|  | /* | 
|  | * Copyright 2014 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "SkDistanceFieldGen.h" | 
|  | #include "SkPoint.h" | 
|  |  | 
|  | struct DFData { | 
|  | float   fAlpha;      // alpha value of source texel | 
|  | float   fDistSq;     // distance squared to nearest (so far) edge texel | 
|  | SkPoint fDistVector; // distance vector to nearest (so far) edge texel | 
|  | }; | 
|  |  | 
|  | enum NeighborFlags { | 
|  | kLeft_NeighborFlag        = 0x01, | 
|  | kRight_NeighborFlag       = 0x02, | 
|  | kTopLeft_NeighborFlag     = 0x04, | 
|  | kTop_NeighborFlag         = 0x08, | 
|  | kTopRight_NeighborFlag    = 0x10, | 
|  | kBottomLeft_NeighborFlag  = 0x20, | 
|  | kBottom_NeighborFlag      = 0x40, | 
|  | kBottomRight_NeighborFlag = 0x80, | 
|  | kAll_NeighborFlags        = 0xff, | 
|  |  | 
|  | kNeighborFlagCount        = 8 | 
|  | }; | 
|  |  | 
|  | // We treat an "edge" as a place where we cross from >=128 to <128, or vice versa, or | 
|  | // where we have two non-zero pixels that are <128. | 
|  | // 'neighborFlags' is used to limit the directions in which we test to avoid indexing | 
|  | // outside of the image | 
|  | static bool found_edge(const unsigned char* imagePtr, int width, int neighborFlags) { | 
|  | // the order of these should match the neighbor flags above | 
|  | const int kNum8ConnectedNeighbors = 8; | 
|  | const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 }; | 
|  | SkASSERT(kNum8ConnectedNeighbors == kNeighborFlagCount); | 
|  |  | 
|  | // search for an edge | 
|  | unsigned char currVal = *imagePtr; | 
|  | unsigned char currCheck = (currVal >> 7); | 
|  | for (int i = 0; i < kNum8ConnectedNeighbors; ++i) { | 
|  | unsigned char neighborVal; | 
|  | if ((1 << i) & neighborFlags) { | 
|  | const unsigned char* checkPtr = imagePtr + offsets[i]; | 
|  | neighborVal = *checkPtr; | 
|  | } else { | 
|  | neighborVal = 0; | 
|  | } | 
|  | unsigned char neighborCheck = (neighborVal >> 7); | 
|  | SkASSERT(currCheck == 0 || currCheck == 1); | 
|  | SkASSERT(neighborCheck == 0 || neighborCheck == 1); | 
|  | // if sharp transition | 
|  | if (currCheck != neighborCheck || | 
|  | // or both <128 and >0 | 
|  | (!currCheck && !neighborCheck && currVal && neighborVal)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void init_glyph_data(DFData* data, unsigned char* edges, const unsigned char* image, | 
|  | int dataWidth, int dataHeight, | 
|  | int imageWidth, int imageHeight, | 
|  | int pad) { | 
|  | data += pad*dataWidth; | 
|  | data += pad; | 
|  | edges += (pad*dataWidth + pad); | 
|  |  | 
|  | for (int j = 0; j < imageHeight; ++j) { | 
|  | for (int i = 0; i < imageWidth; ++i) { | 
|  | if (255 == *image) { | 
|  | data->fAlpha = 1.0f; | 
|  | } else { | 
|  | data->fAlpha = (*image)*0.00392156862f;  // 1/255 | 
|  | } | 
|  | int checkMask = kAll_NeighborFlags; | 
|  | if (i == 0) { | 
|  | checkMask &= ~(kLeft_NeighborFlag|kTopLeft_NeighborFlag|kBottomLeft_NeighborFlag); | 
|  | } | 
|  | if (i == imageWidth-1) { | 
|  | checkMask &= ~(kRight_NeighborFlag|kTopRight_NeighborFlag|kBottomRight_NeighborFlag); | 
|  | } | 
|  | if (j == 0) { | 
|  | checkMask &= ~(kTopLeft_NeighborFlag|kTop_NeighborFlag|kTopRight_NeighborFlag); | 
|  | } | 
|  | if (j == imageHeight-1) { | 
|  | checkMask &= ~(kBottomLeft_NeighborFlag|kBottom_NeighborFlag|kBottomRight_NeighborFlag); | 
|  | } | 
|  | if (found_edge(image, imageWidth, checkMask)) { | 
|  | *edges = 255;  // using 255 makes for convenient debug rendering | 
|  | } | 
|  | ++data; | 
|  | ++image; | 
|  | ++edges; | 
|  | } | 
|  | data += 2*pad; | 
|  | edges += 2*pad; | 
|  | } | 
|  | } | 
|  |  | 
|  | // from Gustavson (2011) | 
|  | // computes the distance to an edge given an edge normal vector and a pixel's alpha value | 
|  | // assumes that direction has been pre-normalized | 
|  | static float edge_distance(const SkPoint& direction, float alpha) { | 
|  | float dx = direction.fX; | 
|  | float dy = direction.fY; | 
|  | float distance; | 
|  | if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) { | 
|  | distance = 0.5f - alpha; | 
|  | } else { | 
|  | // this is easier if we treat the direction as being in the first octant | 
|  | // (other octants are symmetrical) | 
|  | dx = SkScalarAbs(dx); | 
|  | dy = SkScalarAbs(dy); | 
|  | if (dx < dy) { | 
|  | SkTSwap(dx, dy); | 
|  | } | 
|  |  | 
|  | // a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge | 
|  | // to avoid the divide, we just consider the numerator | 
|  | float a1num = 0.5f*dy; | 
|  |  | 
|  | // we now compute the approximate distance, depending where the alpha falls | 
|  | // relative to the edge fractional area | 
|  |  | 
|  | // if 0 <= alpha < a1 | 
|  | if (alpha*dx < a1num) { | 
|  | // TODO: find a way to do this without square roots? | 
|  | distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha); | 
|  | // if a1 <= alpha <= 1 - a1 | 
|  | } else if (alpha*dx < (dx - a1num)) { | 
|  | distance = (0.5f - alpha)*dx; | 
|  | // if 1 - a1 < alpha <= 1 | 
|  | } else { | 
|  | // TODO: find a way to do this without square roots? | 
|  | distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return distance; | 
|  | } | 
|  |  | 
|  | static void init_distances(DFData* data, unsigned char* edges, int width, int height) { | 
|  | // skip one pixel border | 
|  | DFData* currData = data; | 
|  | DFData* prevData = data - width; | 
|  | DFData* nextData = data + width; | 
|  |  | 
|  | for (int j = 0; j < height; ++j) { | 
|  | for (int i = 0; i < width; ++i) { | 
|  | if (*edges) { | 
|  | // we should not be in the one-pixel outside band | 
|  | SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1); | 
|  | // gradient will point from low to high | 
|  | // +y is down in this case | 
|  | // i.e., if you're outside, gradient points towards edge | 
|  | // if you're inside, gradient points away from edge | 
|  | SkPoint currGrad; | 
|  | currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha | 
|  | + SK_ScalarSqrt2*(currData+1)->fAlpha | 
|  | - SK_ScalarSqrt2*(currData-1)->fAlpha | 
|  | + (nextData+1)->fAlpha - (nextData-1)->fAlpha; | 
|  | currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha | 
|  | + SK_ScalarSqrt2*nextData->fAlpha | 
|  | - SK_ScalarSqrt2*prevData->fAlpha | 
|  | + (nextData+1)->fAlpha - (prevData+1)->fAlpha; | 
|  | currGrad.setLengthFast(1.0f); | 
|  |  | 
|  | // init squared distance to edge and distance vector | 
|  | float dist = edge_distance(currGrad, currData->fAlpha); | 
|  | currGrad.scale(dist, &currData->fDistVector); | 
|  | currData->fDistSq = dist*dist; | 
|  | } else { | 
|  | // init distance to "far away" | 
|  | currData->fDistSq = 2000000.f; | 
|  | currData->fDistVector.fX = 1000.f; | 
|  | currData->fDistVector.fY = 1000.f; | 
|  | } | 
|  | ++currData; | 
|  | ++prevData; | 
|  | ++nextData; | 
|  | ++edges; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Danielsson's 8SSEDT | 
|  |  | 
|  | // first stage forward pass | 
|  | // (forward in Y, forward in X) | 
|  | static void F1(DFData* curr, int width) { | 
|  | // upper left | 
|  | DFData* check = curr - width-1; | 
|  | SkPoint distVec = check->fDistVector; | 
|  | float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f); | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX -= 1.0f; | 
|  | distVec.fY -= 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  |  | 
|  | // up | 
|  | check = curr - width; | 
|  | distVec = check->fDistVector; | 
|  | distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f; | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fY -= 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  |  | 
|  | // upper right | 
|  | check = curr - width+1; | 
|  | distVec = check->fDistVector; | 
|  | distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f); | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX += 1.0f; | 
|  | distVec.fY -= 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  |  | 
|  | // left | 
|  | check = curr - 1; | 
|  | distVec = check->fDistVector; | 
|  | distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX -= 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  | } | 
|  |  | 
|  | // second stage forward pass | 
|  | // (forward in Y, backward in X) | 
|  | static void F2(DFData* curr, int width) { | 
|  | // right | 
|  | DFData* check = curr + 1; | 
|  | float distSq = check->fDistSq; | 
|  | SkPoint distVec = check->fDistVector; | 
|  | distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX += 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  | } | 
|  |  | 
|  | // first stage backward pass | 
|  | // (backward in Y, forward in X) | 
|  | static void B1(DFData* curr, int width) { | 
|  | // left | 
|  | DFData* check = curr - 1; | 
|  | SkPoint distVec = check->fDistVector; | 
|  | float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f; | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX -= 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  | } | 
|  |  | 
|  | // second stage backward pass | 
|  | // (backward in Y, backwards in X) | 
|  | static void B2(DFData* curr, int width) { | 
|  | // right | 
|  | DFData* check = curr + 1; | 
|  | SkPoint distVec = check->fDistVector; | 
|  | float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f; | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX += 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  |  | 
|  | // bottom left | 
|  | check = curr + width-1; | 
|  | distVec = check->fDistVector; | 
|  | distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f); | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX -= 1.0f; | 
|  | distVec.fY += 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  |  | 
|  | // bottom | 
|  | check = curr + width; | 
|  | distVec = check->fDistVector; | 
|  | distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f; | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fY += 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  |  | 
|  | // bottom right | 
|  | check = curr + width+1; | 
|  | distVec = check->fDistVector; | 
|  | distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f); | 
|  | if (distSq < curr->fDistSq) { | 
|  | distVec.fX += 1.0f; | 
|  | distVec.fY += 1.0f; | 
|  | curr->fDistSq = distSq; | 
|  | curr->fDistVector = distVec; | 
|  | } | 
|  | } | 
|  |  | 
|  | // enable this to output edge data rather than the distance field | 
|  | #define DUMP_EDGE 0 | 
|  |  | 
|  | #if !DUMP_EDGE | 
|  | static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) { | 
|  | if (dist <= -distanceMagnitude) { | 
|  | return 255; | 
|  | } else if (dist > distanceMagnitude) { | 
|  | return 0; | 
|  | } else { | 
|  | return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // assumes a padded 8-bit image and distance field | 
|  | // width and height are the original width and height of the image | 
|  | static bool generate_distance_field_from_image(unsigned char* distanceField, | 
|  | const unsigned char* copyPtr, | 
|  | int width, int height) { | 
|  | SkASSERT(NULL != distanceField); | 
|  | SkASSERT(NULL != copyPtr); | 
|  |  | 
|  | // we expand our temp data by one more on each side to simplify | 
|  | // the scanning code -- will always be treated as infinitely far away | 
|  | int pad = SK_DistanceFieldPad + 1; | 
|  |  | 
|  | // set params for distance field data | 
|  | int dataWidth = width + 2*pad; | 
|  | int dataHeight = height + 2*pad; | 
|  |  | 
|  | // create temp data | 
|  | size_t dataSize = dataWidth*dataHeight*sizeof(DFData); | 
|  | SkAutoSMalloc<1024> dfStorage(dataSize); | 
|  | DFData* dataPtr = (DFData*) dfStorage.get(); | 
|  | sk_bzero(dataPtr, dataSize); | 
|  |  | 
|  | SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char)); | 
|  | unsigned char* edgePtr = (unsigned char*) edgeStorage.get(); | 
|  | sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char)); | 
|  |  | 
|  | // copy glyph into distance field storage | 
|  | init_glyph_data(dataPtr, edgePtr, copyPtr, | 
|  | dataWidth, dataHeight, | 
|  | width+2, height+2, SK_DistanceFieldPad); | 
|  |  | 
|  | // create initial distance data, particularly at edges | 
|  | init_distances(dataPtr, edgePtr, dataWidth, dataHeight); | 
|  |  | 
|  | // now perform Euclidean distance transform to propagate distances | 
|  |  | 
|  | // forwards in y | 
|  | DFData* currData = dataPtr+dataWidth+1; // skip outer buffer | 
|  | unsigned char* currEdge = edgePtr+dataWidth+1; | 
|  | for (int j = 1; j < dataHeight-1; ++j) { | 
|  | // forwards in x | 
|  | for (int i = 1; i < dataWidth-1; ++i) { | 
|  | // don't need to calculate distance for edge pixels | 
|  | if (!*currEdge) { | 
|  | F1(currData, dataWidth); | 
|  | } | 
|  | ++currData; | 
|  | ++currEdge; | 
|  | } | 
|  |  | 
|  | // backwards in x | 
|  | --currData; // reset to end | 
|  | --currEdge; | 
|  | for (int i = 1; i < dataWidth-1; ++i) { | 
|  | // don't need to calculate distance for edge pixels | 
|  | if (!*currEdge) { | 
|  | F2(currData, dataWidth); | 
|  | } | 
|  | --currData; | 
|  | --currEdge; | 
|  | } | 
|  |  | 
|  | currData += dataWidth+1; | 
|  | currEdge += dataWidth+1; | 
|  | } | 
|  |  | 
|  | // backwards in y | 
|  | currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer | 
|  | currEdge = edgePtr+dataWidth*(dataHeight-2) - 1; | 
|  | for (int j = 1; j < dataHeight-1; ++j) { | 
|  | // forwards in x | 
|  | for (int i = 1; i < dataWidth-1; ++i) { | 
|  | // don't need to calculate distance for edge pixels | 
|  | if (!*currEdge) { | 
|  | B1(currData, dataWidth); | 
|  | } | 
|  | ++currData; | 
|  | ++currEdge; | 
|  | } | 
|  |  | 
|  | // backwards in x | 
|  | --currData; // reset to end | 
|  | --currEdge; | 
|  | for (int i = 1; i < dataWidth-1; ++i) { | 
|  | // don't need to calculate distance for edge pixels | 
|  | if (!*currEdge) { | 
|  | B2(currData, dataWidth); | 
|  | } | 
|  | --currData; | 
|  | --currEdge; | 
|  | } | 
|  |  | 
|  | currData -= dataWidth-1; | 
|  | currEdge -= dataWidth-1; | 
|  | } | 
|  |  | 
|  | // copy results to final distance field data | 
|  | currData = dataPtr + dataWidth+1; | 
|  | currEdge = edgePtr + dataWidth+1; | 
|  | unsigned char *dfPtr = distanceField; | 
|  | for (int j = 1; j < dataHeight-1; ++j) { | 
|  | for (int i = 1; i < dataWidth-1; ++i) { | 
|  | #if DUMP_EDGE | 
|  | float alpha = currData->fAlpha; | 
|  | float edge = 0.0f; | 
|  | if (*currEdge) { | 
|  | edge = 0.25f; | 
|  | } | 
|  | // blend with original image | 
|  | float result = alpha + (1.0f-alpha)*edge; | 
|  | unsigned char val = sk_float_round2int(255*result); | 
|  | *dfPtr++ = val; | 
|  | #else | 
|  | float dist; | 
|  | if (currData->fAlpha > 0.5f) { | 
|  | dist = -SkScalarSqrt(currData->fDistSq); | 
|  | } else { | 
|  | dist = SkScalarSqrt(currData->fDistSq); | 
|  | } | 
|  | *dfPtr++ = pack_distance_field_val(dist, (float)SK_DistanceFieldMagnitude); | 
|  | #endif | 
|  | ++currData; | 
|  | ++currEdge; | 
|  | } | 
|  | currData += 2; | 
|  | currEdge += 2; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // assumes an 8-bit image and distance field | 
|  | bool SkGenerateDistanceFieldFromA8Image(unsigned char* distanceField, | 
|  | const unsigned char* image, | 
|  | int width, int height, int rowBytes) { | 
|  | SkASSERT(NULL != distanceField); | 
|  | SkASSERT(NULL != image); | 
|  |  | 
|  | // create temp data | 
|  | SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char)); | 
|  | unsigned char* copyPtr = (unsigned char*) copyStorage.get(); | 
|  |  | 
|  | // we copy our source image into a padded copy to ensure we catch edge transitions | 
|  | // around the outside | 
|  | const unsigned char* currSrcScanLine = image; | 
|  | sk_bzero(copyPtr, (width+2)*sizeof(char)); | 
|  | unsigned char* currDestPtr = copyPtr + width + 2; | 
|  | for (int i = 0; i < height; ++i) { | 
|  | *currDestPtr++ = 0; | 
|  | memcpy(currDestPtr, currSrcScanLine, rowBytes); | 
|  | currSrcScanLine += rowBytes; | 
|  | currDestPtr += width; | 
|  | *currDestPtr++ = 0; | 
|  | } | 
|  | sk_bzero(currDestPtr, (width+2)*sizeof(char)); | 
|  |  | 
|  | return generate_distance_field_from_image(distanceField, copyPtr, width, height); | 
|  | } | 
|  |  | 
|  | // assumes a 1-bit image and 8-bit distance field | 
|  | bool SkGenerateDistanceFieldFromBWImage(unsigned char* distanceField, | 
|  | const unsigned char* image, | 
|  | int width, int height, int rowBytes) { | 
|  | SkASSERT(NULL != distanceField); | 
|  | SkASSERT(NULL != image); | 
|  |  | 
|  | // create temp data | 
|  | SkAutoSMalloc<1024> copyStorage((width+2)*(height+2)*sizeof(char)); | 
|  | unsigned char* copyPtr = (unsigned char*) copyStorage.get(); | 
|  |  | 
|  | // we copy our source image into a padded copy to ensure we catch edge transitions | 
|  | // around the outside | 
|  | const unsigned char* currSrcScanLine = image; | 
|  | sk_bzero(copyPtr, (width+2)*sizeof(char)); | 
|  | unsigned char* currDestPtr = copyPtr + width + 2; | 
|  | for (int i = 0; i < height; ++i) { | 
|  | *currDestPtr++ = 0; | 
|  | int rowWritesLeft = width; | 
|  | const unsigned char *maskPtr = currSrcScanLine; | 
|  | while (rowWritesLeft > 0) { | 
|  | unsigned mask = *maskPtr++; | 
|  | for (int i = 7; i >= 0 && rowWritesLeft; --i, --rowWritesLeft) { | 
|  | *currDestPtr++ = (mask & (1 << i)) ? 0xff : 0; | 
|  | } | 
|  | } | 
|  | currSrcScanLine += rowBytes; | 
|  | *currDestPtr++ = 0; | 
|  | } | 
|  | sk_bzero(currDestPtr, (width+2)*sizeof(char)); | 
|  |  | 
|  | return generate_distance_field_from_image(distanceField, copyPtr, width, height); | 
|  | } |