blob: dc34c62dc6a0149eb50ddd9e75e5cab50d2eafea [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkCodecPriv_DEFINED
#define SkCodecPriv_DEFINED
#include "include/codec/SkCodec.h"
#include "include/codec/SkEncodedOrigin.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkTypes.h"
#include "include/private/SkEncodedInfo.h"
#include "src/codec/SkColorPalette.h"
#include "src/core/SkColorData.h"
#include <string_view>
#ifdef SK_PRINT_CODEC_MESSAGES
#define SkCodecPrintf SkDebugf
#else
#define SkCodecPrintf(...)
#endif
namespace SkCodecs {
bool HasDecoder(std::string_view id);
}
class SkCodecPriv final {
public:
static const SkEncodedInfo& GetEncodedInfo(const SkCodec* codec) {
SkASSERT(codec);
return codec->getEncodedInfo();
}
static bool SelectXformFormat(SkColorType colorType,
bool forColorTable,
skcms_PixelFormat* outFormat);
// FIXME: Consider sharing with dm, nanbench, and tools.
static float GetScaleFromSampleSize(int sampleSize) { return 1.0f / ((float)sampleSize); }
static bool IsValidSubset(const SkIRect& subset, const SkISize& imageDims) {
return SkIRect::MakeSize(imageDims).contains(subset);
}
/*
* returns a scaled dimension based on the original dimension and the sampleSize
* NOTE: we round down here for scaled dimension to match the behavior of SkImageDecoder
*/
static int GetSampledDimension(int srcDimension, int sampleSize) {
if (sampleSize > srcDimension) {
return 1;
}
return srcDimension / sampleSize;
}
/*
* Returns the first coordinate that we will keep during a scaled decode.
* The output can be interpreted as an x-coordinate or a y-coordinate.
*
* This does not need to be called and is not called when sampleFactor == 1.
*/
static int GetStartCoord(int sampleFactor) { return sampleFactor / 2; }
/*
* Given a coordinate in the original image, this returns the corresponding
* coordinate in the scaled image. This function is meaningless if
* IsCoordNecessary returns false.
* The output can be interpreted as an x-coordinate or a y-coordinate.
*
* This does not need to be called and is not called when sampleFactor == 1.
*/
static int GetDstCoord(int srcCoord, int sampleFactor) { return srcCoord / sampleFactor; }
/*
* When scaling, we will discard certain y-coordinates (rows) and
* x-coordinates (columns). This function returns true if we should keep the
* coordinate and false otherwise.
* The inputs may be x-coordinates or y-coordinates.
*
* This does not need to be called and is not called when sampleFactor == 1.
*/
static bool IsCoordNecessary(int srcCoord, int sampleFactor, int scaledDim) {
// Get the first coordinate that we want to keep
int startCoord = GetStartCoord(sampleFactor);
// Return false on edge cases
if (srcCoord < startCoord || GetDstCoord(srcCoord, sampleFactor) >= scaledDim) {
return false;
}
// Every sampleFactor rows are necessary
return ((srcCoord - startCoord) % sampleFactor) == 0;
}
static bool ValidAlpha(SkAlphaType dstAlpha, bool srcIsOpaque) {
if (kUnknown_SkAlphaType == dstAlpha) {
return false;
}
if (srcIsOpaque) {
if (kOpaque_SkAlphaType != dstAlpha) {
SkCodecPrintf(
"Warning: an opaque image should be decoded as opaque "
"- it is being decoded as non-opaque, which will draw slower\n");
}
return true;
}
return dstAlpha != kOpaque_SkAlphaType;
}
/*
* If there is a color table, get a pointer to the colors, otherwise return nullptr
*/
static const SkPMColor* GetColorPtr(SkColorPalette* colorTable) {
return nullptr != colorTable ? colorTable->readColors() : nullptr;
}
/*
* Compute row bytes for an image using pixels per byte
*/
static size_t ComputeRowBytesPixelsPerByte(int width, uint32_t pixelsPerByte) {
return (width + pixelsPerByte - 1) / pixelsPerByte;
}
/*
* Compute row bytes for an image using bytes per pixel
*/
static size_t ComputeRowBytesBytesPerPixel(int width, uint32_t bytesPerPixel) {
return width * bytesPerPixel;
}
/*
* Compute row bytes for an image
*/
static size_t ComputeRowBytes(int width, uint32_t bitsPerPixel) {
if (bitsPerPixel < 16) {
SkASSERT(0 == 8 % bitsPerPixel);
const uint32_t pixelsPerByte = 8 / bitsPerPixel;
return ComputeRowBytesPixelsPerByte(width, pixelsPerByte);
} else {
SkASSERT(0 == bitsPerPixel % 8);
const uint32_t bytesPerPixel = bitsPerPixel / 8;
return ComputeRowBytesBytesPerPixel(width, bytesPerPixel);
}
}
/*
* Get a byte from a buffer
* This method is unsafe, the caller is responsible for performing a check
*/
static uint8_t UnsafeGetByte(const uint8_t* buffer, uint32_t i) { return buffer[i]; }
/*
* Get a short from a buffer
* This method is unsafe, the caller is responsible for performing a check
*/
static uint16_t UnsafeGetShort(const uint8_t* buffer, uint32_t i) {
uint16_t result;
memcpy(&result, &(buffer[i]), 2);
#ifdef SK_CPU_BENDIAN
return SkEndianSwap16(result);
#else
return result;
#endif
}
/*
* Get an int from a buffer
* This method is unsafe, the caller is responsible for performing a check
*/
static uint32_t UnsafeGetInt(const uint8_t* buffer, uint32_t i) {
uint32_t result;
memcpy(&result, &(buffer[i]), 4);
#ifdef SK_CPU_BENDIAN
return SkEndianSwap32(result);
#else
return result;
#endif
}
/*
* @param data Buffer to read bytes from
* @param isLittleEndian Output parameter
* Indicates if the data is little endian
* Is unaffected on false returns
*/
static bool IsValidEndianMarker(const uint8_t* data, bool* isLittleEndian) {
// II indicates Intel (little endian) and MM indicates motorola (big endian).
if (('I' != data[0] || 'I' != data[1]) && ('M' != data[0] || 'M' != data[1])) {
return false;
}
*isLittleEndian = ('I' == data[0]);
return true;
}
static uint16_t GetEndianShort(const uint8_t* data, bool littleEndian) {
if (littleEndian) {
return (data[1] << 8) | (data[0]);
}
return (data[0] << 8) | (data[1]);
}
static uint32_t GetEndianInt(const uint8_t* data, bool littleEndian) {
if (littleEndian) {
return (data[3] << 24) | (data[2] << 16) | (data[1] << 8) | (data[0]);
}
return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | (data[3]);
}
static SkPMColor PremultiplyARGBasRGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
if (a != 255) {
r = SkMulDiv255Round(r, a);
g = SkMulDiv255Round(g, a);
b = SkMulDiv255Round(b, a);
}
return SkPackARGB_as_RGBA(a, r, g, b);
}
static SkPMColor PremultiplyARGBasBGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
if (a != 255) {
r = SkMulDiv255Round(r, a);
g = SkMulDiv255Round(g, a);
b = SkMulDiv255Round(b, a);
}
return SkPackARGB_as_BGRA(a, r, g, b);
}
static bool IsRGBA(SkColorType colorType) {
#ifdef SK_PMCOLOR_IS_RGBA
return (kBGRA_8888_SkColorType != colorType);
#else
return (kRGBA_8888_SkColorType == colorType);
#endif
}
// Method for coverting to a 32 bit pixel.
using PackColorProc = uint32_t (*)(U8CPU a, U8CPU r, U8CPU g, U8CPU b);
static PackColorProc ChoosePackColorProc(bool isPremul, SkColorType colorType) {
bool isRGBA = IsRGBA(colorType);
if (isPremul) {
if (isRGBA) {
return &PremultiplyARGBasRGBA;
} else {
return &PremultiplyARGBasBGRA;
}
} else {
if (isRGBA) {
return &SkPackARGB_as_RGBA;
} else {
return &SkPackARGB_as_BGRA;
}
}
}
};
#endif // SkCodecPriv_DEFINED