blob: 35bfcb65558104a08dabeb2432331fa069a1da22 [file] [log] [blame]
/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrOpsTask.h"
#include "include/private/GrRecordingContext.h"
#include "src/core/SkExchange.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/GrAuditTrail.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrOpsRenderPass.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetPriv.h"
#include "src/gpu/GrResourceAllocator.h"
#include "src/gpu/GrStencilAttachment.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/geometry/GrRect.h"
#include "src/gpu/ops/GrClearOp.h"
////////////////////////////////////////////////////////////////////////////////
// Experimentally we have found that most combining occurs within the first 10 comparisons.
static const int kMaxOpMergeDistance = 10;
static const int kMaxOpChainDistance = 10;
////////////////////////////////////////////////////////////////////////////////
using DstProxy = GrXferProcessor::DstProxy;
////////////////////////////////////////////////////////////////////////////////
static inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); }
////////////////////////////////////////////////////////////////////////////////
inline GrOpsTask::OpChain::List::List(std::unique_ptr<GrOp> op)
: fHead(std::move(op)), fTail(fHead.get()) {
this->validate();
}
inline GrOpsTask::OpChain::List::List(List&& that) { *this = std::move(that); }
inline GrOpsTask::OpChain::List& GrOpsTask::OpChain::List::operator=(List&& that) {
fHead = std::move(that.fHead);
fTail = that.fTail;
that.fTail = nullptr;
this->validate();
return *this;
}
inline std::unique_ptr<GrOp> GrOpsTask::OpChain::List::popHead() {
SkASSERT(fHead);
auto temp = fHead->cutChain();
std::swap(temp, fHead);
if (!fHead) {
SkASSERT(fTail == temp.get());
fTail = nullptr;
}
return temp;
}
inline std::unique_ptr<GrOp> GrOpsTask::OpChain::List::removeOp(GrOp* op) {
#ifdef SK_DEBUG
auto head = op;
while (head->prevInChain()) { head = head->prevInChain(); }
SkASSERT(head == fHead.get());
#endif
auto prev = op->prevInChain();
if (!prev) {
SkASSERT(op == fHead.get());
return this->popHead();
}
auto temp = prev->cutChain();
if (auto next = temp->cutChain()) {
prev->chainConcat(std::move(next));
} else {
SkASSERT(fTail == op);
fTail = prev;
}
this->validate();
return temp;
}
inline void GrOpsTask::OpChain::List::pushHead(std::unique_ptr<GrOp> op) {
SkASSERT(op);
SkASSERT(op->isChainHead());
SkASSERT(op->isChainTail());
if (fHead) {
op->chainConcat(std::move(fHead));
fHead = std::move(op);
} else {
fHead = std::move(op);
fTail = fHead.get();
}
}
inline void GrOpsTask::OpChain::List::pushTail(std::unique_ptr<GrOp> op) {
SkASSERT(op->isChainTail());
fTail->chainConcat(std::move(op));
fTail = fTail->nextInChain();
}
inline void GrOpsTask::OpChain::List::validate() const {
#ifdef SK_DEBUG
if (fHead) {
SkASSERT(fTail);
fHead->validateChain(fTail);
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
GrOpsTask::OpChain::OpChain(std::unique_ptr<GrOp> op,
GrProcessorSet::Analysis processorAnalysis,
GrAppliedClip* appliedClip, const DstProxy* dstProxy)
: fList{std::move(op)}
, fProcessorAnalysis(processorAnalysis)
, fAppliedClip(appliedClip) {
if (fProcessorAnalysis.requiresDstTexture()) {
SkASSERT(dstProxy && dstProxy->proxy());
fDstProxy = *dstProxy;
}
fBounds = fList.head()->bounds();
}
void GrOpsTask::OpChain::visitProxies(const GrOp::VisitProxyFunc& func) const {
if (fList.empty()) {
return;
}
for (const auto& op : GrOp::ChainRange<>(fList.head())) {
op.visitProxies(func);
}
if (fDstProxy.proxy()) {
func(fDstProxy.proxy(), GrMipMapped::kNo);
}
if (fAppliedClip) {
fAppliedClip->visitProxies(func);
}
}
void GrOpsTask::OpChain::deleteOps(GrOpMemoryPool* pool) {
while (!fList.empty()) {
pool->release(fList.popHead());
}
}
// Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that
// the two chains are chainable. Returns the new chain.
GrOpsTask::OpChain::List GrOpsTask::OpChain::DoConcat(
List chainA, List chainB, const GrCaps& caps, GrOpMemoryPool* pool,
GrAuditTrail* auditTrail) {
// We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting
// at chain a's tail and working toward the head. We produce one of the following outcomes:
// 1) b's head is merged into an op in a.
// 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.)
// 3) b's head is popped from chain a and added at the tail of a.
// After result 3 we don't want to attempt to merge the next head of b with the new tail of a,
// as we assume merges were already attempted when chain b was created. So we keep track of the
// original tail of a and start our iteration of a there. We also track the bounds of the nodes
// appended to chain a that will be skipped for bounds testing. If the original tail of a is
// merged into an op in b (case 2) then we advance the "original tail" towards the head of a.
GrOp* origATail = chainA.tail();
SkRect skipBounds = SkRectPriv::MakeLargestInverted();
do {
int numMergeChecks = 0;
bool merged = false;
bool noSkip = (origATail == chainA.tail());
SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted()));
bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds);
SkRect forwardMergeBounds = skipBounds;
GrOp* a = origATail;
while (a) {
bool canForwardMerge =
(a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds);
if (canForwardMerge || canBackwardMerge) {
auto result = a->combineIfPossible(chainB.head(), caps);
SkASSERT(result != GrOp::CombineResult::kCannotCombine);
merged = (result == GrOp::CombineResult::kMerged);
GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n",
chainB.head()->name(), chainB.head()->uniqueID(), a->name(),
a->uniqueID());
}
if (merged) {
GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head());
if (canBackwardMerge) {
pool->release(chainB.popHead());
} else {
// We merged the contents of b's head into a. We will replace b's head with a in
// chain b.
SkASSERT(canForwardMerge);
if (a == origATail) {
origATail = a->prevInChain();
}
std::unique_ptr<GrOp> detachedA = chainA.removeOp(a);
pool->release(chainB.popHead());
chainB.pushHead(std::move(detachedA));
if (chainA.empty()) {
// We merged all the nodes in chain a to chain b.
return chainB;
}
}
break;
} else {
if (++numMergeChecks == kMaxOpMergeDistance) {
break;
}
forwardMergeBounds.joinNonEmptyArg(a->bounds());
canBackwardMerge =
canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds());
a = a->prevInChain();
}
}
// If we weren't able to merge b's head then pop b's head from chain b and make it the new
// tail of a.
if (!merged) {
chainA.pushTail(chainB.popHead());
skipBounds.joinNonEmptyArg(chainA.tail()->bounds());
}
} while (!chainB.empty());
return chainA;
}
// Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns
// whether the operation succeeded. On success, the provided list will be returned empty.
bool GrOpsTask::OpChain::tryConcat(
List* list, GrProcessorSet::Analysis processorAnalysis, const DstProxy& dstProxy,
const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps,
GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
SkASSERT(!fList.empty());
SkASSERT(!list->empty());
SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxy.proxy()));
SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxy.proxy()));
// All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug.
if (fList.head()->classID() != list->head()->classID() ||
SkToBool(fAppliedClip) != SkToBool(appliedClip) ||
(fAppliedClip && *fAppliedClip != *appliedClip) ||
(fProcessorAnalysis.requiresNonOverlappingDraws() !=
processorAnalysis.requiresNonOverlappingDraws()) ||
(fProcessorAnalysis.requiresNonOverlappingDraws() &&
// Non-overlaping draws are only required when Ganesh will either insert a barrier,
// or read back a new dst texture between draws. In either case, we can neither
// chain nor combine overlapping Ops.
GrRectsTouchOrOverlap(fBounds, bounds)) ||
(fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) ||
(fProcessorAnalysis.requiresDstTexture() && fDstProxy != dstProxy)) {
return false;
}
SkDEBUGCODE(bool first = true;)
do {
switch (fList.tail()->combineIfPossible(list->head(), caps)) {
case GrOp::CombineResult::kCannotCombine:
// If an op supports chaining then it is required that chaining is transitive and
// that if any two ops in two different chains can merge then the two chains
// may also be chained together. Thus, we should only hit this on the first
// iteration.
SkASSERT(first);
return false;
case GrOp::CombineResult::kMayChain:
fList = DoConcat(std::move(fList), skstd::exchange(*list, List()), caps, pool,
auditTrail);
// The above exchange cleared out 'list'. The list needs to be empty now for the
// loop to terminate.
SkASSERT(list->empty());
break;
case GrOp::CombineResult::kMerged: {
GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n",
list->tail()->name(), list->tail()->uniqueID(), list->head()->name(),
list->head()->uniqueID());
GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head());
pool->release(list->popHead());
break;
}
}
SkDEBUGCODE(first = false);
} while (!list->empty());
// The new ops were successfully merged and/or chained onto our own.
fBounds.joinPossiblyEmptyRect(bounds);
return true;
}
bool GrOpsTask::OpChain::prependChain(OpChain* that, const GrCaps& caps, GrOpMemoryPool* pool,
GrAuditTrail* auditTrail) {
if (!that->tryConcat(
&fList, fProcessorAnalysis, fDstProxy, fAppliedClip, fBounds, caps, pool, auditTrail)) {
this->validate();
// append failed
return false;
}
// 'that' owns the combined chain. Move it into 'this'.
SkASSERT(fList.empty());
fList = std::move(that->fList);
fBounds = that->fBounds;
that->fDstProxy.setProxy(nullptr);
if (that->fAppliedClip) {
for (int i = 0; i < that->fAppliedClip->numClipCoverageFragmentProcessors(); ++i) {
that->fAppliedClip->detachClipCoverageFragmentProcessor(i);
}
}
this->validate();
return true;
}
std::unique_ptr<GrOp> GrOpsTask::OpChain::appendOp(
std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis,
const DstProxy* dstProxy, const GrAppliedClip* appliedClip, const GrCaps& caps,
GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
const GrXferProcessor::DstProxy noDstProxy;
if (!dstProxy) {
dstProxy = &noDstProxy;
}
SkASSERT(op->isChainHead() && op->isChainTail());
SkRect opBounds = op->bounds();
List chain(std::move(op));
if (!this->tryConcat(
&chain, processorAnalysis, *dstProxy, appliedClip, opBounds, caps, pool, auditTrail)) {
// append failed, give the op back to the caller.
this->validate();
return chain.popHead();
}
SkASSERT(chain.empty());
this->validate();
return nullptr;
}
inline void GrOpsTask::OpChain::validate() const {
#ifdef SK_DEBUG
fList.validate();
for (const auto& op : GrOp::ChainRange<>(fList.head())) {
// Not using SkRect::contains because we allow empty rects.
SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop &&
fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom);
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
GrOpsTask::GrOpsTask(sk_sp<GrOpMemoryPool> opMemoryPool,
sk_sp<GrRenderTargetProxy> rtProxy,
GrAuditTrail* auditTrail)
: GrRenderTask(std::move(rtProxy))
, fOpMemoryPool(std::move(opMemoryPool))
, fAuditTrail(auditTrail)
, fLastClipStackGenID(SK_InvalidUniqueID)
SkDEBUGCODE(, fNumClips(0)) {
SkASSERT(fOpMemoryPool);
fTarget->setLastRenderTask(this);
}
void GrOpsTask::deleteOps() {
for (auto& chain : fOpChains) {
chain.deleteOps(fOpMemoryPool.get());
}
fOpChains.reset();
}
GrOpsTask::~GrOpsTask() {
this->deleteOps();
}
////////////////////////////////////////////////////////////////////////////////
void GrOpsTask::endFlush() {
fLastClipStackGenID = SK_InvalidUniqueID;
this->deleteOps();
fClipAllocator.reset();
if (fTarget && this == fTarget->getLastRenderTask()) {
fTarget->setLastRenderTask(nullptr);
}
fTarget.reset();
fDeferredProxies.reset();
fSampledProxies.reset();
fAuditTrail = nullptr;
}
void GrOpsTask::onPrepare(GrOpFlushState* flushState) {
SkASSERT(fTarget->peekRenderTarget());
SkASSERT(this->isClosed());
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
#endif
// TODO: remove the check for discard here once reduced op splitting is turned on. Currently we
// can end up with GrOpsTasks that only have a discard load op and no ops. For vulkan validation
// we need to keep that discard and not drop it. Once we have reduce op list splitting enabled
// we shouldn't end up with GrOpsTasks with only discard.
if (this->isNoOp() || (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) {
return;
}
flushState->setSampledProxyArray(&fSampledProxies);
// Loop over the ops that haven't yet been prepared.
for (const auto& chain : fOpChains) {
if (chain.shouldExecute()) {
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
TRACE_EVENT0("skia.gpu", chain.head()->name());
#endif
GrOpFlushState::OpArgs opArgs(chain.head(),
fTarget->asRenderTargetProxy(),
chain.appliedClip(),
chain.dstProxy());
flushState->setOpArgs(&opArgs);
chain.head()->prepare(flushState);
flushState->setOpArgs(nullptr);
}
}
flushState->setSampledProxyArray(nullptr);
}
static GrOpsRenderPass* create_render_pass(
GrGpu* gpu, GrRenderTarget* rt, GrSurfaceOrigin origin, const SkIRect& bounds,
GrLoadOp colorLoadOp, const SkPMColor4f& loadClearColor, GrLoadOp stencilLoadOp,
GrStoreOp stencilStoreOp, const SkTArray<GrTextureProxy*, true>& sampledProxies) {
const GrOpsRenderPass::LoadAndStoreInfo kColorLoadStoreInfo {
colorLoadOp,
GrStoreOp::kStore,
loadClearColor
};
// TODO:
// We would like to (at this level) only ever clear & discard. We would need
// to stop splitting up higher level OpsTasks for copyOps to achieve that.
// Note: we would still need SB loads and stores but they would happen at a
// lower level (inside the VK command buffer).
const GrOpsRenderPass::StencilLoadAndStoreInfo stencilLoadAndStoreInfo {
stencilLoadOp,
stencilStoreOp,
};
return gpu->getOpsRenderPass(rt, origin, bounds, kColorLoadStoreInfo, stencilLoadAndStoreInfo,
sampledProxies);
}
// TODO: this is where GrOp::renderTarget is used (which is fine since it
// is at flush time). However, we need to store the RenderTargetProxy in the
// Ops and instantiate them here.
bool GrOpsTask::onExecute(GrOpFlushState* flushState) {
// TODO: remove the check for discard here once reduced op splitting is turned on. Currently we
// can end up with GrOpsTasks that only have a discard load op and no ops. For vulkan validation
// we need to keep that discard and not drop it. Once we have reduce op list splitting enabled
// we shouldn't end up with GrOpsTasks with only discard.
if (this->isNoOp() || (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) {
return false;
}
SkASSERT(fTarget->peekRenderTarget());
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
// Make sure load ops are not kClear if the GPU needs to use draws for clears
SkASSERT(fColorLoadOp != GrLoadOp::kClear ||
!flushState->gpu()->caps()->performColorClearsAsDraws());
const GrCaps& caps = *flushState->gpu()->caps();
GrRenderTarget* renderTarget = fTarget.get()->peekRenderTarget();
SkASSERT(renderTarget);
GrStencilAttachment* stencil = renderTarget->renderTargetPriv().getStencilAttachment();
GrLoadOp stencilLoadOp;
switch (fInitialStencilContent) {
case StencilContent::kDontCare:
stencilLoadOp = GrLoadOp::kDiscard;
break;
case StencilContent::kUserBitsCleared:
SkASSERT(!caps.performStencilClearsAsDraws());
SkASSERT(stencil);
if (caps.discardStencilValuesAfterRenderPass()) {
// Always clear the stencil if it is being discarded after render passes. This is
// also an optimization because we are on a tiler and it avoids loading the values
// from memory.
stencilLoadOp = GrLoadOp::kClear;
break;
}
if (!stencil->hasPerformedInitialClear()) {
stencilLoadOp = GrLoadOp::kClear;
stencil->markHasPerformedInitialClear();
break;
}
// renderTargetContexts are required to leave the user stencil bits in a cleared state
// once finished, meaning the stencil values will always remain cleared after the
// initial clear. Just fall through to reloading the existing (cleared) stencil values
// from memory.
case StencilContent::kPreserved:
SkASSERT(stencil);
stencilLoadOp = GrLoadOp::kLoad;
break;
}
// NOTE: If fMustPreserveStencil is set, then we are executing a renderTargetContext that split
// its opsTask.
//
// FIXME: We don't currently flag render passes that don't use stencil at all. In that case
// their store op might be "discard", and we currently make the assumption that a discard will
// not invalidate what's already in main memory. This is probably ok for now, but certainly
// something we want to address soon.
GrStoreOp stencilStoreOp = (caps.discardStencilValuesAfterRenderPass() && !fMustPreserveStencil)
? GrStoreOp::kDiscard
: GrStoreOp::kStore;
GrOpsRenderPass* renderPass = create_render_pass(
flushState->gpu(), fTarget->peekRenderTarget(), fTarget->origin(),
fClippedContentBounds, fColorLoadOp, fLoadClearColor, stencilLoadOp, stencilStoreOp,
fSampledProxies);
flushState->setOpsRenderPass(renderPass);
renderPass->begin();
// Draw all the generated geometry.
for (const auto& chain : fOpChains) {
if (!chain.shouldExecute()) {
continue;
}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
TRACE_EVENT0("skia.gpu", chain.head()->name());
#endif
GrOpFlushState::OpArgs opArgs(chain.head(),
fTarget->asRenderTargetProxy(),
chain.appliedClip(),
chain.dstProxy());
flushState->setOpArgs(&opArgs);
chain.head()->execute(flushState, chain.bounds());
flushState->setOpArgs(nullptr);
}
renderPass->end();
flushState->gpu()->submit(renderPass);
flushState->setOpsRenderPass(nullptr);
return true;
}
void GrOpsTask::setColorLoadOp(GrLoadOp op, const SkPMColor4f& color) {
fColorLoadOp = op;
fLoadClearColor = color;
if (GrLoadOp::kClear == fColorLoadOp) {
fTotalBounds.setWH(fTarget->width(), fTarget->height());
}
}
bool GrOpsTask::resetForFullscreenClear(CanDiscardPreviousOps canDiscardPreviousOps) {
// If we previously recorded a wait op, we cannot delete the wait op. Until we track the wait
// ops separately from normal ops, we have to avoid clearing out any ops in this case as well.
if (fHasWaitOp) {
canDiscardPreviousOps = CanDiscardPreviousOps::kNo;
}
if (CanDiscardPreviousOps::kYes == canDiscardPreviousOps || this->isEmpty()) {
this->deleteOps();
fDeferredProxies.reset();
fSampledProxies.reset();
// If the opsTask is using a render target which wraps a vulkan command buffer, we can't do
// a clear load since we cannot change the render pass that we are using. Thus we fall back
// to making a clear op in this case.
return !fTarget->asRenderTargetProxy()->wrapsVkSecondaryCB();
}
// Could not empty the task, so an op must be added to handle the clear
return false;
}
void GrOpsTask::discard() {
// Discard calls to in-progress opsTasks are ignored. Calls at the start update the
// opsTasks' color & stencil load ops.
if (this->isEmpty()) {
fColorLoadOp = GrLoadOp::kDiscard;
fInitialStencilContent = StencilContent::kDontCare;
fTotalBounds.setEmpty();
}
}
////////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void GrOpsTask::dump(bool printDependencies) const {
GrRenderTask::dump(printDependencies);
SkDebugf("fColorLoadOp: ");
switch (fColorLoadOp) {
case GrLoadOp::kLoad:
SkDebugf("kLoad\n");
break;
case GrLoadOp::kClear:
SkDebugf("kClear (0x%x)\n", fLoadClearColor.toBytes_RGBA());
break;
case GrLoadOp::kDiscard:
SkDebugf("kDiscard\n");
break;
}
SkDebugf("fInitialStencilContent: ");
switch (fInitialStencilContent) {
case StencilContent::kDontCare:
SkDebugf("kDontCare\n");
break;
case StencilContent::kUserBitsCleared:
SkDebugf("kUserBitsCleared\n");
break;
case StencilContent::kPreserved:
SkDebugf("kPreserved\n");
break;
}
SkDebugf("ops (%d):\n", fOpChains.count());
for (int i = 0; i < fOpChains.count(); ++i) {
SkDebugf("*******************************\n");
if (!fOpChains[i].head()) {
SkDebugf("%d: <combined forward or failed instantiation>\n", i);
} else {
SkDebugf("%d: %s\n", i, fOpChains[i].head()->name());
SkRect bounds = fOpChains[i].bounds();
SkDebugf("ClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft,
bounds.fTop, bounds.fRight, bounds.fBottom);
for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) {
SkString info = SkTabString(op.dumpInfo(), 1);
SkDebugf("%s\n", info.c_str());
bounds = op.bounds();
SkDebugf("\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft,
bounds.fTop, bounds.fRight, bounds.fBottom);
}
}
}
}
void GrOpsTask::visitProxies_debugOnly(const VisitSurfaceProxyFunc& func) const {
auto textureFunc = [ func ] (GrTextureProxy* tex, GrMipMapped mipmapped) {
func(tex, mipmapped);
};
for (const OpChain& chain : fOpChains) {
chain.visitProxies(textureFunc);
}
}
#endif
////////////////////////////////////////////////////////////////////////////////
bool GrOpsTask::onIsUsed(GrSurfaceProxy* proxyToCheck) const {
bool used = false;
auto visit = [ proxyToCheck, &used ] (GrSurfaceProxy* p, GrMipMapped) {
if (p == proxyToCheck) {
used = true;
}
};
for (const OpChain& recordedOp : fOpChains) {
recordedOp.visitProxies(visit);
}
return used;
}
void GrOpsTask::handleInternalAllocationFailure() {
bool hasUninstantiatedProxy = false;
auto checkInstantiation = [&hasUninstantiatedProxy](GrSurfaceProxy* p, GrMipMapped) {
if (!p->isInstantiated()) {
hasUninstantiatedProxy = true;
}
};
for (OpChain& recordedOp : fOpChains) {
hasUninstantiatedProxy = false;
recordedOp.visitProxies(checkInstantiation);
if (hasUninstantiatedProxy) {
recordedOp.setSkipExecuteFlag();
}
}
}
void GrOpsTask::gatherProxyIntervals(GrResourceAllocator* alloc) const {
for (int i = 0; i < fDeferredProxies.count(); ++i) {
SkASSERT(!fDeferredProxies[i]->isInstantiated());
// We give all the deferred proxies a write usage at the very start of flushing. This
// locks them out of being reused for the entire flush until they are read - and then
// they can be recycled. This is a bit unfortunate because a flush can proceed in waves
// with sub-flushes. The deferred proxies only need to be pinned from the start of
// the sub-flush in which they appear.
alloc->addInterval(fDeferredProxies[i], 0, 0, GrResourceAllocator::ActualUse::kNo);
}
// Add the interval for all the writes to this GrOpsTasks's target
if (fOpChains.count()) {
unsigned int cur = alloc->curOp();
alloc->addInterval(fTarget.get(), cur, cur + fOpChains.count() - 1,
GrResourceAllocator::ActualUse::kYes);
} else {
// This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we
// still need to add an interval for the destination so we create a fake op# for
// the missing clear op.
alloc->addInterval(fTarget.get(), alloc->curOp(), alloc->curOp(),
GrResourceAllocator::ActualUse::kYes);
alloc->incOps();
}
auto gather = [ alloc SkDEBUGCODE(, this) ] (GrSurfaceProxy* p, GrMipMapped) {
alloc->addInterval(p, alloc->curOp(), alloc->curOp(), GrResourceAllocator::ActualUse::kYes
SkDEBUGCODE(, fTarget.get() == p));
};
for (const OpChain& recordedOp : fOpChains) {
recordedOp.visitProxies(gather);
// Even though the op may have been (re)moved we still need to increment the op count to
// keep all the math consistent.
alloc->incOps();
}
}
void GrOpsTask::recordOp(
std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* clip,
const DstProxy* dstProxy, const GrCaps& caps) {
SkDEBUGCODE(op->validate();)
SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxy && dstProxy->proxy()));
SkASSERT(fTarget);
// A closed GrOpsTask should never receive new/more ops
SkASSERT(!this->isClosed());
if (!op->bounds().isFinite()) {
fOpMemoryPool->release(std::move(op));
return;
}
// Account for this op's bounds before we attempt to combine.
// NOTE: The caller should have already called "op->setClippedBounds()" by now, if applicable.
fTotalBounds.join(op->bounds());
// Check if there is an op we can combine with by linearly searching back until we either
// 1) check every op
// 2) intersect with something
// 3) find a 'blocker'
GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), fTarget->uniqueID());
GrOP_INFO("opsTask: %d Recording (%s, opID: %u)\n"
"\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n",
this->uniqueID(),
op->name(),
op->uniqueID(),
op->bounds().fLeft, op->bounds().fTop,
op->bounds().fRight, op->bounds().fBottom);
GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str());
GrOP_INFO("\tOutcome:\n");
int maxCandidates = SkTMin(kMaxOpChainDistance, fOpChains.count());
if (maxCandidates) {
int i = 0;
while (true) {
OpChain& candidate = fOpChains.fromBack(i);
op = candidate.appendOp(std::move(op), processorAnalysis, dstProxy, clip, caps,
fOpMemoryPool.get(), fAuditTrail);
if (!op) {
return;
}
// Stop going backwards if we would cause a painter's order violation.
if (!can_reorder(candidate.bounds(), op->bounds())) {
GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n",
candidate.head()->name(), candidate.head()->uniqueID());
break;
}
if (++i == maxCandidates) {
GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i);
break;
}
}
} else {
GrOP_INFO("\t\tBackward: FirstOp\n");
}
if (clip) {
clip = fClipAllocator.make<GrAppliedClip>(std::move(*clip));
SkDEBUGCODE(fNumClips++;)
}
fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxy);
}
void GrOpsTask::forwardCombine(const GrCaps& caps) {
SkASSERT(!this->isClosed());
GrOP_INFO("opsTask: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.count());
for (int i = 0; i < fOpChains.count() - 1; ++i) {
OpChain& chain = fOpChains[i];
int maxCandidateIdx = SkTMin(i + kMaxOpChainDistance, fOpChains.count() - 1);
int j = i + 1;
while (true) {
OpChain& candidate = fOpChains[j];
if (candidate.prependChain(&chain, caps, fOpMemoryPool.get(), fAuditTrail)) {
break;
}
// Stop traversing if we would cause a painter's order violation.
if (!can_reorder(chain.bounds(), candidate.bounds())) {
GrOP_INFO(
"\t\t%d: chain (%s head opID: %u) -> "
"Intersects with chain (%s, head opID: %u)\n",
i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(),
candidate.head()->uniqueID());
break;
}
if (++j > maxCandidateIdx) {
GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n",
i, chain.head()->name(), chain.head()->uniqueID());
break;
}
}
}
}
GrRenderTask::ExpectedOutcome GrOpsTask::onMakeClosed(
const GrCaps& caps, SkIRect* targetUpdateBounds) {
this->forwardCombine(caps);
if (!this->isNoOp()) {
SkRect clippedContentBounds = SkRect::MakeIWH(fTarget->width(), fTarget->height());
// TODO: If we can fix up GLPrograms test to always intersect the fTarget bounds then we can
// simply assert here that the bounds intersect.
if (clippedContentBounds.intersect(fTotalBounds)) {
clippedContentBounds.roundOut(&fClippedContentBounds);
*targetUpdateBounds = fClippedContentBounds;
return ExpectedOutcome::kTargetDirty;
}
}
return ExpectedOutcome::kTargetUnchanged;
}