|  | /* | 
|  | * Copyright 2015 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  | #include "SkIntersections.h" | 
|  | #include "SkLineParameters.h" | 
|  | #include "SkPathOpsConic.h" | 
|  | #include "SkPathOpsCubic.h" | 
|  | #include "SkPathOpsQuad.h" | 
|  |  | 
|  | // cribbed from the float version in SkGeometry.cpp | 
|  | static void conic_deriv_coeff(const double src[], | 
|  | SkScalar w, | 
|  | double coeff[3]) { | 
|  | const double P20 = src[4] - src[0]; | 
|  | const double P10 = src[2] - src[0]; | 
|  | const double wP10 = w * P10; | 
|  | coeff[0] = w * P20 - P20; | 
|  | coeff[1] = P20 - 2 * wP10; | 
|  | coeff[2] = wP10; | 
|  | } | 
|  |  | 
|  | static double conic_eval_tan(const double coord[], SkScalar w, double t) { | 
|  | double coeff[3]; | 
|  | conic_deriv_coeff(coord, w, coeff); | 
|  | return t * (t * coeff[0] + coeff[1]) + coeff[2]; | 
|  | } | 
|  |  | 
|  | int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { | 
|  | double coeff[3]; | 
|  | conic_deriv_coeff(src, w, coeff); | 
|  |  | 
|  | double tValues[2]; | 
|  | int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); | 
|  | // In extreme cases, the number of roots returned can be 2. Pathops | 
|  | // will fail later on, so there's no advantage to plumbing in an error | 
|  | // return here. | 
|  | // SkASSERT(0 == roots || 1 == roots); | 
|  |  | 
|  | if (1 == roots) { | 
|  | t[0] = tValues[0]; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SkDVector SkDConic::dxdyAtT(double t) const { | 
|  | SkDVector result = { | 
|  | conic_eval_tan(&fPts[0].fX, fWeight, t), | 
|  | conic_eval_tan(&fPts[0].fY, fWeight, t) | 
|  | }; | 
|  | if (result.fX == 0 && result.fY == 0) { | 
|  | if (zero_or_one(t)) { | 
|  | result = fPts[2] - fPts[0]; | 
|  | } else { | 
|  | // incomplete | 
|  | SkDebugf("!k"); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static double conic_eval_numerator(const double src[], SkScalar w, double t) { | 
|  | SkASSERT(src); | 
|  | SkASSERT(t >= 0 && t <= 1); | 
|  | double src2w = src[2] * w; | 
|  | double C = src[0]; | 
|  | double A = src[4] - 2 * src2w + C; | 
|  | double B = 2 * (src2w - C); | 
|  | return (A * t + B) * t + C; | 
|  | } | 
|  |  | 
|  |  | 
|  | static double conic_eval_denominator(SkScalar w, double t) { | 
|  | double B = 2 * (w - 1); | 
|  | double C = 1; | 
|  | double A = -B; | 
|  | return (A * t + B) * t + C; | 
|  | } | 
|  |  | 
|  | bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
|  | return cubic.hullIntersects(*this, isLinear); | 
|  | } | 
|  |  | 
|  | SkDPoint SkDConic::ptAtT(double t) const { | 
|  | if (t == 0) { | 
|  | return fPts[0]; | 
|  | } | 
|  | if (t == 1) { | 
|  | return fPts[2]; | 
|  | } | 
|  | double denominator = conic_eval_denominator(fWeight, t); | 
|  | SkDPoint result = { | 
|  | conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator, | 
|  | conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator | 
|  | }; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* see quad subdivide for point rationale */ | 
|  | /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c | 
|  | values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume | 
|  | that it is the same as the point on the new curve t==(0+1)/2. | 
|  |  | 
|  | d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); | 
|  |  | 
|  | conic_poly(dst, unknownW, .5) | 
|  | =   a / 4 + (b * unknownW) / 2 + c / 4 | 
|  | =  (a + c) / 4 + (bx * unknownW) / 2 | 
|  |  | 
|  | conic_weight(unknownW, .5) | 
|  | =   unknownW / 2 + 1 / 2 | 
|  |  | 
|  | d / dz                  == ((a + c) / 2 + b * unknownW) / (unknownW + 1) | 
|  | d / dz * (unknownW + 1) ==  (a + c) / 2 + b * unknownW | 
|  | unknownW       = ((a + c) / 2 - d / dz) / (d / dz - b) | 
|  |  | 
|  | Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the | 
|  | distance of the on-curve point to the control point. | 
|  | */ | 
|  | SkDConic SkDConic::subDivide(double t1, double t2) const { | 
|  | double ax, ay, az; | 
|  | if (t1 == 0) { | 
|  | ax = fPts[0].fX; | 
|  | ay = fPts[0].fY; | 
|  | az = 1; | 
|  | } else if (t1 != 1) { | 
|  | ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); | 
|  | ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); | 
|  | az = conic_eval_denominator(fWeight, t1); | 
|  | } else { | 
|  | ax = fPts[2].fX; | 
|  | ay = fPts[2].fY; | 
|  | az = 1; | 
|  | } | 
|  | double midT = (t1 + t2) / 2; | 
|  | double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); | 
|  | double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); | 
|  | double dz = conic_eval_denominator(fWeight, midT); | 
|  | double cx, cy, cz; | 
|  | if (t2 == 1) { | 
|  | cx = fPts[2].fX; | 
|  | cy = fPts[2].fY; | 
|  | cz = 1; | 
|  | } else if (t2 != 0) { | 
|  | cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); | 
|  | cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); | 
|  | cz = conic_eval_denominator(fWeight, t2); | 
|  | } else { | 
|  | cx = fPts[0].fX; | 
|  | cy = fPts[0].fY; | 
|  | cz = 1; | 
|  | } | 
|  | double bx = 2 * dx - (ax + cx) / 2; | 
|  | double by = 2 * dy - (ay + cy) / 2; | 
|  | double bz = 2 * dz - (az + cz) / 2; | 
|  | SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, | 
|  | SkDoubleToScalar(bz / sqrt(az * cz)) }; | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, | 
|  | SkScalar* weight) const { | 
|  | SkDConic chopped = this->subDivide(t1, t2); | 
|  | *weight = chopped.fWeight; | 
|  | return chopped[1]; | 
|  | } |