blob: 40968b1f854e57be5feebaf5cf93380c536d0fd6 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgramBuilder.h"
#include "GrAutoLocaleSetter.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrCoordTransform.h"
#include "GrGLProgramBuilder.h"
#include "GrPersistentCacheUtils.h"
#include "GrProgramDesc.h"
#include "GrShaderCaps.h"
#include "GrSwizzle.h"
#include "SkAutoMalloc.h"
#include "SkATrace.h"
#include "SkReader32.h"
#include "SkTraceEvent.h"
#include "SkWriter32.h"
#include "gl/GrGLGpu.h"
#include "gl/GrGLProgram.h"
#include "gl/builders/GrGLShaderStringBuilder.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLXferProcessor.h"
#define GL_CALL(X) GR_GL_CALL(this->gpu()->glInterface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(this->gpu()->glInterface(), R, X)
GrGLProgram* GrGLProgramBuilder::CreateProgram(GrRenderTarget* renderTarget, GrSurfaceOrigin origin,
const GrPrimitiveProcessor& primProc,
const GrTextureProxy* const primProcProxies[],
const GrPipeline& pipeline,
GrProgramDesc* desc,
GrGLGpu* gpu) {
SkASSERT(!pipeline.isBad());
ATRACE_ANDROID_FRAMEWORK("Shader Compile");
GrAutoLocaleSetter als("C");
// create a builder. This will be handed off to effects so they can use it to add
// uniforms, varyings, textures, etc
GrGLProgramBuilder builder(gpu, renderTarget, origin,
pipeline, primProc, primProcProxies, desc);
auto persistentCache = gpu->getContext()->priv().getPersistentCache();
if (persistentCache) {
sk_sp<SkData> key = SkData::MakeWithoutCopy(desc->asKey(), desc->keyLength());
builder.fCached = persistentCache->load(*key);
// the eventual end goal is to completely skip emitAndInstallProcs on a cache hit, but it's
// doing necessary setup in addition to generating the SkSL code. Currently we are only able
// to skip the SkSL->GLSL step on a cache hit.
}
if (!builder.emitAndInstallProcs()) {
return nullptr;
}
return builder.finalize();
}
/////////////////////////////////////////////////////////////////////////////
GrGLProgramBuilder::GrGLProgramBuilder(GrGLGpu* gpu,
GrRenderTarget* renderTarget,
GrSurfaceOrigin origin,
const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
const GrTextureProxy* const primProcProxies[],
GrProgramDesc* desc)
: INHERITED(renderTarget, origin, primProc, primProcProxies, pipeline, desc)
, fGpu(gpu)
, fVaryingHandler(this)
, fUniformHandler(this)
, fVertexAttributeCnt(0)
, fInstanceAttributeCnt(0)
, fVertexStride(0)
, fInstanceStride(0) {}
const GrCaps* GrGLProgramBuilder::caps() const {
return fGpu->caps();
}
bool GrGLProgramBuilder::compileAndAttachShaders(const char* glsl,
int length,
GrGLuint programId,
GrGLenum type,
SkTDArray<GrGLuint>* shaderIds,
const SkSL::Program::Settings& settings,
const SkSL::Program::Inputs& inputs) {
GrGLGpu* gpu = this->gpu();
GrGLuint shaderId = GrGLCompileAndAttachShader(gpu->glContext(),
programId,
type,
glsl,
length,
gpu->stats(),
settings);
if (!shaderId) {
return false;
}
*shaderIds->append() = shaderId;
if (inputs.fFlipY) {
GrProgramDesc* d = this->desc();
d->setSurfaceOriginKey(GrGLSLFragmentShaderBuilder::KeyForSurfaceOrigin(this->origin()));
}
return true;
}
void GrGLProgramBuilder::computeCountsAndStrides(GrGLuint programID,
const GrPrimitiveProcessor& primProc,
bool bindAttribLocations) {
fVertexAttributeCnt = primProc.numVertexAttributes();
fInstanceAttributeCnt = primProc.numInstanceAttributes();
fAttributes.reset(
new GrGLProgram::Attribute[fVertexAttributeCnt + fInstanceAttributeCnt]);
auto addAttr = [&](int i, const auto& a, size_t* stride) {
fAttributes[i].fCPUType = a.cpuType();
fAttributes[i].fGPUType = a.gpuType();
fAttributes[i].fOffset = *stride;
*stride += a.sizeAlign4();
fAttributes[i].fLocation = i;
if (bindAttribLocations) {
GL_CALL(BindAttribLocation(programID, i, a.name()));
}
};
fVertexStride = 0;
int i = 0;
for (const auto& attr : primProc.vertexAttributes()) {
addAttr(i++, attr, &fVertexStride);
}
SkASSERT(fVertexStride == primProc.vertexStride());
fInstanceStride = 0;
for (const auto& attr : primProc.instanceAttributes()) {
addAttr(i++, attr, &fInstanceStride);
}
SkASSERT(fInstanceStride == primProc.instanceStride());
}
void GrGLProgramBuilder::addInputVars(const SkSL::Program::Inputs& inputs) {
if (inputs.fRTWidth) {
this->addRTWidthUniform(SKSL_RTWIDTH_NAME);
}
if (inputs.fRTHeight) {
this->addRTHeightUniform(SKSL_RTHEIGHT_NAME);
}
}
void GrGLProgramBuilder::storeShaderInCache(const SkSL::Program::Inputs& inputs, GrGLuint programID,
const SkSL::String glsl[]) {
if (!this->gpu()->getContext()->priv().getPersistentCache()) {
return;
}
sk_sp<SkData> key = SkData::MakeWithoutCopy(desc()->asKey(), desc()->keyLength());
if (fGpu->glCaps().programBinarySupport()) {
// binary cache
GrGLsizei length = 0;
GL_CALL(GetProgramiv(programID, GL_PROGRAM_BINARY_LENGTH, &length));
if (length > 0) {
SkWriter32 writer;
writer.writePad(&inputs, sizeof(inputs));
writer.write32(length);
void* binary = writer.reservePad(length);
GrGLenum binaryFormat;
GL_CALL(GetProgramBinary(programID, length, &length, &binaryFormat, binary));
writer.write32(binaryFormat);
auto data = writer.snapshotAsData();
this->gpu()->getContext()->priv().getPersistentCache()->store(*key, *data);
}
} else {
// source cache
auto data = GrPersistentCacheUtils::PackCachedGLSL(inputs, glsl);
this->gpu()->getContext()->priv().getPersistentCache()->store(*key, *data);
}
}
GrGLProgram* GrGLProgramBuilder::finalize() {
TRACE_EVENT0("skia", TRACE_FUNC);
// verify we can get a program id
GrGLuint programID;
GL_CALL_RET(programID, CreateProgram());
if (0 == programID) {
return nullptr;
}
if (this->gpu()->glCaps().programBinarySupport() &&
this->gpu()->getContext()->priv().getPersistentCache()) {
GL_CALL(ProgramParameteri(programID, GR_GL_PROGRAM_BINARY_RETRIEVABLE_HINT, GR_GL_TRUE));
}
this->finalizeShaders();
// compile shaders and bind attributes / uniforms
const GrPrimitiveProcessor& primProc = this->primitiveProcessor();
SkSL::Program::Settings settings;
settings.fCaps = this->gpu()->glCaps().shaderCaps();
settings.fFlipY = this->origin() != kTopLeft_GrSurfaceOrigin;
settings.fSharpenTextures =
this->gpu()->getContext()->priv().options().fSharpenMipmappedTextures;
settings.fFragColorIsInOut = this->fragColorIsInOut();
SkSL::Program::Inputs inputs;
SkTDArray<GrGLuint> shadersToDelete;
// Calling GetProgramiv is expensive in Chromium. Assume success in release builds.
bool checkLinked = kChromium_GrGLDriver != fGpu->ctxInfo().driver();
#ifdef SK_DEBUG
checkLinked = true;
#endif
bool cached = fCached.get() != nullptr;
SkSL::String glsl[kGrShaderTypeCount];
if (cached) {
if (fGpu->glCaps().programBinarySupport()) {
// binary cache hit, just hand the binary to GL
SkReader32 reader(fCached->data(), fCached->size());
reader.read(&inputs, sizeof(inputs));
GrGLsizei length = reader.readInt();
const void* binary = reader.skip(length);
GrGLenum binaryFormat = reader.readU32();
GrGLClearErr(this->gpu()->glInterface());
GR_GL_CALL_NOERRCHECK(this->gpu()->glInterface(),
ProgramBinary(programID, binaryFormat, const_cast<void*>(binary),
length));
if (GR_GL_GET_ERROR(this->gpu()->glInterface()) == GR_GL_NO_ERROR) {
if (checkLinked) {
cached = this->checkLinkStatus(programID);
}
if (cached) {
this->addInputVars(inputs);
this->computeCountsAndStrides(programID, primProc, false);
}
} else {
cached = false;
}
} else {
// source cache hit, we don't need to compile the SkSL->GLSL
GrPersistentCacheUtils::UnpackCachedGLSL(fCached.get(), &inputs, glsl);
}
}
if (!cached || !fGpu->glCaps().programBinarySupport()) {
// either a cache miss, or we can't store binaries in the cache
if (glsl[kFragment_GrShaderType].empty()) {
// Don't have cached GLSL, need to compile SkSL->GLSL
if (fFS.fForceHighPrecision) {
settings.fForceHighPrecision = true;
}
std::unique_ptr<SkSL::Program> fs = GrSkSLtoGLSL(gpu()->glContext(),
GR_GL_FRAGMENT_SHADER,
fFS.fCompilerString,
settings,
&glsl[kFragment_GrShaderType]);
if (!fs) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
inputs = fs->fInputs;
this->addInputVars(inputs);
} else {
// we've pulled GLSL and inputs from the cache, but still need to do some setup
this->addInputVars(inputs);
this->computeCountsAndStrides(programID, primProc, false);
}
if (!this->compileAndAttachShaders(glsl[kFragment_GrShaderType].c_str(),
glsl[kFragment_GrShaderType].size(), programID,
GR_GL_FRAGMENT_SHADER, &shadersToDelete, settings,
inputs)) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
if (glsl[kVertex_GrShaderType].empty()) {
// Don't have cached GLSL, need to compile SkSL->GLSL
std::unique_ptr<SkSL::Program> vs = GrSkSLtoGLSL(gpu()->glContext(),
GR_GL_VERTEX_SHADER,
fVS.fCompilerString,
settings,
&glsl[kVertex_GrShaderType]);
if (!vs) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
}
if (!this->compileAndAttachShaders(glsl[kVertex_GrShaderType].c_str(),
glsl[kVertex_GrShaderType].size(), programID,
GR_GL_VERTEX_SHADER, &shadersToDelete, settings,
inputs)) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
// NVPR actually requires a vertex shader to compile
bool useNvpr = primProc.isPathRendering();
if (!useNvpr) {
this->computeCountsAndStrides(programID, primProc, true);
}
if (primProc.willUseGeoShader()) {
if (glsl[kGeometry_GrShaderType].empty()) {
// Don't have cached GLSL, need to compile SkSL->GLSL
std::unique_ptr<SkSL::Program> gs;
gs = GrSkSLtoGLSL(gpu()->glContext(),
GR_GL_GEOMETRY_SHADER,
fGS.fCompilerString,
settings,
&glsl[kGeometry_GrShaderType]);
if (!gs) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
}
if (!this->compileAndAttachShaders(glsl[kGeometry_GrShaderType].c_str(),
glsl[kGeometry_GrShaderType].size(), programID,
GR_GL_GEOMETRY_SHADER, &shadersToDelete, settings,
inputs)) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
}
this->bindProgramResourceLocations(programID);
GL_CALL(LinkProgram(programID));
if (checkLinked) {
if (!this->checkLinkStatus(programID)) {
GL_CALL(DeleteProgram(programID));
SkDebugf("VS:\n");
GrGLPrintShader(fGpu->glContext(),
GR_GL_VERTEX_SHADER,
fVS.fCompilerString,
settings);
if (primProc.willUseGeoShader()) {
SkDebugf("\nGS:\n");
GrGLPrintShader(fGpu->glContext(),
GR_GL_GEOMETRY_SHADER,
fGS.fCompilerString,
settings);
}
SkDebugf("\nFS:\n");
GrGLPrintShader(fGpu->glContext(),
GR_GL_FRAGMENT_SHADER,
fFS.fCompilerString,
settings);
return nullptr;
}
}
}
this->resolveProgramResourceLocations(programID);
this->cleanupShaders(shadersToDelete);
if (!cached) {
this->storeShaderInCache(inputs, programID, glsl);
}
return this->createProgram(programID);
}
void GrGLProgramBuilder::bindProgramResourceLocations(GrGLuint programID) {
fUniformHandler.bindUniformLocations(programID, fGpu->glCaps());
const GrGLCaps& caps = this->gpu()->glCaps();
if (fFS.hasCustomColorOutput() && caps.bindFragDataLocationSupport()) {
GL_CALL(BindFragDataLocation(programID, 0,
GrGLSLFragmentShaderBuilder::DeclaredColorOutputName()));
}
if (fFS.hasSecondaryOutput() && caps.shaderCaps()->mustDeclareFragmentShaderOutput()) {
GL_CALL(BindFragDataLocationIndexed(programID, 0, 1,
GrGLSLFragmentShaderBuilder::DeclaredSecondaryColorOutputName()));
}
// handle NVPR separable varyings
if (!fGpu->glCaps().shaderCaps()->pathRenderingSupport() ||
!fGpu->glPathRendering()->shouldBindFragmentInputs()) {
return;
}
int count = fVaryingHandler.fPathProcVaryingInfos.count();
for (int i = 0; i < count; ++i) {
GL_CALL(BindFragmentInputLocation(programID, i,
fVaryingHandler.fPathProcVaryingInfos[i].fVariable.c_str()));
fVaryingHandler.fPathProcVaryingInfos[i].fLocation = i;
}
}
bool GrGLProgramBuilder::checkLinkStatus(GrGLuint programID) {
GrGLint linked = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(programID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
SkDebugf("Program linking failed.\n");
GrGLint infoLen = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(programID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GL_CALL(GetProgramInfoLog(programID,
infoLen+1,
&length,
(char*)log.get()));
SkDebugf("%s", (char*)log.get());
}
}
return SkToBool(linked);
}
void GrGLProgramBuilder::resolveProgramResourceLocations(GrGLuint programID) {
fUniformHandler.getUniformLocations(programID, fGpu->glCaps());
// handle NVPR separable varyings
if (!fGpu->glCaps().shaderCaps()->pathRenderingSupport() ||
fGpu->glPathRendering()->shouldBindFragmentInputs()) {
return;
}
int count = fVaryingHandler.fPathProcVaryingInfos.count();
for (int i = 0; i < count; ++i) {
GrGLint location;
GL_CALL_RET(location, GetProgramResourceLocation(
programID,
GR_GL_FRAGMENT_INPUT,
fVaryingHandler.fPathProcVaryingInfos[i].fVariable.c_str()));
fVaryingHandler.fPathProcVaryingInfos[i].fLocation = location;
}
}
void GrGLProgramBuilder::cleanupProgram(GrGLuint programID, const SkTDArray<GrGLuint>& shaderIDs) {
GL_CALL(DeleteProgram(programID));
this->cleanupShaders(shaderIDs);
}
void GrGLProgramBuilder::cleanupShaders(const SkTDArray<GrGLuint>& shaderIDs) {
for (int i = 0; i < shaderIDs.count(); ++i) {
GL_CALL(DeleteShader(shaderIDs[i]));
}
}
GrGLProgram* GrGLProgramBuilder::createProgram(GrGLuint programID) {
return new GrGLProgram(fGpu,
fUniformHandles,
programID,
fUniformHandler.fUniforms,
fUniformHandler.fSamplers,
fVaryingHandler.fPathProcVaryingInfos,
std::move(fGeometryProcessor),
std::move(fXferProcessor),
std::move(fFragmentProcessors),
fFragmentProcessorCnt,
std::move(fAttributes),
fVertexAttributeCnt,
fInstanceAttributeCnt,
fVertexStride,
fInstanceStride);
}