blob: a36bc86307438f8bf6cdbe41eab8aa9f047b888d [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcShader.h"
#include "SkColor.h"
#include "SkColorMatrixFilter.h"
#include "SkGradientShader.h"
#include "SkImage.h"
#include "SkPM4f.h"
#include "SkShader.h"
#include "Test.h"
#include "SkRandom.h"
const float kTolerance = 1.0f / (1 << 20);
static bool nearly_equal(float a, float b, float tol = kTolerance) {
SkASSERT(tol >= 0);
return fabsf(a - b) <= tol;
}
static bool nearly_equal(const SkPM4f a, const SkPM4f& b, float tol = kTolerance) {
for (int i = 0; i < 4; ++i) {
if (!nearly_equal(a.fVec[i], b.fVec[i], tol)) {
return false;
}
}
return true;
}
DEF_TEST(SkColor4f_FromColor, reporter) {
const struct {
SkColor fC;
SkColor4f fC4;
} recs[] = {
{ SK_ColorBLACK, { 0, 0, 0, 1 } },
{ SK_ColorWHITE, { 1, 1, 1, 1 } },
{ SK_ColorRED, { 1, 0, 0, 1 } },
{ SK_ColorGREEN, { 0, 1, 0, 1 } },
{ SK_ColorBLUE, { 0, 0, 1, 1 } },
{ 0, { 0, 0, 0, 0 } },
};
for (const auto& r : recs) {
SkColor4f c4 = SkColor4f::FromColor(r.fC);
REPORTER_ASSERT(reporter, c4 == r.fC4);
}
}
DEF_TEST(Color4f_premul, reporter) {
SkRandom rand;
for (int i = 0; i < 1000000; ++i) {
// First just test opaque colors, so that the premul should be exact
SkColor4f c4 {
rand.nextUScalar1(), rand.nextUScalar1(), rand.nextUScalar1(), 1
};
SkPM4f pm4 = c4.premul();
REPORTER_ASSERT(reporter, pm4.a() == c4.fA);
REPORTER_ASSERT(reporter, pm4.r() == c4.fA * c4.fR);
REPORTER_ASSERT(reporter, pm4.g() == c4.fA * c4.fG);
REPORTER_ASSERT(reporter, pm4.b() == c4.fA * c4.fB);
// We compare with a tolerance, in case our premul multiply is implemented at slightly
// different precision than the test code.
c4.fA = rand.nextUScalar1();
pm4 = c4.premul();
REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA);
REPORTER_ASSERT(reporter, nearly_equal(pm4.r(), c4.fA * c4.fR));
REPORTER_ASSERT(reporter, nearly_equal(pm4.g(), c4.fA * c4.fG));
REPORTER_ASSERT(reporter, nearly_equal(pm4.b(), c4.fA * c4.fB));
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
typedef SkPM4f (*SkXfermodeProc4f)(const SkPM4f& src, const SkPM4f& dst);
static bool compare_procs(SkXfermodeProc proc32, SkXfermodeProc4f proc4f) {
const float kTolerance = 1.0f / 255;
const SkColor colors[] = {
0, 0xFF000000, 0xFFFFFFFF, 0x80FF0000
};
for (auto s32 : colors) {
SkPMColor s_pm32 = SkPreMultiplyColor(s32);
SkPM4f s_pm4f = SkColor4f::FromColor(s32).premul();
for (auto d32 : colors) {
SkPMColor d_pm32 = SkPreMultiplyColor(d32);
SkPM4f d_pm4f = SkColor4f::FromColor(d32).premul();
SkPMColor r32 = proc32(s_pm32, d_pm32);
SkPM4f r4f = proc4f(s_pm4f, d_pm4f);
SkPM4f r32_4f = SkPM4f::FromPMColor(r32);
if (!nearly_equal(r4f, r32_4f, kTolerance)) {
return false;
}
}
}
return true;
}
// Check that our Proc and Proc4f return (nearly) the same results
//
DEF_TEST(Color4f_xfermode_proc4f, reporter) {
// TODO: extend xfermodes so that all cases can be tested.
//
for (int mode = SkXfermode::kClear_Mode; mode <= SkXfermode::kScreen_Mode; ++mode) {
SkXfermodeProc proc32 = SkXfermode::GetProc((SkXfermode::Mode)mode);
SkXfermodeProc4f proc4f = SkXfermode::GetProc4f((SkXfermode::Mode)mode);
REPORTER_ASSERT(reporter, compare_procs(proc32, proc4f));
}
}