blob: a4cf77b7f517df484cc32b0c0a053c74c80570b2 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRegionPriv_DEFINED
#define SkRegionPriv_DEFINED
#include "SkRegion.h"
#include "SkAtomics.h"
#define assert_sentinel(value, isSentinel) \
SkASSERT(((value) == SkRegion::kRunTypeSentinel) == isSentinel)
//SkDEBUGCODE(extern int32_t gRgnAllocCounter;)
#ifdef SK_DEBUG
// Given the first interval (just past the interval-count), compute the
// interval count, by search for the x-sentinel
//
static int compute_intervalcount(const SkRegion::RunType runs[]) {
const SkRegion::RunType* curr = runs;
while (*curr < SkRegion::kRunTypeSentinel) {
SkASSERT(curr[0] < curr[1]);
SkASSERT(curr[1] < SkRegion::kRunTypeSentinel);
curr += 2;
}
return SkToInt((curr - runs) >> 1);
}
#endif
struct SkRegion::RunHead {
private:
public:
int32_t fRefCnt;
int32_t fRunCount;
/**
* Number of spans with different Y values. This does not count the initial
* Top value, nor does it count the final Y-Sentinel value. In the logical
* case of a rectangle, this would return 1, and an empty region would
* return 0.
*/
int getYSpanCount() const {
return fYSpanCount;
}
/**
* Number of intervals in the entire region. This equals the number of
* rects that would be returned by the Iterator. In the logical case of
* a rect, this would return 1, and an empty region would return 0.
*/
int getIntervalCount() const {
return fIntervalCount;
}
static RunHead* Alloc(int count) {
//SkDEBUGCODE(sk_atomic_inc(&gRgnAllocCounter);)
//SkDEBUGF(("************** gRgnAllocCounter::alloc %d\n", gRgnAllocCounter));
SkASSERT(count >= SkRegion::kRectRegionRuns);
const int64_t size = sk_64_mul(count, sizeof(RunType)) + sizeof(RunHead);
if (count < 0 || !sk_64_isS32(size)) { SK_ABORT("Invalid Size"); }
RunHead* head = (RunHead*)sk_malloc_throw(size);
head->fRefCnt = 1;
head->fRunCount = count;
// these must be filled in later, otherwise we will be invalid
head->fYSpanCount = 0;
head->fIntervalCount = 0;
return head;
}
static RunHead* Alloc(int count, int yspancount, int intervalCount) {
SkASSERT(yspancount > 0);
SkASSERT(intervalCount > 1);
RunHead* head = Alloc(count);
head->fYSpanCount = yspancount;
head->fIntervalCount = intervalCount;
return head;
}
SkRegion::RunType* writable_runs() {
SkASSERT(fRefCnt == 1);
return (SkRegion::RunType*)(this + 1);
}
const SkRegion::RunType* readonly_runs() const {
return (const SkRegion::RunType*)(this + 1);
}
RunHead* ensureWritable() {
RunHead* writable = this;
if (fRefCnt > 1) {
// We need to alloc & copy the current region before we call
// sk_atomic_dec because it could be freed in the meantime,
// otherwise.
writable = Alloc(fRunCount, fYSpanCount, fIntervalCount);
memcpy(writable->writable_runs(), this->readonly_runs(),
fRunCount * sizeof(RunType));
// fRefCount might have changed since we last checked.
// If we own the last reference at this point, we need to
// free the memory.
if (sk_atomic_dec(&fRefCnt) == 1) {
sk_free(this);
}
}
return writable;
}
/**
* Given a scanline (including its Bottom value at runs[0]), return the next
* scanline. Asserts that there is one (i.e. runs[0] < Sentinel)
*/
static SkRegion::RunType* SkipEntireScanline(const SkRegion::RunType runs[]) {
// we are not the Y Sentinel
SkASSERT(runs[0] < SkRegion::kRunTypeSentinel);
const int intervals = runs[1];
SkASSERT(runs[2 + intervals * 2] == SkRegion::kRunTypeSentinel);
#ifdef SK_DEBUG
{
int n = compute_intervalcount(&runs[2]);
SkASSERT(n == intervals);
}
#endif
// skip the entire line [B N [L R] S]
runs += 1 + 1 + intervals * 2 + 1;
return const_cast<SkRegion::RunType*>(runs);
}
/**
* Return the scanline that contains the Y value. This requires that the Y
* value is already known to be contained within the bounds of the region,
* and so this routine never returns nullptr.
*
* It returns the beginning of the scanline, starting with its Bottom value.
*/
SkRegion::RunType* findScanline(int y) const {
const RunType* runs = this->readonly_runs();
// if the top-check fails, we didn't do a quick check on the bounds
SkASSERT(y >= runs[0]);
runs += 1; // skip top-Y
for (;;) {
int bottom = runs[0];
// If we hit this, we've walked off the region, and our bounds check
// failed.
SkASSERT(bottom < SkRegion::kRunTypeSentinel);
if (y < bottom) {
break;
}
runs = SkipEntireScanline(runs);
}
return const_cast<SkRegion::RunType*>(runs);
}
// Copy src runs into us, computing interval counts and bounds along the way
void computeRunBounds(SkIRect* bounds) {
RunType* runs = this->writable_runs();
bounds->fTop = *runs++;
int bot;
int ySpanCount = 0;
int intervalCount = 0;
int left = SK_MaxS32;
int rite = SK_MinS32;
do {
bot = *runs++;
SkASSERT(bot < SkRegion::kRunTypeSentinel);
ySpanCount += 1;
const int intervals = *runs++;
SkASSERT(intervals >= 0);
SkASSERT(intervals < SkRegion::kRunTypeSentinel);
if (intervals > 0) {
#ifdef SK_DEBUG
{
int n = compute_intervalcount(runs);
SkASSERT(n == intervals);
}
#endif
RunType L = runs[0];
SkASSERT(L < SkRegion::kRunTypeSentinel);
if (left > L) {
left = L;
}
runs += intervals * 2;
RunType R = runs[-1];
SkASSERT(R < SkRegion::kRunTypeSentinel);
if (rite < R) {
rite = R;
}
intervalCount += intervals;
}
SkASSERT(SkRegion::kRunTypeSentinel == *runs);
runs += 1; // skip x-sentinel
// test Y-sentinel
} while (SkRegion::kRunTypeSentinel > *runs);
#ifdef SK_DEBUG
// +1 to skip the last Y-sentinel
int runCount = SkToInt(runs - this->writable_runs() + 1);
SkASSERT(runCount == fRunCount);
#endif
fYSpanCount = ySpanCount;
fIntervalCount = intervalCount;
bounds->fLeft = left;
bounds->fRight = rite;
bounds->fBottom = bot;
}
private:
int32_t fYSpanCount;
int32_t fIntervalCount;
};
#endif