|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkIntersections.h" | 
|  |  | 
|  | int SkIntersections::closestTo(double rangeStart, double rangeEnd, const SkDPoint& testPt, | 
|  | double* closestDist) const { | 
|  | int closest = -1; | 
|  | *closestDist = SK_ScalarMax; | 
|  | for (int index = 0; index < fUsed; ++index) { | 
|  | if (!between(rangeStart, fT[0][index], rangeEnd)) { | 
|  | continue; | 
|  | } | 
|  | const SkDPoint& iPt = fPt[index]; | 
|  | double dist = testPt.distanceSquared(iPt); | 
|  | if (*closestDist > dist) { | 
|  | *closestDist = dist; | 
|  | closest = index; | 
|  | } | 
|  | } | 
|  | return closest; | 
|  | } | 
|  |  | 
|  | void SkIntersections::flip() { | 
|  | for (int index = 0; index < fUsed; ++index) { | 
|  | fT[1][index] = 1 - fT[1][index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int SkIntersections::insert(double one, double two, const SkDPoint& pt) { | 
|  | if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) { | 
|  | // For now, don't allow a mix of coincident and non-coincident intersections | 
|  | return -1; | 
|  | } | 
|  | SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]); | 
|  | int index; | 
|  | for (index = 0; index < fUsed; ++index) { | 
|  | double oldOne = fT[0][index]; | 
|  | double oldTwo = fT[1][index]; | 
|  | if (one == oldOne && two == oldTwo) { | 
|  | return -1; | 
|  | } | 
|  | if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) { | 
|  | if ((precisely_zero(one) && !precisely_zero(oldOne)) | 
|  | || (precisely_equal(one, 1) && !precisely_equal(oldOne, 1)) | 
|  | || (precisely_zero(two) && !precisely_zero(oldTwo)) | 
|  | || (precisely_equal(two, 1) && !precisely_equal(oldTwo, 1))) { | 
|  | SkASSERT(one >= 0 && one <= 1); | 
|  | SkASSERT(two >= 0 && two <= 1); | 
|  | fT[0][index] = one; | 
|  | fT[1][index] = two; | 
|  | fPt[index] = pt; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | #if ONE_OFF_DEBUG | 
|  | if (pt.roughlyEqual(fPt[index])) { | 
|  | SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one); | 
|  | } | 
|  | #endif | 
|  | if (fT[0][index] > one) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (fUsed >= fMax) { | 
|  | SkASSERT(0);  // FIXME : this error, if it is to be handled at runtime in release, must | 
|  | // be propagated all the way back down to the caller, and return failure. | 
|  | fUsed = 0; | 
|  | return 0; | 
|  | } | 
|  | int remaining = fUsed - index; | 
|  | if (remaining > 0) { | 
|  | memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining); | 
|  | memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining); | 
|  | memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining); | 
|  | int clearMask = ~((1 << index) - 1); | 
|  | fIsCoincident[0] += fIsCoincident[0] & clearMask; | 
|  | fIsCoincident[1] += fIsCoincident[1] & clearMask; | 
|  | } | 
|  | fPt[index] = pt; | 
|  | SkASSERT(one >= 0 && one <= 1); | 
|  | SkASSERT(two >= 0 && two <= 1); | 
|  | fT[0][index] = one; | 
|  | fT[1][index] = two; | 
|  | ++fUsed; | 
|  | SkASSERT(fUsed <= SK_ARRAY_COUNT(fPt)); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | void SkIntersections::insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2) { | 
|  | SkASSERT(one == 0 || one == 1); | 
|  | SkASSERT(two == 0 || two == 1); | 
|  | SkASSERT(pt1 != pt2); | 
|  | fNearlySame[one ? 1 : 0] = true; | 
|  | (void) insert(one, two, pt1); | 
|  | fPt2[one ? 1 : 0] = pt2; | 
|  | } | 
|  |  | 
|  | int SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) { | 
|  | int index = insertSwap(one, two, pt); | 
|  | if (index >= 0) { | 
|  | setCoincident(index); | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | void SkIntersections::setCoincident(int index) { | 
|  | SkASSERT(index >= 0); | 
|  | int bit = 1 << index; | 
|  | fIsCoincident[0] |= bit; | 
|  | fIsCoincident[1] |= bit; | 
|  | } | 
|  |  | 
|  | void SkIntersections::merge(const SkIntersections& a, int aIndex, const SkIntersections& b, | 
|  | int bIndex) { | 
|  | this->reset(); | 
|  | fT[0][0] = a.fT[0][aIndex]; | 
|  | fT[1][0] = b.fT[0][bIndex]; | 
|  | fPt[0] = a.fPt[aIndex]; | 
|  | fPt2[0] = b.fPt[bIndex]; | 
|  | fUsed = 1; | 
|  | } | 
|  |  | 
|  | int SkIntersections::mostOutside(double rangeStart, double rangeEnd, const SkDPoint& origin) const { | 
|  | int result = -1; | 
|  | for (int index = 0; index < fUsed; ++index) { | 
|  | if (!between(rangeStart, fT[0][index], rangeEnd)) { | 
|  | continue; | 
|  | } | 
|  | if (result < 0) { | 
|  | result = index; | 
|  | continue; | 
|  | } | 
|  | SkDVector best = fPt[result] - origin; | 
|  | SkDVector test = fPt[index] - origin; | 
|  | if (test.crossCheck(best) < 0) { | 
|  | result = index; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void SkIntersections::removeOne(int index) { | 
|  | int remaining = --fUsed - index; | 
|  | if (remaining <= 0) { | 
|  | return; | 
|  | } | 
|  | memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining); | 
|  | memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining); | 
|  | memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining); | 
|  | //    SkASSERT(fIsCoincident[0] == 0); | 
|  | int coBit = fIsCoincident[0] & (1 << index); | 
|  | fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit; | 
|  | SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index)))); | 
|  | fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit; | 
|  | } |