blob: 90d6d7619a27b2bce0ae093252c68a1ba46f07db [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDistanceFieldTextContext.h"
#include "GrAtlas.h"
#include "GrAtlasTextContext.h"
#include "GrBitmapTextContext.h"
#include "GrDrawTarget.h"
#include "GrDrawTargetCaps.h"
#include "GrFontAtlasSizes.h"
#include "GrFontCache.h"
#include "GrFontScaler.h"
#include "GrGpu.h"
#include "GrIndexBuffer.h"
#include "GrStrokeInfo.h"
#include "GrTexturePriv.h"
#include "SkAutoKern.h"
#include "SkColorFilter.h"
#include "SkDistanceFieldGen.h"
#include "SkDraw.h"
#include "SkGlyphCache.h"
#include "SkGpuDevice.h"
#include "SkPath.h"
#include "SkRTConf.h"
#include "SkStrokeRec.h"
#include "effects/GrDistanceFieldTextureEffect.h"
SK_CONF_DECLARE(bool, c_DumpFontCache, "gpu.dumpFontCache", false,
"Dump the contents of the font cache before every purge.");
static const int kMinDFFontSize = 18;
static const int kSmallDFFontSize = 32;
static const int kSmallDFFontLimit = 32;
static const int kMediumDFFontSize = 72;
static const int kMediumDFFontLimit = 72;
static const int kLargeDFFontSize = 162;
static const int kVerticesPerGlyph = 4;
static const int kIndicesPerGlyph = 6;
#ifdef SK_DEBUG
static const int kExpectedDistanceAdjustTableSize = 8;
#endif
static const int kDistanceAdjustLumShift = 5;
GrDistanceFieldTextContext::GrDistanceFieldTextContext(GrContext* context,
SkGpuDevice* gpuDevice,
const SkDeviceProperties& properties,
bool enable)
: GrTextContext(context, gpuDevice, properties) {
#if SK_FORCE_DISTANCE_FIELD_TEXT
fEnableDFRendering = true;
#else
fEnableDFRendering = enable;
#endif
fStrike = NULL;
fDistanceAdjustTable = NULL;
fEffectTextureUniqueID = SK_InvalidUniqueID;
fEffectColor = GrColor_ILLEGAL;
fEffectFlags = kInvalid_DistanceFieldEffectFlag;
fVertices = NULL;
fCurrVertex = 0;
fAllocVertexCount = 0;
fTotalVertexCount = 0;
fCurrTexture = NULL;
fVertexBounds.setLargestInverted();
}
GrDistanceFieldTextContext* GrDistanceFieldTextContext::Create(GrContext* context,
SkGpuDevice* gpuDevice,
const SkDeviceProperties& props,
bool enable) {
GrDistanceFieldTextContext* textContext = SkNEW_ARGS(GrDistanceFieldTextContext,
(context, gpuDevice, props, enable));
textContext->buildDistanceAdjustTable();
#ifdef USE_BITMAP_TEXTBLOBS
textContext->fFallbackTextContext = GrBitmapTextContextB::Create(context, gpuDevice, props);
#else
textContext->fFallbackTextContext = GrBitmapTextContext::Create(context, gpuDevice, props);
#endif
return textContext;
}
void GrDistanceFieldTextContext::buildDistanceAdjustTable() {
// This is used for an approximation of the mask gamma hack, used by raster and bitmap
// text. The mask gamma hack is based off of guessing what the blend color is going to
// be, and adjusting the mask so that when run through the linear blend will
// produce the value closest to the desired result. However, in practice this means
// that the 'adjusted' mask is just increasing or decreasing the coverage of
// the mask depending on what it is thought it will blit against. For black (on
// assumed white) this means that coverages are decreased (on a curve). For white (on
// assumed black) this means that coverages are increased (on a a curve). At
// middle (perceptual) gray (which could be blit against anything) the coverages
// remain the same.
//
// The idea here is that instead of determining the initial (real) coverage and
// then adjusting that coverage, we determine an adjusted coverage directly by
// essentially manipulating the geometry (in this case, the distance to the glyph
// edge). So for black (on assumed white) this thins a bit; for white (on
// assumed black) this fake bolds the geometry a bit.
//
// The distance adjustment is calculated by determining the actual coverage value which
// when fed into in the mask gamma table gives us an 'adjusted coverage' value of 0.5. This
// actual coverage value (assuming it's between 0 and 1) corresponds to a distance from the
// actual edge. So by subtracting this distance adjustment and computing without the
// the coverage adjustment we should get 0.5 coverage at the same point.
//
// This has several implications:
// For non-gray lcd smoothed text, each subpixel essentially is using a
// slightly different geometry.
//
// For black (on assumed white) this may not cover some pixels which were
// previously covered; however those pixels would have been only slightly
// covered and that slight coverage would have been decreased anyway. Also, some pixels
// which were previously fully covered may no longer be fully covered.
//
// For white (on assumed black) this may cover some pixels which weren't
// previously covered at all.
int width, height;
size_t size;
#ifdef SK_GAMMA_CONTRAST
SkScalar contrast = SK_GAMMA_CONTRAST;
#else
SkScalar contrast = 0.5f;
#endif
SkScalar paintGamma = fDeviceProperties.gamma();
SkScalar deviceGamma = fDeviceProperties.gamma();
size = SkScalerContext::GetGammaLUTSize(contrast, paintGamma, deviceGamma,
&width, &height);
SkASSERT(kExpectedDistanceAdjustTableSize == height);
fDistanceAdjustTable = SkNEW_ARRAY(SkScalar, height);
SkAutoTArray<uint8_t> data((int)size);
SkScalerContext::GetGammaLUTData(contrast, paintGamma, deviceGamma, data.get());
// find the inverse points where we cross 0.5
// binsearch might be better, but we only need to do this once on creation
for (int row = 0; row < height; ++row) {
uint8_t* rowPtr = data.get() + row*width;
for (int col = 0; col < width - 1; ++col) {
if (rowPtr[col] <= 127 && rowPtr[col + 1] >= 128) {
// compute point where a mask value will give us a result of 0.5
float interp = (127.5f - rowPtr[col]) / (rowPtr[col + 1] - rowPtr[col]);
float borderAlpha = (col + interp) / 255.f;
// compute t value for that alpha
// this is an approximate inverse for smoothstep()
float t = borderAlpha*(borderAlpha*(4.0f*borderAlpha - 6.0f) + 5.0f) / 3.0f;
// compute distance which gives us that t value
const float kDistanceFieldAAFactor = 0.65f; // should match SK_DistanceFieldAAFactor
float d = 2.0f*kDistanceFieldAAFactor*t - kDistanceFieldAAFactor;
fDistanceAdjustTable[row] = d;
break;
}
}
}
}
GrDistanceFieldTextContext::~GrDistanceFieldTextContext() {
SkDELETE_ARRAY(fDistanceAdjustTable);
fDistanceAdjustTable = NULL;
}
bool GrDistanceFieldTextContext::canDraw(const GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint,
const SkPaint& skPaint,
const SkMatrix& viewMatrix) {
// TODO: support perspective (need getMaxScale replacement)
if (viewMatrix.hasPerspective()) {
return false;
}
SkScalar maxScale = viewMatrix.getMaxScale();
SkScalar scaledTextSize = maxScale*skPaint.getTextSize();
// Hinted text looks far better at small resolutions
// Scaling up beyond 2x yields undesireable artifacts
if (scaledTextSize < kMinDFFontSize || scaledTextSize > 2*kLargeDFFontSize) {
return false;
}
if (!fEnableDFRendering && !skPaint.isDistanceFieldTextTEMP() &&
scaledTextSize < kLargeDFFontSize) {
return false;
}
// rasterizers and mask filters modify alpha, which doesn't
// translate well to distance
if (skPaint.getRasterizer() || skPaint.getMaskFilter() ||
!fContext->getTextTarget()->caps()->shaderDerivativeSupport()) {
return false;
}
// TODO: add some stroking support
if (skPaint.getStyle() != SkPaint::kFill_Style) {
return false;
}
return true;
}
inline void GrDistanceFieldTextContext::init(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint, const SkPaint& skPaint,
const SkIRect& regionClipBounds) {
GrTextContext::init(rt, clip, paint, skPaint, regionClipBounds);
fStrike = NULL;
const SkMatrix& ctm = fViewMatrix;
// getMaxScale doesn't support perspective, so neither do we at the moment
SkASSERT(!ctm.hasPerspective());
SkScalar maxScale = ctm.getMaxScale();
SkScalar textSize = fSkPaint.getTextSize();
SkScalar scaledTextSize = textSize;
// if we have non-unity scale, we need to choose our base text size
// based on the SkPaint's text size multiplied by the max scale factor
// TODO: do we need to do this if we're scaling down (i.e. maxScale < 1)?
if (maxScale > 0 && !SkScalarNearlyEqual(maxScale, SK_Scalar1)) {
scaledTextSize *= maxScale;
}
fVertices = NULL;
fCurrVertex = 0;
fAllocVertexCount = 0;
fTotalVertexCount = 0;
if (scaledTextSize <= kSmallDFFontLimit) {
fTextRatio = textSize / kSmallDFFontSize;
fSkPaint.setTextSize(SkIntToScalar(kSmallDFFontSize));
#if DEBUG_TEXT_SIZE
fSkPaint.setColor(SkColorSetARGB(0xFF, 0x00, 0x00, 0x7F));
fPaint.setColor(GrColorPackRGBA(0x00, 0x00, 0x7F, 0xFF));
#endif
} else if (scaledTextSize <= kMediumDFFontLimit) {
fTextRatio = textSize / kMediumDFFontSize;
fSkPaint.setTextSize(SkIntToScalar(kMediumDFFontSize));
#if DEBUG_TEXT_SIZE
fSkPaint.setColor(SkColorSetARGB(0xFF, 0x00, 0x3F, 0x00));
fPaint.setColor(GrColorPackRGBA(0x00, 0x3F, 0x00, 0xFF));
#endif
} else {
fTextRatio = textSize / kLargeDFFontSize;
fSkPaint.setTextSize(SkIntToScalar(kLargeDFFontSize));
#if DEBUG_TEXT_SIZE
fSkPaint.setColor(SkColorSetARGB(0xFF, 0x7F, 0x00, 0x00));
fPaint.setColor(GrColorPackRGBA(0x7F, 0x00, 0x00, 0xFF));
#endif
}
fUseLCDText = fSkPaint.isLCDRenderText();
fSkPaint.setLCDRenderText(false);
fSkPaint.setAutohinted(false);
fSkPaint.setHinting(SkPaint::kNormal_Hinting);
fSkPaint.setSubpixelText(true);
}
void GrDistanceFieldTextContext::onDrawText(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint,
const SkPaint& skPaint, const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y,
const SkIRect& regionClipBounds) {
SkASSERT(byteLength == 0 || text != NULL);
// nothing to draw
if (text == NULL || byteLength == 0) {
return;
}
fViewMatrix = viewMatrix;
SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc();
SkAutoGlyphCache autoCache(skPaint, &fDeviceProperties, NULL);
SkGlyphCache* cache = autoCache.getCache();
SkTArray<SkScalar> positions;
const char* textPtr = text;
SkFixed stopX = 0;
SkFixed stopY = 0;
SkFixed origin;
switch (skPaint.getTextAlign()) {
case SkPaint::kRight_Align: origin = SK_Fixed1; break;
case SkPaint::kCenter_Align: origin = SK_FixedHalf; break;
case SkPaint::kLeft_Align: origin = 0; break;
default: SkFAIL("Invalid paint origin"); return;
}
SkAutoKern autokern;
const char* stop = text + byteLength;
while (textPtr < stop) {
// don't need x, y here, since all subpixel variants will have the
// same advance
const SkGlyph& glyph = glyphCacheProc(cache, &textPtr, 0, 0);
SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph);
positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width)));
SkFixed height = glyph.fAdvanceY;
positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height)));
stopX += width;
stopY += height;
}
SkASSERT(textPtr == stop);
// now adjust starting point depending on alignment
SkScalar alignX = SkFixedToScalar(stopX);
SkScalar alignY = SkFixedToScalar(stopY);
if (skPaint.getTextAlign() == SkPaint::kCenter_Align) {
alignX = SkScalarHalf(alignX);
alignY = SkScalarHalf(alignY);
} else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) {
alignX = 0;
alignY = 0;
}
x -= alignX;
y -= alignY;
SkPoint offset = SkPoint::Make(x, y);
this->onDrawPosText(rt, clip, paint, skPaint, viewMatrix, text, byteLength, positions.begin(),
2, offset, regionClipBounds);
}
void GrDistanceFieldTextContext::onDrawPosText(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint,
const SkPaint& skPaint, const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
const SkScalar pos[], int scalarsPerPosition,
const SkPoint& offset,
const SkIRect& regionClipBounds) {
SkASSERT(byteLength == 0 || text != NULL);
SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition);
// nothing to draw
if (text == NULL || byteLength == 0 /* no raster clip? || fRC->isEmpty()*/) {
return;
}
fViewMatrix = viewMatrix;
this->init(rt, clip, paint, skPaint, regionClipBounds);
SkDrawCacheProc glyphCacheProc = fSkPaint.getDrawCacheProc();
SkAutoGlyphCacheNoGamma autoCache(fSkPaint, &fDeviceProperties, NULL);
SkGlyphCache* cache = autoCache.getCache();
GrFontScaler* fontScaler = GetGrFontScaler(cache);
int numGlyphs = fSkPaint.textToGlyphs(text, byteLength, NULL);
fTotalVertexCount = kVerticesPerGlyph*numGlyphs;
const char* stop = text + byteLength;
SkTArray<char> fallbackTxt;
SkTArray<SkScalar> fallbackPos;
if (SkPaint::kLeft_Align == fSkPaint.getTextAlign()) {
while (text < stop) {
const char* lastText = text;
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkScalar x = offset.x() + pos[0];
SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0);
if (!this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(),
glyph.getSubXFixed(),
glyph.getSubYFixed(),
GrGlyph::kDistance_MaskStyle),
x, y, fontScaler)) {
// couldn't append, send to fallback
fallbackTxt.push_back_n(SkToInt(text-lastText), lastText);
fallbackPos.push_back(pos[0]);
if (2 == scalarsPerPosition) {
fallbackPos.push_back(pos[1]);
}
}
}
pos += scalarsPerPosition;
}
} else {
SkScalar alignMul = SkPaint::kCenter_Align == fSkPaint.getTextAlign() ? SK_ScalarHalf
: SK_Scalar1;
while (text < stop) {
const char* lastText = text;
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkScalar x = offset.x() + pos[0];
SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0);
SkScalar advanceX = SkFixedToScalar(glyph.fAdvanceX)*alignMul*fTextRatio;
SkScalar advanceY = SkFixedToScalar(glyph.fAdvanceY)*alignMul*fTextRatio;
if (!this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(),
glyph.getSubXFixed(),
glyph.getSubYFixed(),
GrGlyph::kDistance_MaskStyle),
x - advanceX, y - advanceY, fontScaler)) {
// couldn't append, send to fallback
fallbackTxt.push_back_n(SkToInt(text-lastText), lastText);
fallbackPos.push_back(pos[0]);
if (2 == scalarsPerPosition) {
fallbackPos.push_back(pos[1]);
}
}
}
pos += scalarsPerPosition;
}
}
this->finish();
if (fallbackTxt.count() > 0) {
fFallbackTextContext->drawPosText(rt, clip, paint, skPaint, viewMatrix,
fallbackTxt.begin(), fallbackTxt.count(),
fallbackPos.begin(), scalarsPerPosition, offset,
regionClipBounds);
}
}
static inline GrColor skcolor_to_grcolor_nopremultiply(SkColor c) {
unsigned r = SkColorGetR(c);
unsigned g = SkColorGetG(c);
unsigned b = SkColorGetB(c);
return GrColorPackRGBA(r, g, b, 0xff);
}
static size_t get_vertex_stride(bool useColorVerts) {
return useColorVerts ? (sizeof(SkPoint) + sizeof(GrColor) + sizeof(SkIPoint16)) :
(sizeof(SkPoint) + sizeof(SkIPoint16));
}
static void* alloc_vertices(GrDrawTarget* drawTarget,
int numVertices,
bool useColorVerts) {
if (numVertices <= 0) {
return NULL;
}
void* vertices = NULL;
bool success = drawTarget->reserveVertexAndIndexSpace(numVertices,
get_vertex_stride(useColorVerts),
0,
&vertices,
NULL);
GrAlwaysAssert(success);
return vertices;
}
void GrDistanceFieldTextContext::setupCoverageEffect(const SkColor& filteredColor) {
GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
GrTextureParams gammaParams(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode);
uint32_t textureUniqueID = fCurrTexture->getUniqueID();
const SkMatrix& ctm = fViewMatrix;
// set up any flags
uint32_t flags = 0;
flags |= ctm.isSimilarity() ? kSimilarity_DistanceFieldEffectFlag : 0;
flags |= fUseLCDText ? kUseLCD_DistanceFieldEffectFlag : 0;
flags |= fUseLCDText && ctm.rectStaysRect() ?
kRectToRect_DistanceFieldEffectFlag : 0;
bool useBGR = SkPixelGeometryIsBGR(fDeviceProperties.pixelGeometry());
flags |= fUseLCDText && useBGR ? kBGR_DistanceFieldEffectFlag : 0;
// see if we need to create a new effect
if (textureUniqueID != fEffectTextureUniqueID ||
filteredColor != fEffectColor ||
flags != fEffectFlags ||
!fCachedGeometryProcessor->viewMatrix().cheapEqualTo(fViewMatrix)) {
GrColor color = fPaint.getColor();
if (fUseLCDText) {
GrColor colorNoPreMul = skcolor_to_grcolor_nopremultiply(filteredColor);
float redCorrection =
fDistanceAdjustTable[GrColorUnpackR(colorNoPreMul) >> kDistanceAdjustLumShift];
float greenCorrection =
fDistanceAdjustTable[GrColorUnpackG(colorNoPreMul) >> kDistanceAdjustLumShift];
float blueCorrection =
fDistanceAdjustTable[GrColorUnpackB(colorNoPreMul) >> kDistanceAdjustLumShift];
GrDistanceFieldLCDTextureEffect::DistanceAdjust widthAdjust =
GrDistanceFieldLCDTextureEffect::DistanceAdjust::Make(redCorrection,
greenCorrection,
blueCorrection);
fCachedGeometryProcessor.reset(GrDistanceFieldLCDTextureEffect::Create(color,
fViewMatrix,
fCurrTexture,
params,
widthAdjust,
flags));
} else {
flags |= kColorAttr_DistanceFieldEffectFlag;
bool opaque = GrColorIsOpaque(color);
#ifdef SK_GAMMA_APPLY_TO_A8
U8CPU lum = SkColorSpaceLuminance::computeLuminance(fDeviceProperties.gamma(),
filteredColor);
float correction = fDistanceAdjustTable[lum >> kDistanceAdjustLumShift];
fCachedGeometryProcessor.reset(GrDistanceFieldTextureEffect::Create(color,
fViewMatrix,
fCurrTexture,
params,
correction,
flags,
opaque));
#else
fCachedGeometryProcessor.reset(GrDistanceFieldTextureEffect::Create(color,
fViewMatrix,
fCurrTexture,
params,
flags,
opaque));
#endif
}
fEffectTextureUniqueID = textureUniqueID;
fEffectColor = filteredColor;
fEffectFlags = flags;
}
}
inline bool GrDistanceFieldTextContext::uploadGlyph(GrGlyph* glyph, GrFontScaler* scaler) {
if (!fStrike->glyphTooLargeForAtlas(glyph)) {
if (fStrike->addGlyphToAtlas(glyph, scaler)) {
return true;
}
// try to clear out an unused plot before we flush
if (fContext->getFontCache()->freeUnusedPlot(fStrike, glyph) &&
fStrike->addGlyphToAtlas(glyph, scaler)) {
return true;
}
if (c_DumpFontCache) {
#ifdef SK_DEVELOPER
fContext->getFontCache()->dump();
#endif
}
// before we purge the cache, we must flush any accumulated draws
this->flush();
fContext->flush();
// we should have an unused plot now
if (fContext->getFontCache()->freeUnusedPlot(fStrike, glyph) &&
fStrike->addGlyphToAtlas(glyph, scaler)) {
return true;
}
// we should never get here
SkASSERT(false);
}
return false;
}
// Returns true if this method handled the glyph, false if needs to be passed to fallback
//
bool GrDistanceFieldTextContext::appendGlyph(GrGlyph::PackedID packed,
SkScalar sx, SkScalar sy,
GrFontScaler* scaler) {
if (NULL == fDrawTarget) {
return true;
}
if (NULL == fStrike) {
fStrike = fContext->getFontCache()->getStrike(scaler);
}
GrGlyph* glyph = fStrike->getGlyph(packed, scaler);
if (NULL == glyph || glyph->fBounds.isEmpty()) {
return true;
}
// fallback to color glyph support
if (kA8_GrMaskFormat != glyph->fMaskFormat) {
return false;
}
SkScalar dx = SkIntToScalar(glyph->fBounds.fLeft + SK_DistanceFieldInset);
SkScalar dy = SkIntToScalar(glyph->fBounds.fTop + SK_DistanceFieldInset);
SkScalar width = SkIntToScalar(glyph->fBounds.width() - 2*SK_DistanceFieldInset);
SkScalar height = SkIntToScalar(glyph->fBounds.height() - 2*SK_DistanceFieldInset);
SkScalar scale = fTextRatio;
dx *= scale;
dy *= scale;
sx += dx;
sy += dy;
width *= scale;
height *= scale;
SkRect glyphRect = SkRect::MakeXYWH(sx, sy, width, height);
// check if we clipped out
SkRect dstRect;
const SkMatrix& ctm = fViewMatrix;
(void) ctm.mapRect(&dstRect, glyphRect);
if (fClipRect.quickReject(SkScalarTruncToInt(dstRect.left()),
SkScalarTruncToInt(dstRect.top()),
SkScalarTruncToInt(dstRect.right()),
SkScalarTruncToInt(dstRect.bottom()))) {
return true;
}
if (NULL == glyph->fPlot) {
// needs to be a separate conditional to avoid over-optimization
// on Nexus 7 and Nexus 10
// If the glyph is too large we fall back to paths
if (!uploadGlyph(glyph, scaler)) {
if (NULL == glyph->fPath) {
SkPath* path = SkNEW(SkPath);
if (!scaler->getGlyphPath(glyph->glyphID(), path)) {
// flag the glyph as being dead?
delete path;
return true;
}
glyph->fPath = path;
}
// flush any accumulated draws before drawing this glyph as a path.
this->flush();
SkMatrix ctm;
ctm.setScale(fTextRatio, fTextRatio);
ctm.postTranslate(sx - dx, sy - dy);
SkPath tmpPath(*glyph->fPath);
tmpPath.transform(ctm);
GrStrokeInfo strokeInfo(SkStrokeRec::kFill_InitStyle);
fContext->drawPath(fRenderTarget, fClip, fPaint, fViewMatrix, tmpPath, strokeInfo);
// remove this glyph from the vertices we need to allocate
fTotalVertexCount -= kVerticesPerGlyph;
return true;
}
}
SkASSERT(glyph->fPlot);
GrDrawTarget::DrawToken drawToken = fDrawTarget->getCurrentDrawToken();
glyph->fPlot->setDrawToken(drawToken);
GrTexture* texture = glyph->fPlot->texture();
SkASSERT(texture);
if (fCurrTexture != texture || fCurrVertex + kVerticesPerGlyph > fTotalVertexCount) {
this->flush();
fCurrTexture = texture;
fCurrTexture->ref();
}
bool useColorVerts = !fUseLCDText;
if (NULL == fVertices) {
int maxQuadVertices = kVerticesPerGlyph * fContext->getQuadIndexBuffer()->maxQuads();
fAllocVertexCount = SkMin32(fTotalVertexCount, maxQuadVertices);
fVertices = alloc_vertices(fDrawTarget,
fAllocVertexCount,
useColorVerts);
}
fVertexBounds.joinNonEmptyArg(glyphRect);
int u0 = glyph->fAtlasLocation.fX + SK_DistanceFieldInset;
int v0 = glyph->fAtlasLocation.fY + SK_DistanceFieldInset;
int u1 = u0 + glyph->fBounds.width() - 2*SK_DistanceFieldInset;
int v1 = v0 + glyph->fBounds.height() - 2*SK_DistanceFieldInset;
size_t vertSize = get_vertex_stride(useColorVerts);
intptr_t vertex = reinterpret_cast<intptr_t>(fVertices) + vertSize * fCurrVertex;
// V0
SkPoint* position = reinterpret_cast<SkPoint*>(vertex);
position->set(glyphRect.fLeft, glyphRect.fTop);
if (useColorVerts) {
SkColor* color = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*color = fPaint.getColor();
}
SkIPoint16* textureCoords = reinterpret_cast<SkIPoint16*>(vertex + vertSize -
sizeof(SkIPoint16));
textureCoords->set(u0, v0);
vertex += vertSize;
// V1
position = reinterpret_cast<SkPoint*>(vertex);
position->set(glyphRect.fLeft, glyphRect.fBottom);
if (useColorVerts) {
SkColor* color = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*color = fPaint.getColor();
}
textureCoords = reinterpret_cast<SkIPoint16*>(vertex + vertSize - sizeof(SkIPoint16));
textureCoords->set(u0, v1);
vertex += vertSize;
// V2
position = reinterpret_cast<SkPoint*>(vertex);
position->set(glyphRect.fRight, glyphRect.fBottom);
if (useColorVerts) {
SkColor* color = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*color = fPaint.getColor();
}
textureCoords = reinterpret_cast<SkIPoint16*>(vertex + vertSize - sizeof(SkIPoint16));
textureCoords->set(u1, v1);
vertex += vertSize;
// V3
position = reinterpret_cast<SkPoint*>(vertex);
position->set(glyphRect.fRight, glyphRect.fTop);
if (useColorVerts) {
SkColor* color = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*color = fPaint.getColor();
}
textureCoords = reinterpret_cast<SkIPoint16*>(vertex + vertSize - sizeof(SkIPoint16));
textureCoords->set(u1, v0);
fCurrVertex += 4;
return true;
}
void GrDistanceFieldTextContext::flush() {
if (NULL == fDrawTarget) {
return;
}
if (fCurrVertex > 0) {
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setFromPaint(fPaint, fRenderTarget, fClip);
// setup our sampler state for our text texture/atlas
SkASSERT(SkIsAlign4(fCurrVertex));
// get our current color
SkColor filteredColor;
SkColorFilter* colorFilter = fSkPaint.getColorFilter();
if (colorFilter) {
filteredColor = colorFilter->filterColor(fSkPaint.getColor());
} else {
filteredColor = fSkPaint.getColor();
}
this->setupCoverageEffect(filteredColor);
// Set draw state
if (fUseLCDText) {
// TODO: move supportsRGBCoverage check to setupCoverageEffect and only add LCD
// processor if the xp can support it. For now we will simply assume that if
// fUseLCDText is true, then we have a known color output.
const GrXPFactory* xpFactory = pipelineBuilder.getXPFactory();
if (!xpFactory->supportsRGBCoverage(0, kRGBA_GrColorComponentFlags)) {
SkDebugf("LCD Text will not draw correctly.\n");
}
SkASSERT(!fCachedGeometryProcessor->hasVertexColor());
} else {
// We're using per-vertex color.
SkASSERT(fCachedGeometryProcessor->hasVertexColor());
}
int nGlyphs = fCurrVertex / kVerticesPerGlyph;
fDrawTarget->setIndexSourceToBuffer(fContext->getQuadIndexBuffer());
fDrawTarget->drawIndexedInstances(&pipelineBuilder,
fCachedGeometryProcessor.get(),
kTriangles_GrPrimitiveType,
nGlyphs,
kVerticesPerGlyph,
kIndicesPerGlyph,
&fVertexBounds);
fDrawTarget->resetVertexSource();
fVertices = NULL;
fTotalVertexCount -= fCurrVertex;
fCurrVertex = 0;
SkSafeSetNull(fCurrTexture);
fVertexBounds.setLargestInverted();
}
}
inline void GrDistanceFieldTextContext::finish() {
this->flush();
fTotalVertexCount = 0;
GrTextContext::finish();
}