| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/GrOpsTask.h" |
| |
| #include "include/private/GrRecordingContext.h" |
| #include "src/core/SkExchange.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkTraceEvent.h" |
| #include "src/gpu/GrAuditTrail.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrGpu.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrOpFlushState.h" |
| #include "src/gpu/GrOpsRenderPass.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrRenderTarget.h" |
| #include "src/gpu/GrRenderTargetContext.h" |
| #include "src/gpu/GrRenderTargetPriv.h" |
| #include "src/gpu/GrResourceAllocator.h" |
| #include "src/gpu/GrStencilAttachment.h" |
| #include "src/gpu/GrTexturePriv.h" |
| #include "src/gpu/geometry/GrRect.h" |
| #include "src/gpu/ops/GrClearOp.h" |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // Experimentally we have found that most combining occurs within the first 10 comparisons. |
| static const int kMaxOpMergeDistance = 10; |
| static const int kMaxOpChainDistance = 10; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| using DstProxy = GrXferProcessor::DstProxy; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| inline GrOpsTask::OpChain::List::List(std::unique_ptr<GrOp> op) |
| : fHead(std::move(op)), fTail(fHead.get()) { |
| this->validate(); |
| } |
| |
| inline GrOpsTask::OpChain::List::List(List&& that) { *this = std::move(that); } |
| |
| inline GrOpsTask::OpChain::List& GrOpsTask::OpChain::List::operator=(List&& that) { |
| fHead = std::move(that.fHead); |
| fTail = that.fTail; |
| that.fTail = nullptr; |
| this->validate(); |
| return *this; |
| } |
| |
| inline std::unique_ptr<GrOp> GrOpsTask::OpChain::List::popHead() { |
| SkASSERT(fHead); |
| auto temp = fHead->cutChain(); |
| std::swap(temp, fHead); |
| if (!fHead) { |
| SkASSERT(fTail == temp.get()); |
| fTail = nullptr; |
| } |
| return temp; |
| } |
| |
| inline std::unique_ptr<GrOp> GrOpsTask::OpChain::List::removeOp(GrOp* op) { |
| #ifdef SK_DEBUG |
| auto head = op; |
| while (head->prevInChain()) { head = head->prevInChain(); } |
| SkASSERT(head == fHead.get()); |
| #endif |
| auto prev = op->prevInChain(); |
| if (!prev) { |
| SkASSERT(op == fHead.get()); |
| return this->popHead(); |
| } |
| auto temp = prev->cutChain(); |
| if (auto next = temp->cutChain()) { |
| prev->chainConcat(std::move(next)); |
| } else { |
| SkASSERT(fTail == op); |
| fTail = prev; |
| } |
| this->validate(); |
| return temp; |
| } |
| |
| inline void GrOpsTask::OpChain::List::pushHead(std::unique_ptr<GrOp> op) { |
| SkASSERT(op); |
| SkASSERT(op->isChainHead()); |
| SkASSERT(op->isChainTail()); |
| if (fHead) { |
| op->chainConcat(std::move(fHead)); |
| fHead = std::move(op); |
| } else { |
| fHead = std::move(op); |
| fTail = fHead.get(); |
| } |
| } |
| |
| inline void GrOpsTask::OpChain::List::pushTail(std::unique_ptr<GrOp> op) { |
| SkASSERT(op->isChainTail()); |
| fTail->chainConcat(std::move(op)); |
| fTail = fTail->nextInChain(); |
| } |
| |
| inline void GrOpsTask::OpChain::List::validate() const { |
| #ifdef SK_DEBUG |
| if (fHead) { |
| SkASSERT(fTail); |
| fHead->validateChain(fTail); |
| } |
| #endif |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrOpsTask::OpChain::OpChain(std::unique_ptr<GrOp> op, |
| GrProcessorSet::Analysis processorAnalysis, |
| GrAppliedClip* appliedClip, const DstProxy* dstProxy) |
| : fList{std::move(op)} |
| , fProcessorAnalysis(processorAnalysis) |
| , fAppliedClip(appliedClip) { |
| if (fProcessorAnalysis.requiresDstTexture()) { |
| SkASSERT(dstProxy && dstProxy->proxy()); |
| fDstProxy = *dstProxy; |
| } |
| fBounds = fList.head()->bounds(); |
| } |
| |
| void GrOpsTask::OpChain::visitProxies(const GrOp::VisitProxyFunc& func) const { |
| if (fList.empty()) { |
| return; |
| } |
| for (const auto& op : GrOp::ChainRange<>(fList.head())) { |
| op.visitProxies(func); |
| } |
| if (fDstProxy.proxy()) { |
| func(fDstProxy.proxy(), GrMipMapped::kNo); |
| } |
| if (fAppliedClip) { |
| fAppliedClip->visitProxies(func); |
| } |
| } |
| |
| void GrOpsTask::OpChain::deleteOps(GrOpMemoryPool* pool) { |
| while (!fList.empty()) { |
| pool->release(fList.popHead()); |
| } |
| } |
| |
| // Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that |
| // the two chains are chainable. Returns the new chain. |
| GrOpsTask::OpChain::List GrOpsTask::OpChain::DoConcat( |
| List chainA, List chainB, const GrCaps& caps, GrOpMemoryPool* pool, |
| GrAuditTrail* auditTrail) { |
| // We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting |
| // at chain a's tail and working toward the head. We produce one of the following outcomes: |
| // 1) b's head is merged into an op in a. |
| // 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.) |
| // 3) b's head is popped from chain a and added at the tail of a. |
| // After result 3 we don't want to attempt to merge the next head of b with the new tail of a, |
| // as we assume merges were already attempted when chain b was created. So we keep track of the |
| // original tail of a and start our iteration of a there. We also track the bounds of the nodes |
| // appended to chain a that will be skipped for bounds testing. If the original tail of a is |
| // merged into an op in b (case 2) then we advance the "original tail" towards the head of a. |
| GrOp* origATail = chainA.tail(); |
| SkRect skipBounds = SkRectPriv::MakeLargestInverted(); |
| do { |
| int numMergeChecks = 0; |
| bool merged = false; |
| bool noSkip = (origATail == chainA.tail()); |
| SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted())); |
| bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds); |
| SkRect forwardMergeBounds = skipBounds; |
| GrOp* a = origATail; |
| while (a) { |
| bool canForwardMerge = |
| (a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds); |
| if (canForwardMerge || canBackwardMerge) { |
| auto result = a->combineIfPossible(chainB.head(), caps); |
| SkASSERT(result != GrOp::CombineResult::kCannotCombine); |
| merged = (result == GrOp::CombineResult::kMerged); |
| GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", |
| chainB.head()->name(), chainB.head()->uniqueID(), a->name(), |
| a->uniqueID()); |
| } |
| if (merged) { |
| GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head()); |
| if (canBackwardMerge) { |
| pool->release(chainB.popHead()); |
| } else { |
| // We merged the contents of b's head into a. We will replace b's head with a in |
| // chain b. |
| SkASSERT(canForwardMerge); |
| if (a == origATail) { |
| origATail = a->prevInChain(); |
| } |
| std::unique_ptr<GrOp> detachedA = chainA.removeOp(a); |
| pool->release(chainB.popHead()); |
| chainB.pushHead(std::move(detachedA)); |
| if (chainA.empty()) { |
| // We merged all the nodes in chain a to chain b. |
| return chainB; |
| } |
| } |
| break; |
| } else { |
| if (++numMergeChecks == kMaxOpMergeDistance) { |
| break; |
| } |
| forwardMergeBounds.joinNonEmptyArg(a->bounds()); |
| canBackwardMerge = |
| canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds()); |
| a = a->prevInChain(); |
| } |
| } |
| // If we weren't able to merge b's head then pop b's head from chain b and make it the new |
| // tail of a. |
| if (!merged) { |
| chainA.pushTail(chainB.popHead()); |
| skipBounds.joinNonEmptyArg(chainA.tail()->bounds()); |
| } |
| } while (!chainB.empty()); |
| return chainA; |
| } |
| |
| // Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns |
| // whether the operation succeeded. On success, the provided list will be returned empty. |
| bool GrOpsTask::OpChain::tryConcat( |
| List* list, GrProcessorSet::Analysis processorAnalysis, const DstProxy& dstProxy, |
| const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps, |
| GrOpMemoryPool* pool, GrAuditTrail* auditTrail) { |
| SkASSERT(!fList.empty()); |
| SkASSERT(!list->empty()); |
| SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxy.proxy())); |
| SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxy.proxy())); |
| // All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug. |
| if (fList.head()->classID() != list->head()->classID() || |
| SkToBool(fAppliedClip) != SkToBool(appliedClip) || |
| (fAppliedClip && *fAppliedClip != *appliedClip) || |
| (fProcessorAnalysis.requiresNonOverlappingDraws() != |
| processorAnalysis.requiresNonOverlappingDraws()) || |
| (fProcessorAnalysis.requiresNonOverlappingDraws() && |
| // Non-overlaping draws are only required when Ganesh will either insert a barrier, |
| // or read back a new dst texture between draws. In either case, we can neither |
| // chain nor combine overlapping Ops. |
| GrRectsTouchOrOverlap(fBounds, bounds)) || |
| (fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) || |
| (fProcessorAnalysis.requiresDstTexture() && fDstProxy != dstProxy)) { |
| return false; |
| } |
| |
| SkDEBUGCODE(bool first = true;) |
| do { |
| switch (fList.tail()->combineIfPossible(list->head(), caps)) { |
| case GrOp::CombineResult::kCannotCombine: |
| // If an op supports chaining then it is required that chaining is transitive and |
| // that if any two ops in two different chains can merge then the two chains |
| // may also be chained together. Thus, we should only hit this on the first |
| // iteration. |
| SkASSERT(first); |
| return false; |
| case GrOp::CombineResult::kMayChain: |
| fList = DoConcat(std::move(fList), skstd::exchange(*list, List()), caps, pool, |
| auditTrail); |
| // The above exchange cleared out 'list'. The list needs to be empty now for the |
| // loop to terminate. |
| SkASSERT(list->empty()); |
| break; |
| case GrOp::CombineResult::kMerged: { |
| GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", |
| list->tail()->name(), list->tail()->uniqueID(), list->head()->name(), |
| list->head()->uniqueID()); |
| GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head()); |
| pool->release(list->popHead()); |
| break; |
| } |
| } |
| SkDEBUGCODE(first = false); |
| } while (!list->empty()); |
| |
| // The new ops were successfully merged and/or chained onto our own. |
| fBounds.joinPossiblyEmptyRect(bounds); |
| return true; |
| } |
| |
| bool GrOpsTask::OpChain::prependChain(OpChain* that, const GrCaps& caps, GrOpMemoryPool* pool, |
| GrAuditTrail* auditTrail) { |
| if (!that->tryConcat( |
| &fList, fProcessorAnalysis, fDstProxy, fAppliedClip, fBounds, caps, pool, auditTrail)) { |
| this->validate(); |
| // append failed |
| return false; |
| } |
| |
| // 'that' owns the combined chain. Move it into 'this'. |
| SkASSERT(fList.empty()); |
| fList = std::move(that->fList); |
| fBounds = that->fBounds; |
| |
| that->fDstProxy.setProxy(nullptr); |
| if (that->fAppliedClip) { |
| for (int i = 0; i < that->fAppliedClip->numClipCoverageFragmentProcessors(); ++i) { |
| that->fAppliedClip->detachClipCoverageFragmentProcessor(i); |
| } |
| } |
| this->validate(); |
| return true; |
| } |
| |
| std::unique_ptr<GrOp> GrOpsTask::OpChain::appendOp( |
| std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis, |
| const DstProxy* dstProxy, const GrAppliedClip* appliedClip, const GrCaps& caps, |
| GrOpMemoryPool* pool, GrAuditTrail* auditTrail) { |
| const GrXferProcessor::DstProxy noDstProxy; |
| if (!dstProxy) { |
| dstProxy = &noDstProxy; |
| } |
| SkASSERT(op->isChainHead() && op->isChainTail()); |
| SkRect opBounds = op->bounds(); |
| List chain(std::move(op)); |
| if (!this->tryConcat( |
| &chain, processorAnalysis, *dstProxy, appliedClip, opBounds, caps, pool, auditTrail)) { |
| // append failed, give the op back to the caller. |
| this->validate(); |
| return chain.popHead(); |
| } |
| |
| SkASSERT(chain.empty()); |
| this->validate(); |
| return nullptr; |
| } |
| |
| inline void GrOpsTask::OpChain::validate() const { |
| #ifdef SK_DEBUG |
| fList.validate(); |
| for (const auto& op : GrOp::ChainRange<>(fList.head())) { |
| // Not using SkRect::contains because we allow empty rects. |
| SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop && |
| fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom); |
| } |
| #endif |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrOpsTask::GrOpsTask(sk_sp<GrOpMemoryPool> opMemoryPool, |
| sk_sp<GrRenderTargetProxy> rtProxy, |
| GrAuditTrail* auditTrail) |
| : GrRenderTask(std::move(rtProxy)) |
| , fOpMemoryPool(std::move(opMemoryPool)) |
| , fAuditTrail(auditTrail) |
| , fLastClipStackGenID(SK_InvalidUniqueID) |
| SkDEBUGCODE(, fNumClips(0)) { |
| SkASSERT(fOpMemoryPool); |
| fTarget->setLastRenderTask(this); |
| } |
| |
| void GrOpsTask::deleteOps() { |
| for (auto& chain : fOpChains) { |
| chain.deleteOps(fOpMemoryPool.get()); |
| } |
| fOpChains.reset(); |
| } |
| |
| GrOpsTask::~GrOpsTask() { |
| this->deleteOps(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrOpsTask::endFlush() { |
| fLastClipStackGenID = SK_InvalidUniqueID; |
| this->deleteOps(); |
| fClipAllocator.reset(); |
| |
| if (fTarget && this == fTarget->getLastRenderTask()) { |
| fTarget->setLastRenderTask(nullptr); |
| } |
| |
| fTarget.reset(); |
| fDeferredProxies.reset(); |
| fSampledProxies.reset(); |
| fAuditTrail = nullptr; |
| } |
| |
| void GrOpsTask::onPrepare(GrOpFlushState* flushState) { |
| SkASSERT(fTarget->peekRenderTarget()); |
| SkASSERT(this->isClosed()); |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| #endif |
| // TODO: remove the check for discard here once reduced op splitting is turned on. Currently we |
| // can end up with GrOpsTasks that only have a discard load op and no ops. For vulkan validation |
| // we need to keep that discard and not drop it. Once we have reduce op list splitting enabled |
| // we shouldn't end up with GrOpsTasks with only discard. |
| if (this->isNoOp() || (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) { |
| return; |
| } |
| |
| flushState->setSampledProxyArray(&fSampledProxies); |
| // Loop over the ops that haven't yet been prepared. |
| for (const auto& chain : fOpChains) { |
| if (chain.shouldExecute()) { |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| TRACE_EVENT0("skia.gpu", chain.head()->name()); |
| #endif |
| GrOpFlushState::OpArgs opArgs(chain.head(), |
| fTarget->asRenderTargetProxy(), |
| chain.appliedClip(), |
| chain.dstProxy()); |
| |
| flushState->setOpArgs(&opArgs); |
| chain.head()->prepare(flushState); |
| flushState->setOpArgs(nullptr); |
| } |
| } |
| flushState->setSampledProxyArray(nullptr); |
| } |
| |
| static GrOpsRenderPass* create_render_pass( |
| GrGpu* gpu, GrRenderTarget* rt, GrSurfaceOrigin origin, const SkIRect& bounds, |
| GrLoadOp colorLoadOp, const SkPMColor4f& loadClearColor, GrLoadOp stencilLoadOp, |
| GrStoreOp stencilStoreOp, const SkTArray<GrTextureProxy*, true>& sampledProxies) { |
| const GrOpsRenderPass::LoadAndStoreInfo kColorLoadStoreInfo { |
| colorLoadOp, |
| GrStoreOp::kStore, |
| loadClearColor |
| }; |
| |
| // TODO: |
| // We would like to (at this level) only ever clear & discard. We would need |
| // to stop splitting up higher level OpsTasks for copyOps to achieve that. |
| // Note: we would still need SB loads and stores but they would happen at a |
| // lower level (inside the VK command buffer). |
| const GrOpsRenderPass::StencilLoadAndStoreInfo stencilLoadAndStoreInfo { |
| stencilLoadOp, |
| stencilStoreOp, |
| }; |
| |
| return gpu->getOpsRenderPass(rt, origin, bounds, kColorLoadStoreInfo, stencilLoadAndStoreInfo, |
| sampledProxies); |
| } |
| |
| // TODO: this is where GrOp::renderTarget is used (which is fine since it |
| // is at flush time). However, we need to store the RenderTargetProxy in the |
| // Ops and instantiate them here. |
| bool GrOpsTask::onExecute(GrOpFlushState* flushState) { |
| // TODO: remove the check for discard here once reduced op splitting is turned on. Currently we |
| // can end up with GrOpsTasks that only have a discard load op and no ops. For vulkan validation |
| // we need to keep that discard and not drop it. Once we have reduce op list splitting enabled |
| // we shouldn't end up with GrOpsTasks with only discard. |
| if (this->isNoOp() || (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) { |
| return false; |
| } |
| |
| SkASSERT(fTarget->peekRenderTarget()); |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| // Make sure load ops are not kClear if the GPU needs to use draws for clears |
| SkASSERT(fColorLoadOp != GrLoadOp::kClear || |
| !flushState->gpu()->caps()->performColorClearsAsDraws()); |
| |
| const GrCaps& caps = *flushState->gpu()->caps(); |
| GrRenderTarget* renderTarget = fTarget.get()->peekRenderTarget(); |
| SkASSERT(renderTarget); |
| GrStencilAttachment* stencil = renderTarget->renderTargetPriv().getStencilAttachment(); |
| |
| GrLoadOp stencilLoadOp; |
| switch (fInitialStencilContent) { |
| case StencilContent::kDontCare: |
| stencilLoadOp = GrLoadOp::kDiscard; |
| break; |
| case StencilContent::kUserBitsCleared: |
| SkASSERT(!caps.performStencilClearsAsDraws()); |
| SkASSERT(stencil); |
| if (caps.discardStencilValuesAfterRenderPass()) { |
| // Always clear the stencil if it is being discarded after render passes. This is |
| // also an optimization because we are on a tiler and it avoids loading the values |
| // from memory. |
| stencilLoadOp = GrLoadOp::kClear; |
| break; |
| } |
| if (!stencil->hasPerformedInitialClear()) { |
| stencilLoadOp = GrLoadOp::kClear; |
| stencil->markHasPerformedInitialClear(); |
| break; |
| } |
| // renderTargetContexts are required to leave the user stencil bits in a cleared state |
| // once finished, meaning the stencil values will always remain cleared after the |
| // initial clear. Just fall through to reloading the existing (cleared) stencil values |
| // from memory. |
| case StencilContent::kPreserved: |
| SkASSERT(stencil); |
| stencilLoadOp = GrLoadOp::kLoad; |
| break; |
| } |
| |
| // NOTE: If fMustPreserveStencil is set, then we are executing a renderTargetContext that split |
| // its opsTask. |
| // |
| // FIXME: We don't currently flag render passes that don't use stencil at all. In that case |
| // their store op might be "discard", and we currently make the assumption that a discard will |
| // not invalidate what's already in main memory. This is probably ok for now, but certainly |
| // something we want to address soon. |
| GrStoreOp stencilStoreOp = (caps.discardStencilValuesAfterRenderPass() && !fMustPreserveStencil) |
| ? GrStoreOp::kDiscard |
| : GrStoreOp::kStore; |
| |
| GrOpsRenderPass* renderPass = create_render_pass( |
| flushState->gpu(), fTarget->peekRenderTarget(), fTarget->origin(), |
| fClippedContentBounds, fColorLoadOp, fLoadClearColor, stencilLoadOp, stencilStoreOp, |
| fSampledProxies); |
| flushState->setOpsRenderPass(renderPass); |
| renderPass->begin(); |
| |
| // Draw all the generated geometry. |
| for (const auto& chain : fOpChains) { |
| if (!chain.shouldExecute()) { |
| continue; |
| } |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| TRACE_EVENT0("skia.gpu", chain.head()->name()); |
| #endif |
| |
| GrOpFlushState::OpArgs opArgs(chain.head(), |
| fTarget->asRenderTargetProxy(), |
| chain.appliedClip(), |
| chain.dstProxy()); |
| |
| flushState->setOpArgs(&opArgs); |
| chain.head()->execute(flushState, chain.bounds()); |
| flushState->setOpArgs(nullptr); |
| } |
| |
| renderPass->end(); |
| flushState->gpu()->submit(renderPass); |
| flushState->setOpsRenderPass(nullptr); |
| |
| return true; |
| } |
| |
| void GrOpsTask::setColorLoadOp(GrLoadOp op, const SkPMColor4f& color) { |
| fColorLoadOp = op; |
| fLoadClearColor = color; |
| if (GrLoadOp::kClear == fColorLoadOp) { |
| fTotalBounds.setWH(fTarget->width(), fTarget->height()); |
| } |
| } |
| |
| bool GrOpsTask::resetForFullscreenClear(CanDiscardPreviousOps canDiscardPreviousOps) { |
| // If we previously recorded a wait op, we cannot delete the wait op. Until we track the wait |
| // ops separately from normal ops, we have to avoid clearing out any ops in this case as well. |
| if (fHasWaitOp) { |
| canDiscardPreviousOps = CanDiscardPreviousOps::kNo; |
| } |
| |
| if (CanDiscardPreviousOps::kYes == canDiscardPreviousOps || this->isEmpty()) { |
| this->deleteOps(); |
| fDeferredProxies.reset(); |
| fSampledProxies.reset(); |
| |
| // If the opsTask is using a render target which wraps a vulkan command buffer, we can't do |
| // a clear load since we cannot change the render pass that we are using. Thus we fall back |
| // to making a clear op in this case. |
| return !fTarget->asRenderTargetProxy()->wrapsVkSecondaryCB(); |
| } |
| |
| // Could not empty the task, so an op must be added to handle the clear |
| return false; |
| } |
| |
| void GrOpsTask::discard() { |
| // Discard calls to in-progress opsTasks are ignored. Calls at the start update the |
| // opsTasks' color & stencil load ops. |
| if (this->isEmpty()) { |
| fColorLoadOp = GrLoadOp::kDiscard; |
| fInitialStencilContent = StencilContent::kDontCare; |
| fTotalBounds.setEmpty(); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_DEBUG |
| void GrOpsTask::dump(bool printDependencies) const { |
| GrRenderTask::dump(printDependencies); |
| |
| SkDebugf("fColorLoadOp: "); |
| switch (fColorLoadOp) { |
| case GrLoadOp::kLoad: |
| SkDebugf("kLoad\n"); |
| break; |
| case GrLoadOp::kClear: |
| SkDebugf("kClear (0x%x)\n", fLoadClearColor.toBytes_RGBA()); |
| break; |
| case GrLoadOp::kDiscard: |
| SkDebugf("kDiscard\n"); |
| break; |
| } |
| |
| SkDebugf("fInitialStencilContent: "); |
| switch (fInitialStencilContent) { |
| case StencilContent::kDontCare: |
| SkDebugf("kDontCare\n"); |
| break; |
| case StencilContent::kUserBitsCleared: |
| SkDebugf("kUserBitsCleared\n"); |
| break; |
| case StencilContent::kPreserved: |
| SkDebugf("kPreserved\n"); |
| break; |
| } |
| |
| SkDebugf("ops (%d):\n", fOpChains.count()); |
| for (int i = 0; i < fOpChains.count(); ++i) { |
| SkDebugf("*******************************\n"); |
| if (!fOpChains[i].head()) { |
| SkDebugf("%d: <combined forward or failed instantiation>\n", i); |
| } else { |
| SkDebugf("%d: %s\n", i, fOpChains[i].head()->name()); |
| SkRect bounds = fOpChains[i].bounds(); |
| SkDebugf("ClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft, |
| bounds.fTop, bounds.fRight, bounds.fBottom); |
| for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) { |
| SkString info = SkTabString(op.dumpInfo(), 1); |
| SkDebugf("%s\n", info.c_str()); |
| bounds = op.bounds(); |
| SkDebugf("\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft, |
| bounds.fTop, bounds.fRight, bounds.fBottom); |
| } |
| } |
| } |
| } |
| |
| void GrOpsTask::visitProxies_debugOnly(const VisitSurfaceProxyFunc& func) const { |
| auto textureFunc = [ func ] (GrTextureProxy* tex, GrMipMapped mipmapped) { |
| func(tex, mipmapped); |
| }; |
| |
| for (const OpChain& chain : fOpChains) { |
| chain.visitProxies(textureFunc); |
| } |
| } |
| |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrOpsTask::onIsUsed(GrSurfaceProxy* proxyToCheck) const { |
| bool used = false; |
| |
| auto visit = [ proxyToCheck, &used ] (GrSurfaceProxy* p, GrMipMapped) { |
| if (p == proxyToCheck) { |
| used = true; |
| } |
| }; |
| for (const OpChain& recordedOp : fOpChains) { |
| recordedOp.visitProxies(visit); |
| } |
| |
| return used; |
| } |
| |
| void GrOpsTask::handleInternalAllocationFailure() { |
| bool hasUninstantiatedProxy = false; |
| auto checkInstantiation = [&hasUninstantiatedProxy](GrSurfaceProxy* p, GrMipMapped) { |
| if (!p->isInstantiated()) { |
| hasUninstantiatedProxy = true; |
| } |
| }; |
| for (OpChain& recordedOp : fOpChains) { |
| hasUninstantiatedProxy = false; |
| recordedOp.visitProxies(checkInstantiation); |
| if (hasUninstantiatedProxy) { |
| recordedOp.setSkipExecuteFlag(); |
| } |
| } |
| } |
| |
| void GrOpsTask::gatherProxyIntervals(GrResourceAllocator* alloc) const { |
| for (int i = 0; i < fDeferredProxies.count(); ++i) { |
| SkASSERT(!fDeferredProxies[i]->isInstantiated()); |
| // We give all the deferred proxies a write usage at the very start of flushing. This |
| // locks them out of being reused for the entire flush until they are read - and then |
| // they can be recycled. This is a bit unfortunate because a flush can proceed in waves |
| // with sub-flushes. The deferred proxies only need to be pinned from the start of |
| // the sub-flush in which they appear. |
| alloc->addInterval(fDeferredProxies[i], 0, 0, GrResourceAllocator::ActualUse::kNo); |
| } |
| |
| // Add the interval for all the writes to this GrOpsTasks's target |
| if (fOpChains.count()) { |
| unsigned int cur = alloc->curOp(); |
| |
| alloc->addInterval(fTarget.get(), cur, cur + fOpChains.count() - 1, |
| GrResourceAllocator::ActualUse::kYes); |
| } else { |
| // This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we |
| // still need to add an interval for the destination so we create a fake op# for |
| // the missing clear op. |
| alloc->addInterval(fTarget.get(), alloc->curOp(), alloc->curOp(), |
| GrResourceAllocator::ActualUse::kYes); |
| alloc->incOps(); |
| } |
| |
| auto gather = [ alloc SkDEBUGCODE(, this) ] (GrSurfaceProxy* p, GrMipMapped) { |
| alloc->addInterval(p, alloc->curOp(), alloc->curOp(), GrResourceAllocator::ActualUse::kYes |
| SkDEBUGCODE(, fTarget.get() == p)); |
| }; |
| for (const OpChain& recordedOp : fOpChains) { |
| recordedOp.visitProxies(gather); |
| |
| // Even though the op may have been (re)moved we still need to increment the op count to |
| // keep all the math consistent. |
| alloc->incOps(); |
| } |
| } |
| |
| void GrOpsTask::recordOp( |
| std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* clip, |
| const DstProxy* dstProxy, const GrCaps& caps) { |
| SkDEBUGCODE(op->validate();) |
| SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxy && dstProxy->proxy())); |
| SkASSERT(fTarget); |
| |
| // A closed GrOpsTask should never receive new/more ops |
| SkASSERT(!this->isClosed()); |
| if (!op->bounds().isFinite()) { |
| fOpMemoryPool->release(std::move(op)); |
| return; |
| } |
| |
| // Account for this op's bounds before we attempt to combine. |
| // NOTE: The caller should have already called "op->setClippedBounds()" by now, if applicable. |
| fTotalBounds.join(op->bounds()); |
| |
| // Check if there is an op we can combine with by linearly searching back until we either |
| // 1) check every op |
| // 2) intersect with something |
| // 3) find a 'blocker' |
| GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), fTarget->uniqueID()); |
| GrOP_INFO("opsTask: %d Recording (%s, opID: %u)\n" |
| "\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n", |
| this->uniqueID(), |
| op->name(), |
| op->uniqueID(), |
| op->bounds().fLeft, op->bounds().fTop, |
| op->bounds().fRight, op->bounds().fBottom); |
| GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str()); |
| GrOP_INFO("\tOutcome:\n"); |
| int maxCandidates = SkTMin(kMaxOpChainDistance, fOpChains.count()); |
| if (maxCandidates) { |
| int i = 0; |
| while (true) { |
| OpChain& candidate = fOpChains.fromBack(i); |
| op = candidate.appendOp(std::move(op), processorAnalysis, dstProxy, clip, caps, |
| fOpMemoryPool.get(), fAuditTrail); |
| if (!op) { |
| return; |
| } |
| // Stop going backwards if we would cause a painter's order violation. |
| if (!can_reorder(candidate.bounds(), op->bounds())) { |
| GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n", |
| candidate.head()->name(), candidate.head()->uniqueID()); |
| break; |
| } |
| if (++i == maxCandidates) { |
| GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i); |
| break; |
| } |
| } |
| } else { |
| GrOP_INFO("\t\tBackward: FirstOp\n"); |
| } |
| if (clip) { |
| clip = fClipAllocator.make<GrAppliedClip>(std::move(*clip)); |
| SkDEBUGCODE(fNumClips++;) |
| } |
| fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxy); |
| } |
| |
| void GrOpsTask::forwardCombine(const GrCaps& caps) { |
| SkASSERT(!this->isClosed()); |
| GrOP_INFO("opsTask: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.count()); |
| |
| for (int i = 0; i < fOpChains.count() - 1; ++i) { |
| OpChain& chain = fOpChains[i]; |
| int maxCandidateIdx = SkTMin(i + kMaxOpChainDistance, fOpChains.count() - 1); |
| int j = i + 1; |
| while (true) { |
| OpChain& candidate = fOpChains[j]; |
| if (candidate.prependChain(&chain, caps, fOpMemoryPool.get(), fAuditTrail)) { |
| break; |
| } |
| // Stop traversing if we would cause a painter's order violation. |
| if (!can_reorder(chain.bounds(), candidate.bounds())) { |
| GrOP_INFO( |
| "\t\t%d: chain (%s head opID: %u) -> " |
| "Intersects with chain (%s, head opID: %u)\n", |
| i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(), |
| candidate.head()->uniqueID()); |
| break; |
| } |
| if (++j > maxCandidateIdx) { |
| GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n", |
| i, chain.head()->name(), chain.head()->uniqueID()); |
| break; |
| } |
| } |
| } |
| } |
| |
| GrRenderTask::ExpectedOutcome GrOpsTask::onMakeClosed( |
| const GrCaps& caps, SkIRect* targetUpdateBounds) { |
| this->forwardCombine(caps); |
| if (!this->isNoOp()) { |
| SkRect clippedContentBounds = SkRect::MakeIWH(fTarget->width(), fTarget->height()); |
| // TODO: If we can fix up GLPrograms test to always intersect the fTarget bounds then we can |
| // simply assert here that the bounds intersect. |
| if (clippedContentBounds.intersect(fTotalBounds)) { |
| clippedContentBounds.roundOut(&fClippedContentBounds); |
| *targetUpdateBounds = fClippedContentBounds; |
| return ExpectedOutcome::kTargetDirty; |
| } |
| } |
| return ExpectedOutcome::kTargetUnchanged; |
| } |