blob: 9bb46659473743723417362e9c476dba77d693cc [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkVM_DEFINED
#define SkVM_DEFINED
#include "include/core/SkBlendMode.h"
#include "include/core/SkColor.h"
#include "include/private/SkMacros.h"
#include "include/private/SkTHash.h"
#include "src/core/SkSpan.h"
#include "src/core/SkVM_fwd.h"
#include <vector> // std::vector
class SkWStream;
#if 0
#define SKVM_LLVM
#endif
namespace skvm {
class Assembler {
public:
explicit Assembler(void* buf);
size_t size() const;
// Order matters... GP64, Xmm, Ymm values match 4-bit register encoding for each.
enum GP64 {
rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi,
r8 , r9 , r10, r11, r12, r13, r14, r15,
};
enum Xmm {
xmm0, xmm1, xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , xmm7 ,
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15,
};
enum Ymm {
ymm0, ymm1, ymm2 , ymm3 , ymm4 , ymm5 , ymm6 , ymm7 ,
ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15,
};
// X and V values match 5-bit encoding for each (nothing tricky).
enum X {
x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 ,
x8 , x9 , x10, x11, x12, x13, x14, x15,
x16, x17, x18, x19, x20, x21, x22, x23,
x24, x25, x26, x27, x28, x29, x30, xzr,
};
enum V {
v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 ,
v8 , v9 , v10, v11, v12, v13, v14, v15,
v16, v17, v18, v19, v20, v21, v22, v23,
v24, v25, v26, v27, v28, v29, v30, v31,
};
void bytes(const void*, int);
void byte(uint8_t);
void word(uint32_t);
// x86-64
void align(int mod);
void int3();
void vzeroupper();
void ret();
void add(GP64, int imm);
void sub(GP64, int imm);
void movq(GP64 dst, GP64 src, int off); // dst = *(src+off)
struct Label {
int offset = 0;
enum { NotYetSet, ARMDisp19, X86Disp32 } kind = NotYetSet;
std::vector<int> references;
};
struct YmmOrLabel {
Ymm ymm = ymm0;
Label* label = nullptr;
/*implicit*/ YmmOrLabel(Ymm y) : ymm (y) { SkASSERT(!label); }
/*implicit*/ YmmOrLabel(Label* l) : label(l) { SkASSERT( label); }
};
// All dst = x op y.
using DstEqXOpY = void(Ymm dst, Ymm x, Ymm y);
DstEqXOpY vpandn,
vpmulld,
vpsubw, vpmullw,
vdivps,
vfmadd132ps, vfmadd213ps, vfmadd231ps,
vfmsub132ps, vfmsub213ps, vfmsub231ps,
vfnmadd132ps, vfnmadd213ps, vfnmadd231ps,
vpackusdw, vpackuswb,
vpcmpeqd, vpcmpgtd;
using DstEqXOpYOrLabel = void(Ymm dst, Ymm x, YmmOrLabel y);
DstEqXOpYOrLabel vpand, vpor, vpxor,
vpaddd, vpsubd,
vaddps, vsubps, vmulps, vminps, vmaxps;
// Floating point comparisons are all the same instruction with varying imm.
void vcmpps(Ymm dst, Ymm x, Ymm y, int imm);
void vcmpeqps (Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,0); }
void vcmpltps (Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,1); }
void vcmpleps (Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,2); }
void vcmpneqps(Ymm dst, Ymm x, Ymm y) { this->vcmpps(dst,x,y,4); }
using DstEqXOpImm = void(Ymm dst, Ymm x, int imm);
DstEqXOpImm vpslld, vpsrld, vpsrad,
vpsrlw,
vpermq,
vroundps;
enum { NEAREST, FLOOR, CEIL, TRUNC }; // vroundps immediates
using DstEqOpX = void(Ymm dst, Ymm x);
DstEqOpX vmovdqa, vcvtdq2ps, vcvttps2dq, vcvtps2dq, vsqrtps;
void vpblendvb(Ymm dst, Ymm x, Ymm y, Ymm z);
Label here();
void label(Label*);
void jmp(Label*);
void je (Label*);
void jne(Label*);
void jl (Label*);
void jc (Label*);
void cmp(GP64, int imm);
void vpshufb(Ymm dst, Ymm x, Label*);
void vptest(Ymm dst, Label*);
void vbroadcastss(Ymm dst, Label*);
void vbroadcastss(Ymm dst, Xmm src);
void vbroadcastss(Ymm dst, GP64 ptr, int off); // dst = *(ptr+off)
void vmovups (Ymm dst, GP64 ptr); // dst = *ptr, 256-bit
void vpmovzxwd(Ymm dst, GP64 ptr); // dst = *ptr, 128-bit, each uint16_t expanded to int
void vpmovzxbd(Ymm dst, GP64 ptr); // dst = *ptr, 64-bit, each uint8_t expanded to int
void vmovd (Xmm dst, GP64 ptr); // dst = *ptr, 32-bit
enum Scale { ONE, TWO, FOUR, EIGHT };
void vmovd(Xmm dst, Scale, GP64 index, GP64 base); // dst = *(base + scale*index), 32-bit
void vmovups(GP64 ptr, Ymm src); // *ptr = src, 256-bit
void vmovups(GP64 ptr, Xmm src); // *ptr = src, 128-bit
void vmovq (GP64 ptr, Xmm src); // *ptr = src, 64-bit
void vmovd (GP64 ptr, Xmm src); // *ptr = src, 32-bit
void movzbl(GP64 dst, GP64 ptr, int off); // dst = *(ptr+off), uint8_t -> int
void movb (GP64 ptr, GP64 src); // *ptr = src, 8-bit
void vmovd_direct(GP64 dst, Xmm src); // dst = src, 32-bit
void vmovd_direct(Xmm dst, GP64 src); // dst = src, 32-bit
void vpinsrw(Xmm dst, Xmm src, GP64 ptr, int imm); // dst = src; dst[imm] = *ptr, 16-bit
void vpinsrb(Xmm dst, Xmm src, GP64 ptr, int imm); // dst = src; dst[imm] = *ptr, 8-bit
void vpextrw(GP64 ptr, Xmm src, int imm); // *dst = src[imm] , 16-bit
void vpextrb(GP64 ptr, Xmm src, int imm); // *dst = src[imm] , 8-bit
// if (mask & 0x8000'0000) {
// dst = base[scale*ix];
// }
// mask = 0;
void vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask);
// aarch64
// d = op(n,m)
using DOpNM = void(V d, V n, V m);
DOpNM and16b, orr16b, eor16b, bic16b, bsl16b,
add4s, sub4s, mul4s,
cmeq4s, cmgt4s,
sub8h, mul8h,
fadd4s, fsub4s, fmul4s, fdiv4s, fmin4s, fmax4s,
fcmeq4s, fcmgt4s, fcmge4s,
tbl;
// TODO: there are also float ==,<,<=,>,>= instructions with an immediate 0.0f,
// and the register comparison > and >= can also compare absolute values. Interesting.
// d += n*m
void fmla4s(V d, V n, V m);
// d -= n*m
void fmls4s(V d, V n, V m);
// d = op(n,imm)
using DOpNImm = void(V d, V n, int imm);
DOpNImm sli4s,
shl4s, sshr4s, ushr4s,
ushr8h;
// d = op(n)
using DOpN = void(V d, V n);
DOpN not16b, // d = ~n
fneg4s, // d = -n
scvtf4s, // int -> float
fcvtzs4s, // truncate float -> int
fcvtns4s, // round float -> int (nearest even)
xtns2h, // u32 -> u16
xtnh2b, // u16 -> u8
uxtlb2h, // u8 -> u16
uxtlh2s, // u16 -> u32
uminv4s; // dst[0] = min(n[0],n[1],n[2],n[3]), n as unsigned
void brk (int imm16);
void ret (X);
void add (X d, X n, int imm12);
void sub (X d, X n, int imm12);
void subs(X d, X n, int imm12); // subtract setting condition flags
// There's another encoding for unconditional branches that can jump further,
// but this one encoded as b.al is simple to implement and should be fine.
void b (Label* l) { this->b(Condition::al, l); }
void bne(Label* l) { this->b(Condition::ne, l); }
void blt(Label* l) { this->b(Condition::lt, l); }
// "cmp ..." is just an assembler mnemonic for "subs xzr, ..."!
void cmp(X n, int imm12) { this->subs(xzr, n, imm12); }
// Compare and branch if zero/non-zero, as if
// cmp(t,0)
// beq/bne(l)
// but without setting condition flags.
void cbz (X t, Label* l);
void cbnz(X t, Label* l);
void ldrq(V dst, Label*); // 128-bit PC-relative load
void ldrq(V dst, X src); // 128-bit dst = *src
void ldrs(V dst, X src); // 32-bit dst = *src
void ldrb(V dst, X src); // 8-bit dst = *src
void strq(V src, X dst); // 128-bit *dst = src
void strs(V src, X dst); // 32-bit *dst = src
void strb(V src, X dst); // 8-bit *dst = src
void fmovs(X dst, V src); // dst = 32-bit src[0]
private:
// dst = op(dst, imm)
void op(int opcode, int opcode_ext, GP64 dst, int imm);
// dst = op(x,y) or op(x)
void op(int prefix, int map, int opcode, Ymm dst, Ymm x, Ymm y, bool W=false);
void op(int prefix, int map, int opcode, Ymm dst, Ymm x, bool W=false) {
// Two arguments ops seem to pass them in dst and y, forcing x to 0 so VEX.vvvv == 1111.
this->op(prefix, map, opcode, dst,(Ymm)0,x, W);
}
// dst = op(x,imm)
void op(int prefix, int map, int opcode, int opcode_ext, Ymm dst, Ymm x, int imm);
// dst = op(x,label) or op(label)
void op(int prefix, int map, int opcode, Ymm dst, Ymm x, Label* l);
void op(int prefix, int map, int opcode, Ymm dst, Ymm x, YmmOrLabel);
// *ptr = ymm or ymm = *ptr, depending on opcode.
void load_store(int prefix, int map, int opcode, Ymm ymm, GP64 ptr);
// Opcode for 3-arguments ops is split between hi and lo:
// [11 bits hi] [5 bits m] [6 bits lo] [5 bits n] [5 bits d]
void op(uint32_t hi, V m, uint32_t lo, V n, V d);
// 2-argument ops, with or without an immediate.
void op(uint32_t op22, int imm, V n, V d);
void op(uint32_t op22, V n, V d) { this->op(op22,0,n,d); }
void op(uint32_t op22, X x, V v) { this->op(op22,0,(V)x,v); }
// Order matters... value is 4-bit encoding for condition code.
enum class Condition { eq,ne,cs,cc,mi,pl,vs,vc,hi,ls,ge,lt,gt,le,al };
void b(Condition, Label*);
void jump(uint8_t condition, Label*);
int disp19(Label*);
int disp32(Label*);
uint8_t* fCode;
uint8_t* fCurr;
size_t fSize;
};
// Order matters a little: Ops <=store32 are treated as having side effects.
#define SKVM_OPS(M) \
M(assert_true) \
M(store8) M(store16) M(store32) \
M(index) \
M(load8) M(load16) M(load32) \
M(gather8) M(gather16) M(gather32) \
M(uniform8) M(uniform16) M(uniform32) \
M(splat) \
M(add_f32) M(add_i32) M(add_i16x2) \
M(sub_f32) M(sub_i32) M(sub_i16x2) \
M(mul_f32) M(mul_i32) M(mul_i16x2) \
M(div_f32) \
M(min_f32) \
M(max_f32) \
M(fma_f32) M(fms_f32) M(fnma_f32) \
M(sqrt_f32) \
M(shl_i32) M(shl_i16x2) \
M(shr_i32) M(shr_i16x2) \
M(sra_i32) M(sra_i16x2) \
M(add_f32_imm) \
M(sub_f32_imm) \
M(mul_f32_imm) \
M(min_f32_imm) \
M(max_f32_imm) \
M(floor) M(trunc) M(round) M(to_f32) \
M( eq_f32) M( eq_i32) M( eq_i16x2) \
M(neq_f32) M(neq_i32) M(neq_i16x2) \
M( gt_f32) M( gt_i32) M( gt_i16x2) \
M(gte_f32) M(gte_i32) M(gte_i16x2) \
M(bit_and) \
M(bit_or) \
M(bit_xor) \
M(bit_clear) \
M(bit_and_imm) \
M(bit_or_imm) \
M(bit_xor_imm) \
M(select) M(bytes) M(pack) \
// End of SKVM_OPS
enum class Op : int {
#define M(op) op,
SKVM_OPS(M)
#undef M
};
using Val = int;
// We reserve an impossibe Val ID as a sentinel
// NA meaning none, n/a, null, nil, etc.
static const Val NA = -1;
struct Arg { int ix; };
struct I32 {
Builder* builder = nullptr;
Val id = NA;
explicit operator bool() const { return id != NA; }
Builder* operator->() const { return builder; }
};
struct F32 {
Builder* builder = nullptr;
Val id = NA;
explicit operator bool() const { return id != NA; }
Builder* operator->() const { return builder; }
};
// Some operations make sense with immediate arguments,
// so we use I32a and F32a to receive them transparently.
//
// We omit overloads that may indicate a bug or performance issue.
// In general it does not make sense to pass immediates to unary operations,
// and even sometimes not for binary operations, e.g.
//
// div(x,y) -- normal every day divide
// div(3.0f,y) -- yep, makes sense
// div(x,3.0f) -- omitted as a reminder you probably want mul(x, 1/3.0f).
//
// You can of course always splat() to override these opinions.
struct I32a {
I32a(I32 v) : SkDEBUGCODE(builder(v.builder),) id(v.id) {}
I32a(int v) : imm(v) {}
SkDEBUGCODE(Builder* builder = nullptr;)
Val id = NA;
int imm = 0;
};
struct F32a {
F32a(F32 v) : SkDEBUGCODE(builder(v.builder),) id(v.id) {}
F32a(float v) : imm(v) {}
SkDEBUGCODE(Builder* builder = nullptr;)
Val id = NA;
float imm = 0;
};
struct Color {
skvm::F32 r,g,b,a;
explicit operator bool() const { return r && g && b && a; }
Builder* operator->() const { return a.operator->(); }
};
struct HSLA {
skvm::F32 h,s,l,a;
explicit operator bool() const { return h && s && l && a; }
Builder* operator->() const { return a.operator->(); }
};
struct Uniform {
Arg ptr;
int offset;
};
struct Uniforms {
Arg base;
std::vector<int> buf;
explicit Uniforms(int init) : base(Arg{0}), buf(init) {}
Uniform push(int val) {
buf.push_back(val);
return {base, (int)( sizeof(int)*(buf.size() - 1) )};
}
Uniform pushF(float val) {
int bits;
memcpy(&bits, &val, sizeof(int));
return this->push(bits);
}
Uniform pushPtr(const void* ptr) {
// Jam the pointer into 1 or 2 ints.
int ints[sizeof(ptr) / sizeof(int)];
memcpy(ints, &ptr, sizeof(ptr));
for (int bits : ints) {
buf.push_back(bits);
}
return {base, (int)( sizeof(int)*(buf.size() - SK_ARRAY_COUNT(ints)) )};
}
};
SK_BEGIN_REQUIRE_DENSE
struct Instruction {
Op op; // v* = op(x,y,z,imm), where * == index of this Instruction.
Val x,y,z; // Enough arguments for mad().
int immy,immz; // Immediate bit pattern, shift count, argument index, etc.
};
SK_END_REQUIRE_DENSE
bool operator==(const Instruction&, const Instruction&);
struct InstructionHash {
uint32_t operator()(const Instruction&, uint32_t seed=0) const;
};
struct OptimizedInstruction {
Op op;
Val x,y,z;
int immy,immz;
Val death;
bool can_hoist;
bool used_in_loop;
};
class Builder {
public:
Program done(const char* debug_name = nullptr) const;
// Mostly for debugging, tests, etc.
std::vector<Instruction> program() const { return fProgram; }
std::vector<OptimizedInstruction> optimize(bool for_jit=false) const;
// Declare an argument with given stride (use stride=0 for uniforms).
// TODO: different types for varying and uniforms?
Arg arg(int stride);
// Convenience arg() wrappers for most common strides, sizeof(T) and 0.
template <typename T>
Arg varying() { return this->arg(sizeof(T)); }
Arg uniform() { return this->arg(0); }
// TODO: allow uniform (i.e. Arg) offsets to store* and load*?
// TODO: sign extension (signed types) for <32-bit loads?
// TODO: unsigned integer operations where relevant (just comparisons?)?
// Assert cond is true, printing debug when not.
void assert_true(I32 cond, I32 debug);
void assert_true(I32 cond, F32 debug) { assert_true(cond, bit_cast(debug)); }
void assert_true(I32 cond) { assert_true(cond, cond); }
// Store {8,16,32}-bit varying.
void store8 (Arg ptr, I32 val);
void store16(Arg ptr, I32 val);
void store32(Arg ptr, I32 val);
void storeF (Arg ptr, F32 val) { store32(ptr, bit_cast(val)); }
// Returns varying {n, n-1, n-2, ..., 1}, where n is the argument to Program::eval().
I32 index();
// Load u8,u16,i32 varying.
I32 load8 (Arg ptr);
I32 load16(Arg ptr);
I32 load32(Arg ptr);
F32 loadF (Arg ptr) { return bit_cast(load32(ptr)); }
// Load u8,u16,i32 uniform with byte-count offset.
I32 uniform8 (Arg ptr, int offset);
I32 uniform16(Arg ptr, int offset);
I32 uniform32(Arg ptr, int offset);
F32 uniformF (Arg ptr, int offset) { return this->bit_cast(this->uniform32(ptr,offset)); }
// Load this color as a uniform, premultiplied and converted to dst SkColorSpace.
Color uniformPremul(SkColor4f, SkColorSpace* src,
Uniforms*, SkColorSpace* dst);
// Gather u8,u16,i32 with varying element-count index from *(ptr + byte-count offset).
I32 gather8 (Arg ptr, int offset, I32 index);
I32 gather16(Arg ptr, int offset, I32 index);
I32 gather32(Arg ptr, int offset, I32 index);
F32 gatherF (Arg ptr, int offset, I32 index) {
return bit_cast(gather32(ptr, offset, index));
}
// Convenience methods for working with skvm::Uniform(s).
I32 uniform8 (Uniform u) { return this->uniform8 (u.ptr, u.offset); }
I32 uniform16(Uniform u) { return this->uniform16(u.ptr, u.offset); }
I32 uniform32(Uniform u) { return this->uniform32(u.ptr, u.offset); }
F32 uniformF (Uniform u) { return this->uniformF (u.ptr, u.offset); }
I32 gather8 (Uniform u, I32 index) { return this->gather8 (u.ptr, u.offset, index); }
I32 gather16 (Uniform u, I32 index) { return this->gather16 (u.ptr, u.offset, index); }
I32 gather32 (Uniform u, I32 index) { return this->gather32 (u.ptr, u.offset, index); }
F32 gatherF (Uniform u, I32 index) { return this->gatherF (u.ptr, u.offset, index); }
// Load an immediate constant.
I32 splat(int n);
I32 splat(unsigned u) { return this->splat((int)u); }
F32 splat(float f);
// float math, comparisons, etc.
F32 add(F32, F32); F32 add(F32a x, F32a y) { return add(_(x), _(y)); }
F32 sub(F32, F32); F32 sub(F32a x, F32a y) { return sub(_(x), _(y)); }
F32 mul(F32, F32); F32 mul(F32a x, F32a y) { return mul(_(x), _(y)); }
F32 div(F32, F32); F32 div(F32a x, F32 y) { return div(_(x), y ); }
F32 min(F32, F32); F32 min(F32a x, F32a y) { return min(_(x), _(y)); }
F32 max(F32, F32); F32 max(F32a x, F32a y) { return max(_(x), _(y)); }
F32 mad(F32 x, F32 y, F32 z) { return add(mul(x,y), z); }
F32 mad(F32a x, F32a y, F32a z) { return mad(_(x), _(y), _(z)); }
F32 sqrt(F32);
F32 approx_log2(F32);
F32 approx_pow2(F32);
F32 approx_log (F32 x) { return mul(0.69314718f, approx_log2(x)); }
F32 approx_exp (F32 x) { return approx_pow2(mul(x, 1.4426950408889634074f)); }
F32 approx_powf(F32 base, F32 exp);
F32 approx_powf(F32a base, F32a exp) { return approx_powf(_(base), _(exp)); }
F32 lerp(F32 lo, F32 hi, F32 t) { return mad(sub(hi, lo), t, lo); }
F32 lerp(F32a lo, F32a hi, F32a t) { return lerp(_(lo), _(hi), _(t)); }
F32 clamp(F32 x, F32 lo, F32 hi) { return max(lo, min(x, hi)); }
F32 clamp(F32a x, F32a lo, F32a hi) { return clamp(_(x), _(lo), _(hi)); }
F32 clamp01(F32 x) { return clamp(x, 0.0f, 1.0f); }
F32 abs(F32 x) { return bit_cast(bit_and(bit_cast(x), 0x7fff'ffff)); }
F32 fract(F32 x) { return sub(x, floor(x)); }
F32 floor(F32);
I32 trunc(F32 x);
I32 round(F32 x); // Round to int using current rounding mode (as if lrintf()).
I32 bit_cast(F32 x) { return {x.builder, x.id}; }
F32 norm(F32 x, F32 y) {
return sqrt(add(mul(x,x),
mul(y,y)));
}
F32 norm(F32a x, F32a y) { return norm(_(x), _(y)); }
I32 eq(F32, F32); I32 eq(F32a x, F32a y) { return eq(_(x), _(y)); }
I32 neq(F32, F32); I32 neq(F32a x, F32a y) { return neq(_(x), _(y)); }
I32 lt (F32, F32); I32 lt (F32a x, F32a y) { return lt (_(x), _(y)); }
I32 lte(F32, F32); I32 lte(F32a x, F32a y) { return lte(_(x), _(y)); }
I32 gt (F32, F32); I32 gt (F32a x, F32a y) { return gt (_(x), _(y)); }
I32 gte(F32, F32); I32 gte(F32a x, F32a y) { return gte(_(x), _(y)); }
// int math, comparisons, etc.
I32 add(I32, I32); I32 add(I32a x, I32a y) { return add(_(x), _(y)); }
I32 sub(I32, I32); I32 sub(I32a x, I32a y) { return sub(_(x), _(y)); }
I32 mul(I32, I32); I32 mul(I32a x, I32a y) { return mul(_(x), _(y)); }
I32 shl(I32 x, int bits);
I32 shr(I32 x, int bits);
I32 sra(I32 x, int bits);
I32 eq (I32 x, I32 y); I32 eq(I32a x, I32a y) { return eq(_(x), _(y)); }
I32 neq(I32 x, I32 y); I32 neq(I32a x, I32a y) { return neq(_(x), _(y)); }
I32 lt (I32 x, I32 y); I32 lt (I32a x, I32a y) { return lt (_(x), _(y)); }
I32 lte(I32 x, I32 y); I32 lte(I32a x, I32a y) { return lte(_(x), _(y)); }
I32 gt (I32 x, I32 y); I32 gt (I32a x, I32a y) { return gt (_(x), _(y)); }
I32 gte(I32 x, I32 y); I32 gte(I32a x, I32a y) { return gte(_(x), _(y)); }
F32 to_f32(I32 x);
F32 bit_cast(I32 x) { return {x.builder, x.id}; }
// Treat each 32-bit lane as a pair of 16-bit ints.
I32 add_16x2(I32, I32); I32 add_16x2(I32a x, I32a y) { return add_16x2(_(x), _(y)); }
I32 sub_16x2(I32, I32); I32 sub_16x2(I32a x, I32a y) { return sub_16x2(_(x), _(y)); }
I32 mul_16x2(I32, I32); I32 mul_16x2(I32a x, I32a y) { return mul_16x2(_(x), _(y)); }
I32 shl_16x2(I32 x, int bits);
I32 shr_16x2(I32 x, int bits);
I32 sra_16x2(I32 x, int bits);
I32 eq_16x2(I32, I32); I32 eq_16x2(I32a x, I32a y) { return eq_16x2(_(x), _(y)); }
I32 neq_16x2(I32, I32); I32 neq_16x2(I32a x, I32a y) { return neq_16x2(_(x), _(y)); }
I32 lt_16x2(I32, I32); I32 lt_16x2(I32a x, I32a y) { return lt_16x2(_(x), _(y)); }
I32 lte_16x2(I32, I32); I32 lte_16x2(I32a x, I32a y) { return lte_16x2(_(x), _(y)); }
I32 gt_16x2(I32, I32); I32 gt_16x2(I32a x, I32a y) { return gt_16x2(_(x), _(y)); }
I32 gte_16x2(I32, I32); I32 gte_16x2(I32a x, I32a y) { return gte_16x2(_(x), _(y)); }
// Bitwise operations.
I32 bit_and (I32, I32); I32 bit_and (I32a x, I32a y) { return bit_and (_(x), _(y)); }
I32 bit_or (I32, I32); I32 bit_or (I32a x, I32a y) { return bit_or (_(x), _(y)); }
I32 bit_xor (I32, I32); I32 bit_xor (I32a x, I32a y) { return bit_xor (_(x), _(y)); }
I32 bit_clear(I32, I32); I32 bit_clear(I32a x, I32a y) { return bit_clear(_(x), _(y)); }
I32 min(I32 x, I32 y) { return select(lt(x,y), x, y); }
I32 max(I32 x, I32 y) { return select(gt(x,y), x, y); }
I32 min(I32a x, I32a y) { return min(_(x), _(y)); }
I32 max(I32a x, I32a y) { return max(_(x), _(y)); }
I32 select(I32 cond, I32 t, I32 f); // cond ? t : f
F32 select(I32 cond, F32 t, F32 f) {
return this->bit_cast(this->select(cond, this->bit_cast(t)
, this->bit_cast(f)));
}
I32 select(I32a cond, I32a t, I32a f) { return select(_(cond), _(t), _(f)); }
F32 select(I32a cond, F32a t, F32a f) { return select(_(cond), _(t), _(f)); }
// More complex operations...
// Shuffle the bytes in x according to each nibble of control, as if
//
// uint8_t bytes[] = {
// 0,
// ((uint32_t)x ) & 0xff,
// ((uint32_t)x >> 8) & 0xff,
// ((uint32_t)x >> 16) & 0xff,
// ((uint32_t)x >> 24) & 0xff,
// };
// return (uint32_t)bytes[(control >> 0) & 0xf] << 0
// | (uint32_t)bytes[(control >> 4) & 0xf] << 8
// | (uint32_t)bytes[(control >> 8) & 0xf] << 16
// | (uint32_t)bytes[(control >> 12) & 0xf] << 24;
//
// So, e.g.,
// - bytes(x, 0x1111) splats the low byte of x to all four bytes
// - bytes(x, 0x4321) is x, an identity
// - bytes(x, 0x0000) is 0
// - bytes(x, 0x0404) transforms an RGBA pixel into an A0A0 bit pattern.
I32 bytes (I32 x, int control);
I32 extract(I32 x, int bits, I32 z); // (x>>bits) & z
I32 pack (I32 x, I32 y, int bits); // x | (y << bits), assuming (x & (y << bits)) == 0
I32 extract(I32a x, int bits, I32a z) { return extract(_(x), bits, _(z)); }
I32 pack (I32a x, I32a y, int bits) { return pack (_(x), _(y), bits); }
// Common idioms used in several places, worth centralizing for consistency.
F32 from_unorm(int bits, I32); // E.g. from_unorm(8, x) -> x * (1/255.0f)
I32 to_unorm(int bits, F32); // E.g. to_unorm(8, x) -> round(x * 255)
Color unpack_1010102(I32 rgba);
Color unpack_8888 (I32 rgba);
Color unpack_565 (I32 bgr ); // bottom 16 bits
void premul(F32* r, F32* g, F32* b, F32 a);
void unpremul(F32* r, F32* g, F32* b, F32 a);
Color premul(Color c) { this->premul(&c.r, &c.g, &c.b, c.a); return c; }
Color unpremul(Color c) { this->unpremul(&c.r, &c.g, &c.b, c.a); return c; }
Color lerp(Color lo, Color hi, F32 t);
Color blend(SkBlendMode, Color src, Color dst);
HSLA to_hsla(Color);
Color to_rgba(HSLA);
void dump(SkWStream* = nullptr) const;
void dot (SkWStream* = nullptr, bool for_jit=false) const;
uint64_t hash() const;
Val push(Instruction);
private:
Val push(Op op, Val x, Val y=NA, Val z=NA, int immy=0, int immz=0) {
return this->push(Instruction{op, x,y,z, immy,immz});
}
I32 _(I32a x) {
if (x.id != NA) {
SkASSERT(x.builder == this);
return {this, x.id};
}
return this->splat(x.imm);
}
F32 _(F32a x) {
if (x.id != NA) {
SkASSERT(x.builder == this);
return {this, x.id};
}
return this->splat(x.imm);
}
bool allImm() const;
template <typename T, typename... Rest>
bool allImm(Val, T* imm, Rest...) const;
template <typename T>
bool isImm(Val id, T want) const {
T imm = 0;
return this->allImm(id, &imm) && imm == want;
}
SkTHashMap<Instruction, Val, InstructionHash> fIndex;
std::vector<Instruction> fProgram;
std::vector<int> fStrides;
};
// Optimization passes and data structures normally used by Builder::optimize(),
// extracted here so they can be unit tested.
void specialize_for_jit(std::vector<Instruction>* program);
// Fill live and sinks each if non-null:
// - (*live)[id]: notes whether each input instruction is live
// - *sinks: an unsorted set of live instructions with side effects (stores, assert_true)
// Returns the number of live instructions.
int liveness_analysis(const std::vector<Instruction>&,
std::vector<bool>* live,
std::vector<Val>* sinks);
class Usage {
public:
Usage(const std::vector<Instruction>&, const std::vector<bool>&);
// Return a sorted span of Vals which use result of Instruction id.
SkSpan<const Val> users(Val id) const;
private:
std::vector<int> fIndex;
std::vector<Val> fTable;
};
using Reg = int;
// d = op(x, y/imm, z/imm)
struct InterpreterInstruction {
Op op;
Reg d,x;
union { Reg y; int immy; };
union { Reg z; int immz; };
};
class Program {
public:
Program(const std::vector<OptimizedInstruction>& interpreter,
const std::vector<int>& strides);
Program(const std::vector<OptimizedInstruction>& interpreter,
const std::vector<OptimizedInstruction>& jit,
const std::vector<int>& strides,
const char* debug_name);
Program();
~Program();
Program(Program&&);
Program& operator=(Program&&);
Program(const Program&) = delete;
Program& operator=(const Program&) = delete;
void eval(int n, void* args[]) const;
template <typename... T>
void eval(int n, T*... arg) const {
SkASSERT(sizeof...(arg) == this->nargs());
// This nullptr isn't important except that it makes args[] non-empty if you pass none.
void* args[] = { (void*)arg..., nullptr };
this->eval(n, args);
}
std::vector<InterpreterInstruction> instructions() const;
int nargs() const;
int nregs() const;
int loop () const;
bool empty() const;
bool hasJIT() const; // Has this Program been JITted?
void dropJIT(); // If hasJIT(), drop it, forcing interpreter fallback.
void dump(SkWStream* = nullptr) const;
private:
void setupInterpreter(const std::vector<OptimizedInstruction>&);
void setupJIT (const std::vector<OptimizedInstruction>&, const char* debug_name);
void setupLLVM (const std::vector<OptimizedInstruction>&, const char* debug_name);
bool jit(const std::vector<OptimizedInstruction>&,
bool try_hoisting,
Assembler*) const;
void waitForLLVM() const;
struct Impl;
std::unique_ptr<Impl> fImpl;
};
// TODO: control flow
// TODO: 64-bit values?
static inline I32 operator+(I32 x, I32a y) { return x->add(x,y); }
static inline I32 operator+(int x, I32 y) { return y->add(x,y); }
static inline I32 operator-(I32 x, I32a y) { return x->sub(x,y); }
static inline I32 operator-(int x, I32 y) { return y->sub(x,y); }
static inline I32 operator*(I32 x, I32a y) { return x->mul(x,y); }
static inline I32 operator*(int x, I32 y) { return y->mul(x,y); }
static inline I32 min(I32 x, I32a y) { return x->min(x,y); }
static inline I32 min(int x, I32 y) { return y->min(x,y); }
static inline I32 max(I32 x, I32a y) { return x->max(x,y); }
static inline I32 max(int x, I32 y) { return y->max(x,y); }
static inline I32 operator==(I32 x, I32a y) { return x->eq(x,y); }
static inline I32 operator==(int x, I32 y) { return y->eq(x,y); }
static inline I32 operator!=(I32 x, I32a y) { return x->neq(x,y); }
static inline I32 operator!=(int x, I32 y) { return y->neq(x,y); }
static inline I32 operator< (I32 x, I32a y) { return x->lt(x,y); }
static inline I32 operator< (int x, I32 y) { return y->lt(x,y); }
static inline I32 operator<=(I32 x, I32a y) { return x->lte(x,y); }
static inline I32 operator<=(int x, I32 y) { return y->lte(x,y); }
static inline I32 operator> (I32 x, I32a y) { return x->gt(x,y); }
static inline I32 operator> (int x, I32 y) { return y->gt(x,y); }
static inline I32 operator>=(I32 x, I32a y) { return x->gte(x,y); }
static inline I32 operator>=(int x, I32 y) { return y->gte(x,y); }
static inline F32 operator+(F32 x, F32a y) { return x->add(x,y); }
static inline F32 operator+(float x, F32 y) { return y->add(x,y); }
static inline F32 operator-(F32 x, F32a y) { return x->sub(x,y); }
static inline F32 operator-(float x, F32 y) { return y->sub(x,y); }
static inline F32 operator*(F32 x, F32a y) { return x->mul(x,y); }
static inline F32 operator*(float x, F32 y) { return y->mul(x,y); }
static inline F32 operator/(F32 x, F32 y) { return x->div(x,y); }
static inline F32 operator/(float x, F32 y) { return y->div(x,y); }
static inline F32 min(F32 x, F32a y) { return x->min(x,y); }
static inline F32 min(float x, F32 y) { return y->min(x,y); }
static inline F32 max(F32 x, F32a y) { return x->max(x,y); }
static inline F32 max(float x, F32 y) { return y->max(x,y); }
static inline I32 operator==(F32 x, F32a y) { return x->eq(x,y); }
static inline I32 operator==(float x, F32 y) { return y->eq(x,y); }
static inline I32 operator!=(F32 x, F32a y) { return x->neq(x,y); }
static inline I32 operator!=(float x, F32 y) { return y->neq(x,y); }
static inline I32 operator< (F32 x, F32a y) { return x->lt(x,y); }
static inline I32 operator< (float x, F32 y) { return y->lt(x,y); }
static inline I32 operator<=(F32 x, F32a y) { return x->lte(x,y); }
static inline I32 operator<=(float x, F32 y) { return y->lte(x,y); }
static inline I32 operator> (F32 x, F32a y) { return x->gt(x,y); }
static inline I32 operator> (float x, F32 y) { return y->gt(x,y); }
static inline I32 operator>=(F32 x, F32a y) { return x->gte(x,y); }
static inline I32 operator>=(float x, F32 y) { return y->gte(x,y); }
static inline I32& operator+=(I32& x, I32a y) { return (x = x + y); }
static inline I32& operator-=(I32& x, I32a y) { return (x = x - y); }
static inline I32& operator*=(I32& x, I32a y) { return (x = x * y); }
static inline F32& operator+=(F32& x, F32a y) { return (x = x + y); }
static inline F32& operator-=(F32& x, F32a y) { return (x = x - y); }
static inline F32& operator*=(F32& x, F32a y) { return (x = x * y); }
static inline I32 operator-(I32 x) { return 0-x; }
static inline F32 operator-(F32 x) { return 0-x; }
static inline void assert_true(I32 cond, I32 debug) { cond->assert_true(cond,debug); }
static inline void assert_true(I32 cond, F32 debug) { cond->assert_true(cond,debug); }
static inline void assert_true(I32 cond) { cond->assert_true(cond); }
static inline void store8 (Arg ptr, I32 val) { val->store8 (ptr, val); }
static inline void store16(Arg ptr, I32 val) { val->store16(ptr, val); }
static inline void store32(Arg ptr, I32 val) { val->store32(ptr, val); }
static inline void storeF (Arg ptr, F32 val) { val->storeF (ptr, val); }
static inline I32 gather8 (Arg ptr, int off, I32 ix) { return ix->gather8 (ptr, off, ix); }
static inline I32 gather16(Arg ptr, int off, I32 ix) { return ix->gather16(ptr, off, ix); }
static inline I32 gather32(Arg ptr, int off, I32 ix) { return ix->gather32(ptr, off, ix); }
static inline F32 gatherF (Arg ptr, int off, I32 ix) { return ix->gatherF (ptr, off, ix); }
static inline I32 gather8 (Uniform u, I32 ix) { return ix->gather8 (u, ix); }
static inline I32 gather16(Uniform u, I32 ix) { return ix->gather16(u, ix); }
static inline I32 gather32(Uniform u, I32 ix) { return ix->gather32(u, ix); }
static inline F32 gatherF (Uniform u, I32 ix) { return ix->gatherF (u, ix); }
static inline F32 sqrt(F32 x) { return x-> sqrt(x); }
static inline F32 approx_log2(F32 x) { return x->approx_log2(x); }
static inline F32 approx_pow2(F32 x) { return x->approx_pow2(x); }
static inline F32 approx_log (F32 x) { return x->approx_log (x); }
static inline F32 approx_exp (F32 x) { return x->approx_exp (x); }
static inline F32 approx_powf(F32 base, F32a exp) { return base->approx_powf(base, exp); }
static inline F32 approx_powf(float base, F32 exp) { return exp->approx_powf(base, exp); }
static inline F32 clamp01(F32 x) { return x->clamp01(x); }
static inline F32 abs(F32 x) { return x-> abs(x); }
static inline F32 fract(F32 x) { return x-> fract(x); }
static inline F32 floor(F32 x) { return x-> floor(x); }
static inline I32 trunc(F32 x) { return x-> trunc(x); }
static inline I32 round(F32 x) { return x-> round(x); }
static inline I32 bit_cast(F32 x) { return x->bit_cast(x); }
static inline F32 bit_cast(I32 x) { return x->bit_cast(x); }
static inline F32 to_f32(I32 x) { return x-> to_f32(x); }
static inline F32 lerp(F32 lo, F32a hi, F32a t) { return lo->lerp(lo,hi,t); }
static inline F32 lerp(float lo, F32 hi, F32a t) { return hi->lerp(lo,hi,t); }
static inline F32 lerp(float lo, float hi, F32 t) { return t->lerp(lo,hi,t); }
static inline F32 clamp(F32 x, F32a lo, F32a hi) { return x->clamp(x,lo,hi); }
static inline F32 clamp(float x, F32 lo, F32a hi) { return lo->clamp(x,lo,hi); }
static inline F32 clamp(float x, float lo, F32 hi) { return hi->clamp(x,lo,hi); }
static inline F32 norm(F32 x, F32a y) { return x->norm(x,y); }
static inline F32 norm(float x, F32 y) { return y->norm(x,y); }
static inline I32 operator<<(I32 x, int bits) { return x->shl(x, bits); }
static inline I32 shl(I32 x, int bits) { return x->shl(x, bits); }
static inline I32 shr(I32 x, int bits) { return x->shr(x, bits); }
static inline I32 sra(I32 x, int bits) { return x->sra(x, bits); }
static inline I32 operator&(I32 x, I32a y) { return x->bit_and(x,y); }
static inline I32 operator&(int x, I32 y) { return y->bit_and(x,y); }
static inline I32 operator|(I32 x, I32a y) { return x->bit_or (x,y); }
static inline I32 operator|(int x, I32 y) { return y->bit_or (x,y); }
static inline I32 operator^(I32 x, I32a y) { return x->bit_xor(x,y); }
static inline I32 operator^(int x, I32 y) { return y->bit_xor(x,y); }
static inline I32& operator&=(I32& x, I32a y) { return (x = x & y); }
static inline I32& operator|=(I32& x, I32a y) { return (x = x | y); }
static inline I32& operator^=(I32& x, I32a y) { return (x = x ^ y); }
static inline I32 select(I32 cond, I32a t, I32a f) { return cond->select(cond,t,f); }
static inline F32 select(I32 cond, F32a t, F32a f) { return cond->select(cond,t,f); }
static inline I32 bytes(I32 x, int control) { return x->bytes(x,control); }
static inline I32 extract(I32 x, int bits, I32a z) { return x->extract(x,bits,z); }
static inline I32 extract(int x, int bits, I32 z) { return z->extract(x,bits,z); }
static inline I32 pack (I32 x, I32a y, int bits) { return x->pack (x,y,bits); }
static inline I32 pack (int x, I32 y, int bits) { return y->pack (x,y,bits); }
static inline F32 from_unorm(int bits, I32 x) { return x->from_unorm(bits,x); }
static inline I32 to_unorm(int bits, F32 x) { return x-> to_unorm(bits,x); }
static inline Color unpack_1010102(I32 rgba) { return rgba->unpack_1010102(rgba); }
static inline Color unpack_8888 (I32 rgba) { return rgba->unpack_8888 (rgba); }
static inline Color unpack_565 (I32 bgr ) { return bgr ->unpack_565 (bgr ); }
static inline void premul(F32* r, F32* g, F32* b, F32 a) { a-> premul(r,g,b,a); }
static inline void unpremul(F32* r, F32* g, F32* b, F32 a) { a->unpremul(r,g,b,a); }
static inline Color premul(Color c) { return c-> premul(c); }
static inline Color unpremul(Color c) { return c->unpremul(c); }
static inline Color lerp(Color lo, Color hi, F32 t) { return t->lerp(lo,hi,t); }
static inline Color blend(SkBlendMode m, Color s, Color d) { return s->blend(m,s,d); }
static inline HSLA to_hsla(Color c) { return c->to_hsla(c); }
static inline Color to_rgba(HSLA c) { return c->to_rgba(c); }
}
#endif//SkVM_DEFINED