blob: 92788084c8d470616368ecfba52f7938775f8866 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/**************************************************************************************************
*** This file was autogenerated from GrConfigConversionEffect.fp; do not modify.
**************************************************************************************************/
#include "GrConfigConversionEffect.h"
#include "src/core/SkUtils.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/sksl/SkSLCPP.h"
#include "src/sksl/SkSLUtil.h"
class GrGLSLConfigConversionEffect : public GrGLSLFragmentProcessor {
public:
GrGLSLConfigConversionEffect() {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const GrConfigConversionEffect& _outer = args.fFp.cast<GrConfigConversionEffect>();
(void)_outer;
auto pmConversion = _outer.pmConversion;
(void)pmConversion;
fragBuilder->forceHighPrecision();
SkString _sample0 = this->invokeChild(0, args);
fragBuilder->codeAppendf(
R"SkSL(half4 color = floor(%s * 255.0 + 0.5) / 255.0;
@switch (%d) {
case 0:
color.xyz = floor((color.xyz * color.w) * 255.0 + 0.5) / 255.0;
break;
case 1:
color.xyz = color.w <= 0.0 ? half3(0.0) : floor((color.xyz / color.w) * 255.0 + 0.5) / 255.0;
break;
}
return color;
)SkSL",
_sample0.c_str(), (int)_outer.pmConversion);
}
private:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& _proc) override {}
};
std::unique_ptr<GrGLSLFragmentProcessor> GrConfigConversionEffect::onMakeProgramImpl() const {
return std::make_unique<GrGLSLConfigConversionEffect>();
}
void GrConfigConversionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
b->add32((uint32_t)pmConversion);
}
bool GrConfigConversionEffect::onIsEqual(const GrFragmentProcessor& other) const {
const GrConfigConversionEffect& that = other.cast<GrConfigConversionEffect>();
(void)that;
if (pmConversion != that.pmConversion) return false;
return true;
}
GrConfigConversionEffect::GrConfigConversionEffect(const GrConfigConversionEffect& src)
: INHERITED(kGrConfigConversionEffect_ClassID, src.optimizationFlags())
, pmConversion(src.pmConversion) {
this->cloneAndRegisterAllChildProcessors(src);
}
std::unique_ptr<GrFragmentProcessor> GrConfigConversionEffect::clone() const {
return std::make_unique<GrConfigConversionEffect>(*this);
}
#if GR_TEST_UTILS
SkString GrConfigConversionEffect::onDumpInfo() const {
return SkStringPrintf("(pmConversion=%d)", (int)pmConversion);
}
#endif
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConfigConversionEffect);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> GrConfigConversionEffect::TestCreate(
GrProcessorTestData* data) {
PMConversion pmConv = static_cast<PMConversion>(
data->fRandom->nextULessThan((int)PMConversion::kPMConversionCnt));
return std::unique_ptr<GrFragmentProcessor>(
new GrConfigConversionEffect(GrProcessorUnitTest::MakeChildFP(data), pmConv));
}
#endif
bool GrConfigConversionEffect::TestForPreservingPMConversions(GrDirectContext* dContext) {
static constexpr int kSize = 256;
SkAutoTMalloc<uint32_t> data(kSize * kSize * 3);
uint32_t* srcData = data.get();
// Fill with every possible premultiplied A, color channel value. There will be 256-y
// duplicate values in row y. We set r, g, and b to the same value since they are handled
// identically.
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x < kSize; ++x) {
uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize * y + x]);
color[3] = y;
color[2] = std::min(x, y);
color[1] = std::min(x, y);
color[0] = std::min(x, y);
}
}
const SkImageInfo pmII =
SkImageInfo::Make(kSize, kSize, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
const SkImageInfo upmII = pmII.makeAlphaType(kUnpremul_SkAlphaType);
auto readSFC = GrSurfaceFillContext::Make(dContext, upmII, SkBackingFit::kExact);
auto tempSFC = GrSurfaceFillContext::Make(dContext, pmII, SkBackingFit::kExact);
if (!readSFC || !tempSFC) {
return false;
}
// This function is only ever called if we are in a GrDirectContext since we are
// calling read pixels here. Thus the pixel data will be uploaded immediately and we don't
// need to keep the pixel data alive in the proxy. Therefore the ReleaseProc is nullptr.
SkBitmap bitmap;
bitmap.installPixels(pmII, srcData, 4 * kSize);
bitmap.setImmutable();
GrBitmapTextureMaker maker(dContext, bitmap, GrImageTexGenPolicy::kNew_Uncached_Budgeted);
auto dataView = maker.view(GrMipmapped::kNo);
if (!dataView) {
return false;
}
uint32_t* firstRead = data.get() + kSize * kSize;
uint32_t* secondRead = data.get() + 2 * kSize * kSize;
std::fill_n(firstRead, kSize * kSize, 0);
std::fill_n(secondRead, kSize * kSize, 0);
GrPixmap firstReadPM(upmII, firstRead, kSize * sizeof(uint32_t));
GrPixmap secondReadPM(upmII, secondRead, kSize * sizeof(uint32_t));
// We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw
// from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data.
// We then verify that two reads produced the same values.
auto fp1 = GrConfigConversionEffect::Make(
GrTextureEffect::Make(std::move(dataView), bitmap.alphaType()),
PMConversion::kToUnpremul);
readSFC->fillRectWithFP(SkIRect::MakeWH(kSize, kSize), std::move(fp1));
if (!readSFC->readPixels(dContext, firstReadPM, {0, 0})) {
return false;
}
auto fp2 = GrConfigConversionEffect::Make(
GrTextureEffect::Make(readSFC->readSurfaceView(), readSFC->colorInfo().alphaType()),
PMConversion::kToPremul);
tempSFC->fillRectWithFP(SkIRect::MakeWH(kSize, kSize), std::move(fp2));
auto fp3 = GrConfigConversionEffect::Make(
GrTextureEffect::Make(tempSFC->readSurfaceView(), tempSFC->colorInfo().alphaType()),
PMConversion::kToUnpremul);
readSFC->fillRectWithFP(SkIRect::MakeWH(kSize, kSize), std::move(fp3));
if (!readSFC->readPixels(dContext, secondReadPM, {0, 0})) {
return false;
}
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x <= y; ++x) {
if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) {
return false;
}
}
}
return true;
}