blob: 29e33b3048a1637a551eace9c2b10ada623372bd [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawTarget.h"
#include "GrBatch.h"
#include "GrContext.h"
#include "GrDrawTargetCaps.h"
#include "GrPath.h"
#include "GrRenderTarget.h"
#include "GrSurfacePriv.h"
#include "GrTemplates.h"
#include "GrTexture.h"
#include "GrVertexBuffer.h"
#include "SkStrokeRec.h"
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget::DrawInfo& GrDrawTarget::DrawInfo::operator =(const DrawInfo& di) {
fPrimitiveType = di.fPrimitiveType;
fStartVertex = di.fStartVertex;
fStartIndex = di.fStartIndex;
fVertexCount = di.fVertexCount;
fIndexCount = di.fIndexCount;
fInstanceCount = di.fInstanceCount;
fVerticesPerInstance = di.fVerticesPerInstance;
fIndicesPerInstance = di.fIndicesPerInstance;
if (di.fDevBounds) {
SkASSERT(di.fDevBounds == &di.fDevBoundsStorage);
fDevBoundsStorage = di.fDevBoundsStorage;
fDevBounds = &fDevBoundsStorage;
} else {
fDevBounds = NULL;
}
this->setVertexBuffer(di.vertexBuffer());
this->setIndexBuffer(di.indexBuffer());
return *this;
}
#ifdef SK_DEBUG
bool GrDrawTarget::DrawInfo::isInstanced() const {
if (fInstanceCount > 0) {
SkASSERT(0 == fIndexCount % fIndicesPerInstance);
SkASSERT(0 == fVertexCount % fVerticesPerInstance);
SkASSERT(fIndexCount / fIndicesPerInstance == fInstanceCount);
SkASSERT(fVertexCount / fVerticesPerInstance == fInstanceCount);
// there is no way to specify a non-zero start index to drawIndexedInstances().
SkASSERT(0 == fStartIndex);
return true;
} else {
SkASSERT(!fVerticesPerInstance);
SkASSERT(!fIndicesPerInstance);
return false;
}
}
#endif
void GrDrawTarget::DrawInfo::adjustInstanceCount(int instanceOffset) {
SkASSERT(this->isInstanced());
SkASSERT(instanceOffset + fInstanceCount >= 0);
fInstanceCount += instanceOffset;
fVertexCount = fVerticesPerInstance * fInstanceCount;
fIndexCount = fIndicesPerInstance * fInstanceCount;
}
void GrDrawTarget::DrawInfo::adjustStartVertex(int vertexOffset) {
fStartVertex += vertexOffset;
SkASSERT(fStartVertex >= 0);
}
void GrDrawTarget::DrawInfo::adjustStartIndex(int indexOffset) {
SkASSERT(this->isIndexed());
fStartIndex += indexOffset;
SkASSERT(fStartIndex >= 0);
}
////////////////////////////////////////////////////////////////////////////////
#define DEBUG_INVAL_BUFFER 0xdeadcafe
#define DEBUG_INVAL_START_IDX -1
GrDrawTarget::GrDrawTarget(GrContext* context)
: fClip(NULL)
, fContext(context)
, fGpuTraceMarkerCount(0) {
SkASSERT(context);
GeometrySrcState& geoSrc = fGeoSrcStateStack.push_back();
#ifdef SK_DEBUG
geoSrc.fVertexCount = DEBUG_INVAL_START_IDX;
geoSrc.fVertexBuffer = (GrVertexBuffer*)DEBUG_INVAL_BUFFER;
geoSrc.fIndexCount = DEBUG_INVAL_START_IDX;
geoSrc.fIndexBuffer = (GrIndexBuffer*)DEBUG_INVAL_BUFFER;
#endif
geoSrc.fVertexSrc = kNone_GeometrySrcType;
geoSrc.fIndexSrc = kNone_GeometrySrcType;
}
GrDrawTarget::~GrDrawTarget() {
SkASSERT(1 == fGeoSrcStateStack.count());
SkDEBUGCODE(GeometrySrcState& geoSrc = fGeoSrcStateStack.back());
SkASSERT(kNone_GeometrySrcType == geoSrc.fIndexSrc);
SkASSERT(kNone_GeometrySrcType == geoSrc.fVertexSrc);
}
void GrDrawTarget::releaseGeometry() {
int popCnt = fGeoSrcStateStack.count() - 1;
while (popCnt) {
this->popGeometrySource();
--popCnt;
}
this->resetVertexSource();
this->resetIndexSource();
}
void GrDrawTarget::setClip(const GrClipData* clip) {
fClip = clip;
}
const GrClipData* GrDrawTarget::getClip() const {
return fClip;
}
bool GrDrawTarget::reserveVertexSpace(size_t vertexSize,
int vertexCount,
void** vertices) {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
bool acquired = false;
if (vertexCount > 0) {
SkASSERT(vertices);
this->releasePreviousVertexSource();
geoSrc.fVertexSrc = kNone_GeometrySrcType;
acquired = this->onReserveVertexSpace(vertexSize,
vertexCount,
vertices);
}
if (acquired) {
geoSrc.fVertexSrc = kReserved_GeometrySrcType;
geoSrc.fVertexCount = vertexCount;
geoSrc.fVertexSize = vertexSize;
} else if (vertices) {
*vertices = NULL;
}
return acquired;
}
bool GrDrawTarget::reserveIndexSpace(int indexCount,
void** indices) {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
bool acquired = false;
if (indexCount > 0) {
SkASSERT(indices);
this->releasePreviousIndexSource();
geoSrc.fIndexSrc = kNone_GeometrySrcType;
acquired = this->onReserveIndexSpace(indexCount, indices);
}
if (acquired) {
geoSrc.fIndexSrc = kReserved_GeometrySrcType;
geoSrc.fIndexCount = indexCount;
} else if (indices) {
*indices = NULL;
}
return acquired;
}
bool GrDrawTarget::reserveVertexAndIndexSpace(int vertexCount,
size_t vertexStride,
int indexCount,
void** vertices,
void** indices) {
this->willReserveVertexAndIndexSpace(vertexCount, vertexStride, indexCount);
if (vertexCount) {
if (!this->reserveVertexSpace(vertexStride, vertexCount, vertices)) {
if (indexCount) {
this->resetIndexSource();
}
return false;
}
}
if (indexCount) {
if (!this->reserveIndexSpace(indexCount, indices)) {
if (vertexCount) {
this->resetVertexSource();
}
return false;
}
}
return true;
}
bool GrDrawTarget::geometryHints(size_t vertexStride,
int32_t* vertexCount,
int32_t* indexCount) const {
if (vertexCount) {
*vertexCount = -1;
}
if (indexCount) {
*indexCount = -1;
}
return false;
}
void GrDrawTarget::releasePreviousVertexSource() {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
switch (geoSrc.fVertexSrc) {
case kNone_GeometrySrcType:
break;
case kReserved_GeometrySrcType:
this->releaseReservedVertexSpace();
break;
case kBuffer_GeometrySrcType:
geoSrc.fVertexBuffer->unref();
#ifdef SK_DEBUG
geoSrc.fVertexBuffer = (GrVertexBuffer*)DEBUG_INVAL_BUFFER;
#endif
break;
default:
SkFAIL("Unknown Vertex Source Type.");
break;
}
}
void GrDrawTarget::releasePreviousIndexSource() {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
switch (geoSrc.fIndexSrc) {
case kNone_GeometrySrcType: // these two don't require
break;
case kReserved_GeometrySrcType:
this->releaseReservedIndexSpace();
break;
case kBuffer_GeometrySrcType:
geoSrc.fIndexBuffer->unref();
#ifdef SK_DEBUG
geoSrc.fIndexBuffer = (GrIndexBuffer*)DEBUG_INVAL_BUFFER;
#endif
break;
default:
SkFAIL("Unknown Index Source Type.");
break;
}
}
void GrDrawTarget::setVertexSourceToBuffer(const GrVertexBuffer* buffer, size_t vertexStride) {
this->releasePreviousVertexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fVertexSrc = kBuffer_GeometrySrcType;
geoSrc.fVertexBuffer = buffer;
buffer->ref();
geoSrc.fVertexSize = vertexStride;
}
void GrDrawTarget::setIndexSourceToBuffer(const GrIndexBuffer* buffer) {
this->releasePreviousIndexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fIndexSrc = kBuffer_GeometrySrcType;
geoSrc.fIndexBuffer = buffer;
buffer->ref();
}
void GrDrawTarget::resetVertexSource() {
this->releasePreviousVertexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fVertexSrc = kNone_GeometrySrcType;
}
void GrDrawTarget::resetIndexSource() {
this->releasePreviousIndexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fIndexSrc = kNone_GeometrySrcType;
}
void GrDrawTarget::pushGeometrySource() {
this->geometrySourceWillPush();
GeometrySrcState& newState = fGeoSrcStateStack.push_back();
newState.fIndexSrc = kNone_GeometrySrcType;
newState.fVertexSrc = kNone_GeometrySrcType;
#ifdef SK_DEBUG
newState.fVertexCount = ~0;
newState.fVertexBuffer = (GrVertexBuffer*)~0;
newState.fIndexCount = ~0;
newState.fIndexBuffer = (GrIndexBuffer*)~0;
#endif
}
void GrDrawTarget::popGeometrySource() {
// if popping last element then pops are unbalanced with pushes
SkASSERT(fGeoSrcStateStack.count() > 1);
this->geometrySourceWillPop(fGeoSrcStateStack.fromBack(1));
this->releasePreviousVertexSource();
this->releasePreviousIndexSource();
fGeoSrcStateStack.pop_back();
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawTarget::checkDraw(const GrPipelineBuilder& pipelineBuilder,
const GrGeometryProcessor* gp,
GrPrimitiveType type,
int startVertex,
int startIndex,
int vertexCount,
int indexCount) const {
#ifdef SK_DEBUG
const GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
int maxVertex = startVertex + vertexCount;
int maxValidVertex;
switch (geoSrc.fVertexSrc) {
case kNone_GeometrySrcType:
SkFAIL("Attempting to draw without vertex src.");
case kReserved_GeometrySrcType: // fallthrough
maxValidVertex = geoSrc.fVertexCount;
break;
case kBuffer_GeometrySrcType:
maxValidVertex = static_cast<int>(geoSrc.fVertexBuffer->gpuMemorySize() /
geoSrc.fVertexSize);
break;
}
if (maxVertex > maxValidVertex) {
SkFAIL("Drawing outside valid vertex range.");
}
if (indexCount > 0) {
int maxIndex = startIndex + indexCount;
int maxValidIndex;
switch (geoSrc.fIndexSrc) {
case kNone_GeometrySrcType:
SkFAIL("Attempting to draw indexed geom without index src.");
case kReserved_GeometrySrcType: // fallthrough
maxValidIndex = geoSrc.fIndexCount;
break;
case kBuffer_GeometrySrcType:
maxValidIndex = static_cast<int>(geoSrc.fIndexBuffer->gpuMemorySize() /
sizeof(uint16_t));
break;
}
if (maxIndex > maxValidIndex) {
SkFAIL("Index reads outside valid index range.");
}
}
SkASSERT(pipelineBuilder.getRenderTarget());
if (gp) {
int numTextures = gp->numTextures();
for (int t = 0; t < numTextures; ++t) {
GrTexture* texture = gp->texture(t);
SkASSERT(texture->asRenderTarget() != pipelineBuilder.getRenderTarget());
}
}
for (int s = 0; s < pipelineBuilder.numColorStages(); ++s) {
const GrProcessor* effect = pipelineBuilder.getColorStage(s).processor();
int numTextures = effect->numTextures();
for (int t = 0; t < numTextures; ++t) {
GrTexture* texture = effect->texture(t);
SkASSERT(texture->asRenderTarget() != pipelineBuilder.getRenderTarget());
}
}
for (int s = 0; s < pipelineBuilder.numCoverageStages(); ++s) {
const GrProcessor* effect = pipelineBuilder.getCoverageStage(s).processor();
int numTextures = effect->numTextures();
for (int t = 0; t < numTextures; ++t) {
GrTexture* texture = effect->texture(t);
SkASSERT(texture->asRenderTarget() != pipelineBuilder.getRenderTarget());
}
}
#endif
if (NULL == pipelineBuilder.getRenderTarget()) {
return false;
}
return true;
}
bool GrDrawTarget::setupDstReadIfNecessary(GrPipelineBuilder* pipelineBuilder,
GrDeviceCoordTexture* dstCopy,
const SkRect* drawBounds) {
if (this->caps()->dstReadInShaderSupport() || !pipelineBuilder->willEffectReadDstColor()) {
return true;
}
SkIRect copyRect;
const GrClipData* clip = this->getClip();
GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
clip->getConservativeBounds(rt, &copyRect);
if (drawBounds) {
SkIRect drawIBounds;
drawBounds->roundOut(&drawIBounds);
if (!copyRect.intersect(drawIBounds)) {
#ifdef SK_DEBUG
SkDebugf("Missed an early reject. Bailing on draw from setupDstReadIfNecessary.\n");
#endif
return false;
}
} else {
#ifdef SK_DEBUG
//SkDebugf("No dev bounds when dst copy is made.\n");
#endif
}
// MSAA consideration: When there is support for reading MSAA samples in the shader we could
// have per-sample dst values by making the copy multisampled.
GrSurfaceDesc desc;
this->initCopySurfaceDstDesc(rt, &desc);
desc.fWidth = copyRect.width();
desc.fHeight = copyRect.height();
SkAutoTUnref<GrTexture> copy(
fContext->refScratchTexture(desc, GrContext::kApprox_ScratchTexMatch));
if (!copy) {
SkDebugf("Failed to create temporary copy of destination texture.\n");
return false;
}
SkIPoint dstPoint = {0, 0};
if (this->copySurface(copy, rt, copyRect, dstPoint)) {
dstCopy->setTexture(copy);
dstCopy->setOffset(copyRect.fLeft, copyRect.fTop);
return true;
} else {
return false;
}
}
void GrDrawTarget::drawIndexed(GrPipelineBuilder* pipelineBuilder,
const GrGeometryProcessor* gp,
GrPrimitiveType type,
int startVertex,
int startIndex,
int vertexCount,
int indexCount,
const SkRect* devBounds) {
SkASSERT(pipelineBuilder);
if (indexCount > 0 &&
this->checkDraw(*pipelineBuilder, gp, type, startVertex, startIndex, vertexCount,
indexCount)) {
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, devBounds)) {
return;
}
DrawInfo info;
info.fPrimitiveType = type;
info.fStartVertex = startVertex;
info.fStartIndex = startIndex;
info.fVertexCount = vertexCount;
info.fIndexCount = indexCount;
info.fInstanceCount = 0;
info.fVerticesPerInstance = 0;
info.fIndicesPerInstance = 0;
if (devBounds) {
info.setDevBounds(*devBounds);
}
// TODO: We should continue with incorrect blending.
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(pipelineBuilder, &dstCopy, devBounds)) {
return;
}
this->setDrawBuffers(&info, gp->getVertexStride());
this->onDraw(*pipelineBuilder, gp, info, scissorState, dstCopy.texture() ? &dstCopy : NULL);
}
}
void GrDrawTarget::drawNonIndexed(GrPipelineBuilder* pipelineBuilder,
const GrGeometryProcessor* gp,
GrPrimitiveType type,
int startVertex,
int vertexCount,
const SkRect* devBounds) {
SkASSERT(pipelineBuilder);
if (vertexCount > 0 && this->checkDraw(*pipelineBuilder, gp, type, startVertex, -1, vertexCount,
-1)) {
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, devBounds)) {
return;
}
DrawInfo info;
info.fPrimitiveType = type;
info.fStartVertex = startVertex;
info.fStartIndex = 0;
info.fVertexCount = vertexCount;
info.fIndexCount = 0;
info.fInstanceCount = 0;
info.fVerticesPerInstance = 0;
info.fIndicesPerInstance = 0;
if (devBounds) {
info.setDevBounds(*devBounds);
}
// TODO: We should continue with incorrect blending.
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(pipelineBuilder, &dstCopy, devBounds)) {
return;
}
this->setDrawBuffers(&info, gp->getVertexStride());
this->onDraw(*pipelineBuilder, gp, info, scissorState, dstCopy.texture() ? &dstCopy : NULL);
}
}
void GrDrawTarget::drawBatch(GrPipelineBuilder* pipelineBuilder,
GrBatch* batch,
const SkRect* devBounds) {
SkASSERT(pipelineBuilder);
// TODO some kind of checkdraw, but not at this level
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, devBounds)) {
return;
}
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(pipelineBuilder, &dstCopy, devBounds)) {
return;
}
this->onDrawBatch(batch, *pipelineBuilder, scissorState, dstCopy.texture() ? &dstCopy : NULL);
}
static const GrStencilSettings& winding_path_stencil_settings() {
GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings,
kIncClamp_StencilOp,
kIncClamp_StencilOp,
kAlwaysIfInClip_StencilFunc,
0xFFFF, 0xFFFF, 0xFFFF);
return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings);
}
static const GrStencilSettings& even_odd_path_stencil_settings() {
GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings,
kInvert_StencilOp,
kInvert_StencilOp,
kAlwaysIfInClip_StencilFunc,
0xFFFF, 0xFFFF, 0xFFFF);
return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings);
}
void GrDrawTarget::getPathStencilSettingsForFilltype(GrPathRendering::FillType fill,
const GrStencilBuffer* sb,
GrStencilSettings* outStencilSettings) {
switch (fill) {
default:
SkFAIL("Unexpected path fill.");
case GrPathRendering::kWinding_FillType:
*outStencilSettings = winding_path_stencil_settings();
break;
case GrPathRendering::kEvenOdd_FillType:
*outStencilSettings = even_odd_path_stencil_settings();
break;
}
this->clipMaskManager()->adjustPathStencilParams(sb, outStencilSettings);
}
void GrDrawTarget::stencilPath(GrPipelineBuilder* pipelineBuilder,
const GrPathProcessor* pathProc,
const GrPath* path,
GrPathRendering::FillType fill) {
// TODO: extract portions of checkDraw that are relevant to path stenciling.
SkASSERT(path);
SkASSERT(this->caps()->pathRenderingSupport());
SkASSERT(pipelineBuilder);
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, NULL)) {
return;
}
// set stencil settings for path
GrStencilSettings stencilSettings;
this->getPathStencilSettingsForFilltype(fill,
pipelineBuilder->getRenderTarget()->getStencilBuffer(),
&stencilSettings);
this->onStencilPath(*pipelineBuilder, pathProc, path, scissorState, stencilSettings);
}
void GrDrawTarget::drawPath(GrPipelineBuilder* pipelineBuilder,
const GrPathProcessor* pathProc,
const GrPath* path,
GrPathRendering::FillType fill) {
// TODO: extract portions of checkDraw that are relevant to path rendering.
SkASSERT(path);
SkASSERT(this->caps()->pathRenderingSupport());
SkASSERT(pipelineBuilder);
SkRect devBounds = path->getBounds();
pathProc->viewMatrix().mapRect(&devBounds);
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, &devBounds)) {
return;
}
// set stencil settings for path
GrStencilSettings stencilSettings;
this->getPathStencilSettingsForFilltype(fill,
pipelineBuilder->getRenderTarget()->getStencilBuffer(),
&stencilSettings);
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(pipelineBuilder, &dstCopy, &devBounds)) {
return;
}
this->onDrawPath(*pipelineBuilder, pathProc, path, scissorState, stencilSettings,
dstCopy.texture() ? &dstCopy : NULL);
}
void GrDrawTarget::drawPaths(GrPipelineBuilder* pipelineBuilder,
const GrPathProcessor* pathProc,
const GrPathRange* pathRange,
const void* indices,
PathIndexType indexType,
const float transformValues[],
PathTransformType transformType,
int count,
GrPathRendering::FillType fill) {
SkASSERT(this->caps()->pathRenderingSupport());
SkASSERT(pathRange);
SkASSERT(indices);
SkASSERT(0 == reinterpret_cast<long>(indices) % GrPathRange::PathIndexSizeInBytes(indexType));
SkASSERT(transformValues);
SkASSERT(pipelineBuilder);
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, NULL)) {
return;
}
// set stencil settings for path
GrStencilSettings stencilSettings;
this->getPathStencilSettingsForFilltype(fill,
pipelineBuilder->getRenderTarget()->getStencilBuffer(),
&stencilSettings);
// Don't compute a bounding box for setupDstReadIfNecessary(), we'll opt
// instead for it to just copy the entire dst. Realistically this is a moot
// point, because any context that supports NV_path_rendering will also
// support NV_blend_equation_advanced.
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(pipelineBuilder, &dstCopy, NULL)) {
return;
}
this->onDrawPaths(*pipelineBuilder, pathProc, pathRange, indices, indexType, transformValues,
transformType, count, scissorState, stencilSettings,
dstCopy.texture() ? &dstCopy : NULL);
}
void GrDrawTarget::clear(const SkIRect* rect,
GrColor color,
bool canIgnoreRect,
GrRenderTarget* renderTarget) {
if (fCaps->useDrawInsteadOfClear()) {
// This works around a driver bug with clear by drawing a rect instead.
// The driver will ignore a clear if it is the only thing rendered to a
// target before the target is read.
SkIRect rtRect = SkIRect::MakeWH(renderTarget->width(), renderTarget->height());
if (NULL == rect || canIgnoreRect || rect->contains(rtRect)) {
rect = &rtRect;
// We first issue a discard() since that may help tilers.
this->discard(renderTarget);
}
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(renderTarget);
this->drawSimpleRect(&pipelineBuilder, color, SkMatrix::I(), *rect);
} else {
this->onClear(rect, color, canIgnoreRect, renderTarget);
}
}
typedef GrTraceMarkerSet::Iter TMIter;
void GrDrawTarget::saveActiveTraceMarkers() {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(0 == fStoredTraceMarkers.count());
fStoredTraceMarkers.addSet(fActiveTraceMarkers);
for (TMIter iter = fStoredTraceMarkers.begin(); iter != fStoredTraceMarkers.end(); ++iter) {
this->removeGpuTraceMarker(&(*iter));
}
}
}
void GrDrawTarget::restoreActiveTraceMarkers() {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(0 == fActiveTraceMarkers.count());
for (TMIter iter = fStoredTraceMarkers.begin(); iter != fStoredTraceMarkers.end(); ++iter) {
this->addGpuTraceMarker(&(*iter));
}
for (TMIter iter = fActiveTraceMarkers.begin(); iter != fActiveTraceMarkers.end(); ++iter) {
this->fStoredTraceMarkers.remove(*iter);
}
}
}
void GrDrawTarget::addGpuTraceMarker(const GrGpuTraceMarker* marker) {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(fGpuTraceMarkerCount >= 0);
this->fActiveTraceMarkers.add(*marker);
++fGpuTraceMarkerCount;
}
}
void GrDrawTarget::removeGpuTraceMarker(const GrGpuTraceMarker* marker) {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(fGpuTraceMarkerCount >= 1);
this->fActiveTraceMarkers.remove(*marker);
--fGpuTraceMarkerCount;
}
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawTarget::drawIndexedInstances(GrPipelineBuilder* pipelineBuilder,
const GrGeometryProcessor* gp,
GrPrimitiveType type,
int instanceCount,
int verticesPerInstance,
int indicesPerInstance,
const SkRect* devBounds) {
SkASSERT(pipelineBuilder);
if (!verticesPerInstance || !indicesPerInstance) {
return;
}
int maxInstancesPerDraw = this->indexCountInCurrentSource() / indicesPerInstance;
if (!maxInstancesPerDraw) {
return;
}
// Setup clip
GrScissorState scissorState;
GrPipelineBuilder::AutoRestoreEffects are;
GrPipelineBuilder::AutoRestoreStencil ars;
if (!this->setupClip(pipelineBuilder, &are, &ars, &scissorState, devBounds)) {
return;
}
DrawInfo info;
info.fPrimitiveType = type;
info.fStartIndex = 0;
info.fStartVertex = 0;
info.fIndicesPerInstance = indicesPerInstance;
info.fVerticesPerInstance = verticesPerInstance;
// Set the same bounds for all the draws.
if (devBounds) {
info.setDevBounds(*devBounds);
}
// TODO: We should continue with incorrect blending.
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(pipelineBuilder, &dstCopy, devBounds)) {
return;
}
while (instanceCount) {
info.fInstanceCount = SkTMin(instanceCount, maxInstancesPerDraw);
info.fVertexCount = info.fInstanceCount * verticesPerInstance;
info.fIndexCount = info.fInstanceCount * indicesPerInstance;
if (this->checkDraw(*pipelineBuilder,
gp,
type,
info.fStartVertex,
info.fStartIndex,
info.fVertexCount,
info.fIndexCount)) {
this->setDrawBuffers(&info, gp->getVertexStride());
this->onDraw(*pipelineBuilder, gp, info, scissorState,
dstCopy.texture() ? &dstCopy : NULL);
}
info.fStartVertex += info.fVertexCount;
instanceCount -= info.fInstanceCount;
}
}
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget::AutoReleaseGeometry::AutoReleaseGeometry(
GrDrawTarget* target,
int vertexCount,
size_t vertexStride,
int indexCount) {
fTarget = NULL;
this->set(target, vertexCount, vertexStride, indexCount);
}
GrDrawTarget::AutoReleaseGeometry::AutoReleaseGeometry() {
fTarget = NULL;
}
GrDrawTarget::AutoReleaseGeometry::~AutoReleaseGeometry() {
this->reset();
}
bool GrDrawTarget::AutoReleaseGeometry::set(GrDrawTarget* target,
int vertexCount,
size_t vertexStride,
int indexCount) {
this->reset();
fTarget = target;
bool success = true;
if (fTarget) {
success = target->reserveVertexAndIndexSpace(vertexCount,
vertexStride,
indexCount,
&fVertices,
&fIndices);
if (!success) {
fTarget = NULL;
this->reset();
}
}
SkASSERT(success == SkToBool(fTarget));
return success;
}
void GrDrawTarget::AutoReleaseGeometry::reset() {
if (fTarget) {
if (fVertices) {
fTarget->resetVertexSource();
}
if (fIndices) {
fTarget->resetIndexSource();
}
fTarget = NULL;
}
fVertices = NULL;
fIndices = NULL;
}
GrDrawTarget::AutoClipRestore::AutoClipRestore(GrDrawTarget* target, const SkIRect& newClip) {
fTarget = target;
fClip = fTarget->getClip();
fStack.init();
fStack.get()->clipDevRect(newClip, SkRegion::kReplace_Op);
fReplacementClip.fClipStack.reset(SkRef(fStack.get()));
target->setClip(&fReplacementClip);
}
namespace {
// returns true if the read/written rect intersects the src/dst and false if not.
bool clip_srcrect_and_dstpoint(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint,
SkIRect* clippedSrcRect,
SkIPoint* clippedDstPoint) {
*clippedSrcRect = srcRect;
*clippedDstPoint = dstPoint;
// clip the left edge to src and dst bounds, adjusting dstPoint if necessary
if (clippedSrcRect->fLeft < 0) {
clippedDstPoint->fX -= clippedSrcRect->fLeft;
clippedSrcRect->fLeft = 0;
}
if (clippedDstPoint->fX < 0) {
clippedSrcRect->fLeft -= clippedDstPoint->fX;
clippedDstPoint->fX = 0;
}
// clip the top edge to src and dst bounds, adjusting dstPoint if necessary
if (clippedSrcRect->fTop < 0) {
clippedDstPoint->fY -= clippedSrcRect->fTop;
clippedSrcRect->fTop = 0;
}
if (clippedDstPoint->fY < 0) {
clippedSrcRect->fTop -= clippedDstPoint->fY;
clippedDstPoint->fY = 0;
}
// clip the right edge to the src and dst bounds.
if (clippedSrcRect->fRight > src->width()) {
clippedSrcRect->fRight = src->width();
}
if (clippedDstPoint->fX + clippedSrcRect->width() > dst->width()) {
clippedSrcRect->fRight = clippedSrcRect->fLeft + dst->width() - clippedDstPoint->fX;
}
// clip the bottom edge to the src and dst bounds.
if (clippedSrcRect->fBottom > src->height()) {
clippedSrcRect->fBottom = src->height();
}
if (clippedDstPoint->fY + clippedSrcRect->height() > dst->height()) {
clippedSrcRect->fBottom = clippedSrcRect->fTop + dst->height() - clippedDstPoint->fY;
}
// The above clipping steps may have inverted the rect if it didn't intersect either the src or
// dst bounds.
return !clippedSrcRect->isEmpty();
}
}
bool GrDrawTarget::copySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(dst);
SkASSERT(src);
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
// If the rect is outside the src or dst then we've already succeeded.
if (!clip_srcrect_and_dstpoint(dst,
src,
srcRect,
dstPoint,
&clippedSrcRect,
&clippedDstPoint)) {
return true;
}
if (this->onCopySurface(dst, src, clippedSrcRect, clippedDstPoint)) {
return true;
}
GrRenderTarget* rt = dst->asRenderTarget();
GrTexture* tex = src->asTexture();
if ((dst == src) || !rt || !tex) {
return false;
}
GrPipelineBuilder pipelineBuilder;
pipelineBuilder.setRenderTarget(rt);
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(clippedSrcRect.fLeft - clippedDstPoint.fX),
SkIntToScalar(clippedSrcRect.fTop - clippedDstPoint.fY));
matrix.postIDiv(tex->width(), tex->height());
pipelineBuilder.addColorTextureProcessor(tex, matrix);
SkIRect dstRect = SkIRect::MakeXYWH(clippedDstPoint.fX,
clippedDstPoint.fY,
clippedSrcRect.width(),
clippedSrcRect.height());
this->drawSimpleRect(&pipelineBuilder, GrColor_WHITE, SkMatrix::I(), dstRect);
return true;
}
bool GrDrawTarget::canCopySurface(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(dst);
SkASSERT(src);
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
// If the rect is outside the src or dst then we're guaranteed success
if (!clip_srcrect_and_dstpoint(dst,
src,
srcRect,
dstPoint,
&clippedSrcRect,
&clippedDstPoint)) {
return true;
}
return this->internalCanCopySurface(dst, src, clippedSrcRect, clippedDstPoint);
}
bool GrDrawTarget::internalCanCopySurface(const GrSurface* dst,
const GrSurface* src,
const SkIRect& clippedSrcRect,
const SkIPoint& clippedDstPoint) {
// Check that the read/write rects are contained within the src/dst bounds.
SkASSERT(!clippedSrcRect.isEmpty());
SkASSERT(SkIRect::MakeWH(src->width(), src->height()).contains(clippedSrcRect));
SkASSERT(clippedDstPoint.fX >= 0 && clippedDstPoint.fY >= 0);
SkASSERT(clippedDstPoint.fX + clippedSrcRect.width() <= dst->width() &&
clippedDstPoint.fY + clippedSrcRect.height() <= dst->height());
// The base class can do it as a draw or the subclass may be able to handle it.
return ((dst != src) && dst->asRenderTarget() && src->asTexture()) ||
this->onCanCopySurface(dst, src, clippedSrcRect, clippedDstPoint);
}
///////////////////////////////////////////////////////////////////////////////
void GrDrawTargetCaps::reset() {
fMipMapSupport = false;
fNPOTTextureTileSupport = false;
fTwoSidedStencilSupport = false;
fStencilWrapOpsSupport = false;
fHWAALineSupport = false;
fShaderDerivativeSupport = false;
fGeometryShaderSupport = false;
fDualSourceBlendingSupport = false;
fPathRenderingSupport = false;
fDstReadInShaderSupport = false;
fDiscardRenderTargetSupport = false;
fReuseScratchTextures = true;
fGpuTracingSupport = false;
fCompressedTexSubImageSupport = false;
fUseDrawInsteadOfClear = false;
fMapBufferFlags = kNone_MapFlags;
fMaxRenderTargetSize = 0;
fMaxTextureSize = 0;
fMaxSampleCount = 0;
fShaderPrecisionVaries = false;
memset(fConfigRenderSupport, 0, sizeof(fConfigRenderSupport));
memset(fConfigTextureSupport, 0, sizeof(fConfigTextureSupport));
}
GrDrawTargetCaps& GrDrawTargetCaps::operator=(const GrDrawTargetCaps& other) {
fMipMapSupport = other.fMipMapSupport;
fNPOTTextureTileSupport = other.fNPOTTextureTileSupport;
fTwoSidedStencilSupport = other.fTwoSidedStencilSupport;
fStencilWrapOpsSupport = other.fStencilWrapOpsSupport;
fHWAALineSupport = other.fHWAALineSupport;
fShaderDerivativeSupport = other.fShaderDerivativeSupport;
fGeometryShaderSupport = other.fGeometryShaderSupport;
fDualSourceBlendingSupport = other.fDualSourceBlendingSupport;
fPathRenderingSupport = other.fPathRenderingSupport;
fDstReadInShaderSupport = other.fDstReadInShaderSupport;
fDiscardRenderTargetSupport = other.fDiscardRenderTargetSupport;
fReuseScratchTextures = other.fReuseScratchTextures;
fGpuTracingSupport = other.fGpuTracingSupport;
fCompressedTexSubImageSupport = other.fCompressedTexSubImageSupport;
fUseDrawInsteadOfClear = other.fUseDrawInsteadOfClear;
fMapBufferFlags = other.fMapBufferFlags;
fMaxRenderTargetSize = other.fMaxRenderTargetSize;
fMaxTextureSize = other.fMaxTextureSize;
fMaxSampleCount = other.fMaxSampleCount;
memcpy(fConfigRenderSupport, other.fConfigRenderSupport, sizeof(fConfigRenderSupport));
memcpy(fConfigTextureSupport, other.fConfigTextureSupport, sizeof(fConfigTextureSupport));
fShaderPrecisionVaries = other.fShaderPrecisionVaries;
for (int s = 0; s < kGrShaderTypeCount; ++s) {
for (int p = 0; p < kGrSLPrecisionCount; ++p) {
fFloatPrecisions[s][p] = other.fFloatPrecisions[s][p];
}
}
return *this;
}
static SkString map_flags_to_string(uint32_t flags) {
SkString str;
if (GrDrawTargetCaps::kNone_MapFlags == flags) {
str = "none";
} else {
SkASSERT(GrDrawTargetCaps::kCanMap_MapFlag & flags);
SkDEBUGCODE(flags &= ~GrDrawTargetCaps::kCanMap_MapFlag);
str = "can_map";
if (GrDrawTargetCaps::kSubset_MapFlag & flags) {
str.append(" partial");
} else {
str.append(" full");
}
SkDEBUGCODE(flags &= ~GrDrawTargetCaps::kSubset_MapFlag);
}
SkASSERT(0 == flags); // Make sure we handled all the flags.
return str;
}
static const char* shader_type_to_string(GrShaderType type) {
switch (type) {
case kVertex_GrShaderType:
return "vertex";
case kGeometry_GrShaderType:
return "geometry";
case kFragment_GrShaderType:
return "fragment";
}
return "";
}
static const char* precision_to_string(GrSLPrecision p) {
switch (p) {
case kLow_GrSLPrecision:
return "low";
case kMedium_GrSLPrecision:
return "medium";
case kHigh_GrSLPrecision:
return "high";
}
return "";
}
SkString GrDrawTargetCaps::dump() const {
SkString r;
static const char* gNY[] = {"NO", "YES"};
r.appendf("MIP Map Support : %s\n", gNY[fMipMapSupport]);
r.appendf("NPOT Texture Tile Support : %s\n", gNY[fNPOTTextureTileSupport]);
r.appendf("Two Sided Stencil Support : %s\n", gNY[fTwoSidedStencilSupport]);
r.appendf("Stencil Wrap Ops Support : %s\n", gNY[fStencilWrapOpsSupport]);
r.appendf("HW AA Lines Support : %s\n", gNY[fHWAALineSupport]);
r.appendf("Shader Derivative Support : %s\n", gNY[fShaderDerivativeSupport]);
r.appendf("Geometry Shader Support : %s\n", gNY[fGeometryShaderSupport]);
r.appendf("Dual Source Blending Support : %s\n", gNY[fDualSourceBlendingSupport]);
r.appendf("Path Rendering Support : %s\n", gNY[fPathRenderingSupport]);
r.appendf("Dst Read In Shader Support : %s\n", gNY[fDstReadInShaderSupport]);
r.appendf("Discard Render Target Support : %s\n", gNY[fDiscardRenderTargetSupport]);
r.appendf("Reuse Scratch Textures : %s\n", gNY[fReuseScratchTextures]);
r.appendf("Gpu Tracing Support : %s\n", gNY[fGpuTracingSupport]);
r.appendf("Compressed Update Support : %s\n", gNY[fCompressedTexSubImageSupport]);
r.appendf("Draw Instead of Clear [workaround] : %s\n", gNY[fUseDrawInsteadOfClear]);
r.appendf("Max Texture Size : %d\n", fMaxTextureSize);
r.appendf("Max Render Target Size : %d\n", fMaxRenderTargetSize);
r.appendf("Max Sample Count : %d\n", fMaxSampleCount);
r.appendf("Map Buffer Support : %s\n",
map_flags_to_string(fMapBufferFlags).c_str());
static const char* kConfigNames[] = {
"Unknown", // kUnknown_GrPixelConfig
"Alpha8", // kAlpha_8_GrPixelConfig,
"Index8", // kIndex_8_GrPixelConfig,
"RGB565", // kRGB_565_GrPixelConfig,
"RGBA444", // kRGBA_4444_GrPixelConfig,
"RGBA8888", // kRGBA_8888_GrPixelConfig,
"BGRA8888", // kBGRA_8888_GrPixelConfig,
"SRGBA8888",// kSRGBA_8888_GrPixelConfig,
"ETC1", // kETC1_GrPixelConfig,
"LATC", // kLATC_GrPixelConfig,
"R11EAC", // kR11_EAC_GrPixelConfig,
"ASTC12x12",// kASTC_12x12_GrPixelConfig,
"RGBAFloat",// kRGBA_float_GrPixelConfig
"AlphaHalf",// kAlpha_half_GrPixelConfig
};
GR_STATIC_ASSERT(0 == kUnknown_GrPixelConfig);
GR_STATIC_ASSERT(1 == kAlpha_8_GrPixelConfig);
GR_STATIC_ASSERT(2 == kIndex_8_GrPixelConfig);
GR_STATIC_ASSERT(3 == kRGB_565_GrPixelConfig);
GR_STATIC_ASSERT(4 == kRGBA_4444_GrPixelConfig);
GR_STATIC_ASSERT(5 == kRGBA_8888_GrPixelConfig);
GR_STATIC_ASSERT(6 == kBGRA_8888_GrPixelConfig);
GR_STATIC_ASSERT(7 == kSRGBA_8888_GrPixelConfig);
GR_STATIC_ASSERT(8 == kETC1_GrPixelConfig);
GR_STATIC_ASSERT(9 == kLATC_GrPixelConfig);
GR_STATIC_ASSERT(10 == kR11_EAC_GrPixelConfig);
GR_STATIC_ASSERT(11 == kASTC_12x12_GrPixelConfig);
GR_STATIC_ASSERT(12 == kRGBA_float_GrPixelConfig);
GR_STATIC_ASSERT(13 == kAlpha_half_GrPixelConfig);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kConfigNames) == kGrPixelConfigCnt);
SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][0]);
SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][1]);
for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i) {
r.appendf("%s is renderable: %s, with MSAA: %s\n",
kConfigNames[i],
gNY[fConfigRenderSupport[i][0]],
gNY[fConfigRenderSupport[i][1]]);
}
SkASSERT(!fConfigTextureSupport[kUnknown_GrPixelConfig]);
for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i) {
r.appendf("%s is uploadable to a texture: %s\n",
kConfigNames[i],
gNY[fConfigTextureSupport[i]]);
}
r.appendf("Shader Float Precisions (varies: %s):\n", gNY[fShaderPrecisionVaries]);
for (int s = 0; s < kGrShaderTypeCount; ++s) {
GrShaderType shaderType = static_cast<GrShaderType>(s);
r.appendf("\t%s:\n", shader_type_to_string(shaderType));
for (int p = 0; p < kGrSLPrecisionCount; ++p) {
if (fFloatPrecisions[s][p].supported()) {
GrSLPrecision precision = static_cast<GrSLPrecision>(p);
r.appendf("\t\t%s: log_low: %d log_high: %d bits: %d\n",
precision_to_string(precision),
fFloatPrecisions[s][p].fLogRangeLow,
fFloatPrecisions[s][p].fLogRangeHigh,
fFloatPrecisions[s][p].fBits);
}
}
}
return r;
}
uint32_t GrDrawTargetCaps::CreateUniqueID() {
static int32_t gUniqueID = SK_InvalidUniqueID;
uint32_t id;
do {
id = static_cast<uint32_t>(sk_atomic_inc(&gUniqueID) + 1);
} while (id == SK_InvalidUniqueID);
return id;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool GrClipTarget::setupClip(GrPipelineBuilder* pipelineBuilder,
GrPipelineBuilder::AutoRestoreEffects* are,
GrPipelineBuilder::AutoRestoreStencil* ars,
GrScissorState* scissorState,
const SkRect* devBounds) {
return fClipMaskManager.setupClipping(pipelineBuilder,
are,
ars,
scissorState,
this->getClip(),
devBounds);
}