blob: fa21adcb4128d5ac7afbdf77f9c087d34f950d2a [file] [log] [blame]
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkTypes_DEFINED
#define SkTypes_DEFINED
#include "SkPreConfig.h"
#include "SkUserConfig.h"
#include "SkPostConfig.h"
#ifndef SK_IGNORE_STDINT_DOT_H
#include <stdint.h>
#endif
#include <stdio.h>
/** \file SkTypes.h
*/
/*
memory wrappers to be implemented by the porting layer (platform)
*/
/** Called internally if we run out of memory. The platform implementation must
not return, but should either throw an exception or otherwise exit.
*/
extern void sk_out_of_memory(void);
/** Called internally if we hit an unrecoverable error.
The platform implementation must not return, but should either throw
an exception or otherwise exit.
*/
extern void sk_throw(void);
enum {
SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
};
/** Return a block of memory (at least 4-byte aligned) of at least the
specified size. If the requested memory cannot be returned, either
return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
(if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
*/
extern void* sk_malloc_flags(size_t size, unsigned flags);
/** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
*/
extern void* sk_malloc_throw(size_t size);
/** Same as standard realloc(), but this one never returns null on failure. It will throw
an exception if it fails.
*/
extern void* sk_realloc_throw(void* buffer, size_t size);
/** Free memory returned by sk_malloc(). It is safe to pass null.
*/
extern void sk_free(void*);
// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
static inline void sk_bzero(void* buffer, size_t size) {
memset(buffer, 0, size);
}
///////////////////////////////////////////////////////////////////////
#define SK_INIT_TO_AVOID_WARNING = 0
#ifndef SkDebugf
void SkDebugf(const char format[], ...);
#endif
#ifdef SK_DEBUG
#define SkASSERT(cond) SK_DEBUGBREAK(cond)
#define SkDEBUGCODE(code) code
#define SkDECLAREPARAM(type, var) , type var
#define SkPARAM(var) , var
// #define SkDEBUGF(args ) SkDebugf##args
#define SkDEBUGF(args ) SkDebugf args
#define SkAssertResult(cond) SkASSERT(cond)
#else
#define SkASSERT(cond)
#define SkDEBUGCODE(code)
#define SkDEBUGF(args)
#define SkDECLAREPARAM(type, var)
#define SkPARAM(var)
// unlike SkASSERT, this guy executes its condition in the non-debug build
#define SkAssertResult(cond) cond
#endif
///////////////////////////////////////////////////////////////////////
/** Fast type for signed 8 bits. Use for parameter passing and local variables, not for storage
*/
typedef int S8CPU;
/** Fast type for unsigned 8 bits. Use for parameter passing and local variables, not for storage
*/
typedef int S16CPU;
/** Fast type for signed 16 bits. Use for parameter passing and local variables, not for storage
*/
typedef unsigned U8CPU;
/** Fast type for unsigned 16 bits. Use for parameter passing and local variables, not for storage
*/
typedef unsigned U16CPU;
/** Meant to be faster than bool (doesn't promise to be 0 or 1, just 0 or non-zero
*/
typedef int SkBool;
/** Meant to be a small version of bool, for storage purposes. Will be 0 or 1
*/
typedef uint8_t SkBool8;
#ifdef SK_DEBUG
int8_t SkToS8(long);
uint8_t SkToU8(size_t);
int16_t SkToS16(long);
uint16_t SkToU16(size_t);
int32_t SkToS32(long);
uint32_t SkToU32(size_t);
#else
#define SkToS8(x) ((int8_t)(x))
#define SkToU8(x) ((uint8_t)(x))
#define SkToS16(x) ((int16_t)(x))
#define SkToU16(x) ((uint16_t)(x))
#define SkToS32(x) ((int32_t)(x))
#define SkToU32(x) ((uint32_t)(x))
#endif
/** Returns 0 or 1 based on the condition
*/
#define SkToBool(cond) ((cond) != 0)
#define SK_MaxS16 32767
#define SK_MinS16 -32767
#define SK_MaxU16 0xFFFF
#define SK_MinU16 0
#define SK_MaxS32 0x7FFFFFFF
#define SK_MinS32 0x80000001
#define SK_MaxU32 0xFFFFFFFF
#define SK_MinU32 0
#define SK_NaN32 0x80000000
/** Returns true if the value can be represented with signed 16bits
*/
static inline bool SkIsS16(long x) {
return (int16_t)x == x;
}
/** Returns true if the value can be represented with unsigned 16bits
*/
static inline bool SkIsU16(long x) {
return (uint16_t)x == x;
}
//////////////////////////////////////////////////////////////////////////////
#ifndef SK_OFFSETOF
#define SK_OFFSETOF(type, field) ((char*)&(((type*)1)->field) - (char*)1)
#endif
/** Returns the number of entries in an array (not a pointer)
*/
#define SK_ARRAY_COUNT(array) (sizeof(array) / sizeof(array[0]))
/** Returns x rounded up to a multiple of 2
*/
#define SkAlign2(x) (((x) + 1) >> 1 << 1)
/** Returns x rounded up to a multiple of 4
*/
#define SkAlign4(x) (((x) + 3) >> 2 << 2)
typedef uint32_t SkFourByteTag;
#define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
/** 32 bit integer to hold a unicode value
*/
typedef int32_t SkUnichar;
/** 32 bit value to hold a millisecond count
*/
typedef uint32_t SkMSec;
/** 1 second measured in milliseconds
*/
#define SK_MSec1 1000
/** maximum representable milliseconds
*/
#define SK_MSecMax 0x7FFFFFFF
/** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
*/
#define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0)
/** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
*/
#define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0)
/****************************************************************************
The rest of these only build with C++
*/
#ifdef __cplusplus
/** Faster than SkToBool for integral conditions. Returns 0 or 1
*/
static inline int Sk32ToBool(uint32_t n) {
return (n | (0-n)) >> 31;
}
template <typename T> inline void SkTSwap(T& a, T& b) {
T c(a);
a = b;
b = c;
}
static inline int32_t SkAbs32(int32_t value) {
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value < 0)
value = -value;
return value;
#else
int32_t mask = value >> 31;
return (value ^ mask) - mask;
#endif
}
static inline int32_t SkMax32(int32_t a, int32_t b) {
if (a < b)
a = b;
return a;
}
static inline int32_t SkMin32(int32_t a, int32_t b) {
if (a > b)
a = b;
return a;
}
static inline int32_t SkSign32(int32_t a) {
return (a >> 31) | ((unsigned) -a >> 31);
}
static inline int32_t SkFastMin32(int32_t value, int32_t max) {
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value > max)
value = max;
return value;
#else
int diff = max - value;
// clear diff if it is negative (clear if value > max)
diff &= (diff >> 31);
return value + diff;
#endif
}
/** Returns signed 32 bit value pinned between min and max, inclusively
*/
static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
if (value < min)
value = min;
if (value > max)
value = max;
#else
if (value < min)
value = min;
else if (value > max)
value = max;
#endif
return value;
}
static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
unsigned shift) {
SkASSERT((int)cond == 0 || (int)cond == 1);
return (bits & ~(1 << shift)) | ((int)cond << shift);
}
static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
uint32_t mask) {
return cond ? bits | mask : bits & ~mask;
}
//////////////////////////////////////////////////////////////////////////////
/** \class SkNoncopyable
SkNoncopyable is the base class for objects that may do not want to
be copied. It hides its copy-constructor and its assignment-operator.
*/
class SkNoncopyable {
public:
SkNoncopyable() {}
private:
SkNoncopyable(const SkNoncopyable&);
SkNoncopyable& operator=(const SkNoncopyable&);
};
class SkAutoFree : SkNoncopyable {
public:
SkAutoFree() : fPtr(NULL) {}
explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
~SkAutoFree() { sk_free(fPtr); }
/** Return the currently allocate buffer, or null
*/
void* get() const { return fPtr; }
/** Assign a new ptr allocated with sk_malloc (or null), and return the
previous ptr. Note it is the caller's responsibility to sk_free the
returned ptr.
*/
void* set(void* ptr) {
void* prev = fPtr;
fPtr = ptr;
return prev;
}
/** Transfer ownership of the current ptr to the caller, setting the
internal reference to null. Note the caller is reponsible for calling
sk_free on the returned address.
*/
void* detach() { return this->set(NULL); }
/** Free the current buffer, and set the internal reference to NULL. Same
as calling sk_free(detach())
*/
void free() {
sk_free(fPtr);
fPtr = NULL;
}
private:
void* fPtr;
// illegal
SkAutoFree(const SkAutoFree&);
SkAutoFree& operator=(const SkAutoFree&);
};
class SkAutoMalloc : public SkAutoFree {
public:
explicit SkAutoMalloc(size_t size)
: SkAutoFree(sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP)) {}
SkAutoMalloc(size_t size, unsigned flags)
: SkAutoFree(sk_malloc_flags(size, flags)) {}
SkAutoMalloc() {}
void* alloc(size_t size,
unsigned flags = (SK_MALLOC_THROW | SK_MALLOC_TEMP)) {
sk_free(set(sk_malloc_flags(size, flags)));
return get();
}
};
template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
public:
explicit SkAutoSMalloc(size_t size)
{
if (size <= kSize)
fPtr = fStorage;
else
fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
}
~SkAutoSMalloc()
{
if (fPtr != (void*)fStorage)
sk_free(fPtr);
}
void* get() const { return fPtr; }
private:
void* fPtr;
uint32_t fStorage[(kSize + 3) >> 2];
// illegal
SkAutoSMalloc(const SkAutoSMalloc&);
SkAutoSMalloc& operator=(const SkAutoSMalloc&);
};
#endif /* C++ */
#endif