
gPurgeFontCaches = (m & 4) == 4;
gUseGpu = (m & 2) == 2;
gUseProcess = (m & 1) == 1;
if (mode >= 0 && mode < 8 && mode != m) {
continue;
}
if (gUseProcess) {
pid_t child = fork();
SkGraphics::Init();
if (child == 0) {
start_gpu(render_to_gpu, gpu_to_render);
} else {
start_render(skpName, render_to_gpu, gpu_to_render);
waitpid(child, nullptr, 0);
}
} else {
SkGraphics::Init();
std::thread(gpu, render_to_gpu[kRead], gpu_to_render[kWrite]).detach();
renderer(skpName, gpu_to_render[kRead], render_to_gpu[kWrite]);
}
}
return 0;
}